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INTEGRAL OPERATORS ON ^-SPACES

D. R. LEWIS

It is shown that the complemented subspaces of Lp(μ)-
spaces are isomorphically and isometrically characterized by
the behavior of the integral operators defined on such spaces.
If the integral operators from E to any F are exactly those
operators naturally inducing continuous maps from lq ® E to
l<κ§)F (where p~x + q~ι = 1), then E is a =5^-space or a
jSίrspace. Further, if the integral norm always coincides
with the operator norm of the induced mapping, then E is
isometric to an Lp(μ)-space.

Several recent papers ([9], [10], [5], [6]) have been concerned with
the isomorphie and isometric characterization of the familiar Banach
spaces by means of the behavior of the integral and absolutely summing
operators defined on the spaces. Attention has mainly been focused
on the ^L-spaces, although most results have dual statements for
^-spaces. Here we consider a class of operators (first introduced by
J. S Cohen in [1], and called here the cp-operators) which can be
used to provide both an isometric and isomorphie characterization of
the complemented subspaces of Lp(μ), 1 < p < oo.

Since this result was proven the author has become aware of the
elegant paper of Kwapien [4], in which it is shown that the cp-oper-
ators (called there the τp*-operators) are exactly those maps of form
βa, where a is ^-summing and βf is g-summing. Thus the isomorphie
version of the theorem given here can be proven from [4] However,
the proofs have little in common, and we feel that the technique
used below may be of use in other factorization problems.

1* All Banach spaces E, F, G, and H are over the real field.
Operator (or map) means continuous linear operator, and by subspace
we mean a closed linear subset. A map u from E onto F is called
quotient map if the induced map from EjvΓιφ) onto F is an isometry.
The identity map on a space is written 1, and the restriction of a
map u to a subspace H is written u \ H.

For 1 ^ p <; oo y l* denotes the product of n copies of the scalar
field under the norm || (α«) || = (Σ**» \ai\pYlP for 1 ^ p < oo, and under
||(α<)|| — m a x ^ j α j for p — oo. The Banach-Mazur distance between
isomorphie Banach spaces E and F is d(E, F) = inf 11u\\ \\u~ι \\,
where the infimum is taken over all isomorphisms from E onto F.
For 1 ^ p ^ oo and l ^ λ , a space E is a =S^,rspace if it has the
following property: given GcE finite dimensional, there is an n-
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dimensional H with GaHczE and d(H, i$) g λ. The space E is a
^,-space if it is a <=S ,̂rSpace for some λ ^ 1.

The notation and terminology about topological tensor products is
that of [3]. The least and greatest tensor norms are written | | v

and I |Λ respectively, and E(g)aF is the completion of the algebraic
tensor product under the tensor norm a. For u: E~> F and v: G —>
H, u 0 v denotes the map from E (x) G to F (x) H which satisfies
(u (x) v)(x (x) y) = w(sc) (g) v(j/). An operator u: E—> F is integral if the
bilinear form taking (a?, ?/') to (u(x), yrs) naturally induces an element
A of (E®F'Y, and the integral norm of u (written \\u\\A) is | |A| | .
The space of integral operators from E to F is written LA(E, F).

For 1 < p < cχ3, a map u: E—> F is a cp-operator if 1 (x) % extends
to a continuous linear operator from P (δ) E into Zp 0 F, and the cp-
norm of u (written | |u ||βp) is the operator norm of 1 (x) u. As mentioned
above, this class of operators was introduced by J. S. Cohen in [1],
We need the results of [1] that CP(E, F), the space of cp-operators
from E to F, is a Banach space under || \\ep and is a normed two
sided ideal in the generalized sense. Cohen has also shown that | | t t | | g
ll^llcp for each cp-operator u, and that \\u\\A ^ λ||λ||C3, if the domain
of u is = 5 ^ .

2* Throughout the remainder of this paper 1 < p < oo and q ~
p/(p - 1).

THEOREM. For u e L(E, F) and 6 ^ 1 , the following are equi-
valent:

( 1 ) For every Banach space G and veCq(F, G), vu is integral
and \\vu\\A ^ b\\v\\cq.

( 2 ) There is a measure μ and operators ae L(E, Lp(μ)), β e
L{Lp{μ),F") such that \\a\\ | | β | | <; 6 and βa = ju9 where j is the
canonical embedding of F into F"'.

Proof. The implication (2) => (1) follows directly from the result
of Cohen cited above.

In proving that (1) implies (2), it is possible to reduce to the
case in which E is finite dimensional by making the following two
observations.

(a) If u satisfies (1) and HaE is a finite dimensional subspace,
then u I H satisfies (1).

(b) Conclusion (2) holds if, whenever H c E is finite dimensional
a n d ε > 0, u\H= βa, for some a e L(H, lv), β e L(lp, F) with | | α | | | |/9| |g
(1 + ε)6.

In fact, (a) follows easily from the ideal structure of the cq-
operators, and (b) from an inspection of the proofs of Proposition 7.1
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and Theorem 7.1 of [7].
It is therefore possible to assume in the remainder of the proof

that E is finite dimensional, and it is necessary to establish only that
the statement in (6) holds.

