LENGTH OF PERIOD OF SIMPLE CONTINUED FRACTION EXPANSION OF $\sqrt{ } \bar{d}$

Dean R. Hickerson

In this article, the length, $p(d)$, of the period of the simple continued fraction (s.c.f.) for $\sqrt{\bar{d}}$ is discussed, where d is a positive integer, not a perfect square. In particular, it is shown that

$$
p(d)<d^{1 / 2+\log 2 / \log \log d+o\left(\log \log \log d /(\log \log d)^{2}\right)}
$$

In addition, some properties of the complete quotients of the s.c.f. expansion of $\sqrt{\bar{d}}$ are developed.

It is well known that the s.c.f. expansion for \sqrt{d} is periodic if d is a positive integer, not a perfect square. Throughout this paper, $p(d)$ will denote the length of this period. It is shown in [2] (page 294), that $p(d)<2 d$. Computer calculation of $p(d)$ originally suggested that $p(d) \leqq 2[\sqrt{d}]$. This was shown to be false for $d=1726$, for which $p(d)=88$ and $2[\sqrt{d}]=82$. Further calculation revealed 3 more counterexamples for $d \leqq 3000$. They were $p(2011)=94$ while $2[\sqrt{2011}]=88, p(2566)=102$ while $2[\sqrt{2566}]=100$, and $p(2671)=104$ while $2[\sqrt{2671}]=102$.

This suggests as a conjecture that

$$
p(d)=O\left(d^{1 / 2}\right) \quad \text { and } \quad p(d) \neq o\left(d^{1 / 2}\right)
$$

It follows from the corollary to Theorem 2 that

$$
p(d)=O\left(d^{1 / 2+\varepsilon}\right)
$$

or more precisely, that

$$
p(d)<d^{1 / 2+\log 2 / \log \log d+o\left(\log \log \log d /(\log \log d)^{2}\right)}
$$

We will need the following results which are given in or follow from §§ 7.1-7.4 and 7.7 of [1].
(1) Any periodic s.c.f. is a quadratic irrational number, and conversely.
(2) The s.c.f. expansion of the real quadratic irrational number $(a+\sqrt{b}) / c$ is purely periodic if and only if $(a+\sqrt{b}) / c>1$ and $-1<(a-\sqrt{b}) / c<0$.
(3) Any quadratic irrational number ξ_{0} may be put in the form $\xi_{0}=\left(m_{0}+\sqrt{d}\right) / q_{0}$, where d, m_{0}, and q_{0} are integers, $q_{0} \neq 0, d \geqq 1, d$ is not a perfect square, and $q_{0} \mid\left(d-m_{0}^{2}\right)$. We may then define infinite
sequences m_{i}, q_{i}, a_{i}, and ξ_{i} by the equations $\xi_{i}=\left(m_{i}+\sqrt{\bar{d}}\right) / q_{i}, a_{i}=$ $\left[\xi_{i}\right], m_{i+1}=a_{i} q_{i}-m_{i}$, and $q_{i+1}=\left(d-m_{i+1}^{2}\right) q_{i}$. Then, for $i \geqq 0, m_{i}, q_{i}$, and a_{i} are integers, $q_{i} \neq 0$, and $q_{i} \mid\left(d-m_{i}^{2}\right)$. Also, for $i \