For aeEr ®lv and βelq (g) F, the contraction of {a, β) is the
element of E' ®F defined by Ctr (a, β) = (1 (g) β){a), where β is con-
sidered as an operator from lp to F. It is easily seen that contraction
is a bilinear mapping from (E' (g) lp) x (lq (g) F) onto Ef (g) F of norm
at most one, and that the operator from E to F defined by Ctr (a, β)
is the composition of the operators defined by a and β. By the
universal mapping property for the projective tensor product, contraction
extends to a norm one linear operator from {Ef (g) lp) (g) (lg (g) F) onto
Ef (g) F. Define a norm | | on Ef (g) F by setting

\w\ = inf {|?>|Λ: w = Ctr (φ)) .

Then I I is a crossnorm on E' (g) i*7 under which this space is complete,
and further contraction is now a quotient map onto Er (g) F (we will
write E'®F for E'®F under | |).

For A € {Ef (g) F ) ' let v be the map from F to E defined by
<>(2/), α'> = <»' ® 2/, -A>. It follows that i? e Cq(F, E) and that \\v\\cq =
11-A||; in fact, the adjoint of the contraction map is a,n isometric
embedding of (E' (g) F)' into the dual of (£" ® P) (g) (iff (g) F ) , which
by [2] may be naturally identified as

= B(E' (g) ip, ϊff (g) F)

Tracing through all the identifications involved shows that (Ctr)'(A) =
1 (g) v, and so the claim is established.

The next claim is that the operator 1 (g) u from Er ® E into Er (g)
JP7 has norm at most δ, where δ is the constant occurring in the
statement (1) of the the theorem. To this end consider the adjoint
of 10u. By preceding paragraph (Ef (g) F)f'cCq{F, E) isometrically,
and {Ef <g) E)' = LA(E, E) isometrically by [2]. Further, after mrking
these two identifications, (1 (g) v)f is the restriction of the map from
Cq(F, E) to LA(E, E) taking v to vu, which has norm g δ by (1).

By the preceding paragraph the tensor w = (1 (x) u) (1E) has norm
at most δ in Ef (§) F, and clearly u is the operator from E to F
defined by w. To complete the proof is sufficient to produce a pair
(α, /S) in (£7' (g) ^) x (^ (g) ί7) so that w = Ctr (α, /3) and | α | v \β\y ^
(1 + ε)δ. To do the former, we need only produce a pair (at, β) so
that u is the operator defined by Ctr (a, β) (since | | v and | | are
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equivalent norms on Ef(^)F — L(E,F), the inclusion of Eτ (g) F into
E' (g) F is one-to-one).

Since | w | <£ & and Ctr is a quotient map, there is a <p in (£" (g) ip) (g)
(^(g)F) such that w = Ctr (φ) and \φ\A < (1 + ε)6. By [2] <p has a
representation

Ψ = Σ<*i λ A (g) /Si

where (λ<) is a positive sequence in Z1, a^E' ®lp, βielq ® F | |^ |] g
1,11/9,11^1 and || (λ4) | | < (1 + e)6.

Let (Γi)^ be a partition of the natural numbers with each l\
countably infinite, E7* be the natural embedding of lp(Γ{) into lp

9 F<
the natural projection of ^ onto lp(Γi), Si:lp —> ZP(A) any onto isometry
and Γί — (S )"1. We claim that the series

is unconditionally Cauchy in £" (g) ϊp, and that its sum, a, has norm
at most (ΣteΛί)1/3> To see this, let I be any finite set of indices,
and consider the unordered sum over I as an operator from E to lp. For
any xeE, the terms of the unordered sum evaluated at x are dis-
jointly supported in lp and so

Taking the supremum over the closed unit ball of E shows that the
norm of the unordered sum over / is at most (Σ e/λί)1^, which es-
tablishes the claim. Similarly, the series

converges unconditionally in I" (g) F to an element β of norm at most
(Σ;λi)1/5 Clearly | α | v | β | v ^ (1 + ε)b. For r a tensor, write op(τ)
for the operator defined by r. Then, for each i and A;,

((1 <

= δikop[Ctr (aif βk)]

and so, by the continuity of the maps Ctr and op,
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op[Ctr (α, β)] - Σ *
f 4
 \\*\.)!<δ

ik
op[Ctr (a

if
 β

k
)]

This completes the proof.
As corollaries to the proof we have the following.

COROLLARY 1. If every cq-operator on E is integral, then E is
a J5?z-space or J5fp-space.

COROLLARY 2. If every cq-operator on E is integral with equality
of the integral norm and cq-norm, then E is isometric to some space

Proof. Both corollaries follow by applying the theorem to the
identity operator on E. The existence of a constant 6 satisfying
condition (1) of the theorem in the situation of Corollary 1 can easily
be shown by contradiction. In either case, the injection of E into E"
factors

with | |α | | \\β\\ ̂  b, so that E is reflexive and isomorphic to a comple-
mented subspace of Lp(μ). In general the result of Lindenstrauss and
Rosenthal ([8]) shows that E is a ^-space or a ^-space. If 6 = 1,
the theorem of Tzafriti [11] shows that E is isometric to some space

COROLLARY 3. // every c2-operator on E is integral, then E is
isomorphic to a Hilbert space.

Proof. It is well-known thai a complemented subspace of a Hilbert
space is itself a Hilbert space.

COROLLARY 4. If 1 < s, t < oo and s, t and 2 are distinct, then
there are cs-operators which are not ct-operators.

Proof. By [8] it is impossible that V be isomorphic to a comple-
mented subspace of L8\μ), where sf and V are the conjugates of s
and t, so by the theorem, 0.(1*', F) £ LA(ltf, F) for some F. By Cohen's
result quoted at the beginning of the paper, LA(ltf, F) ~ Ct(lv, F).
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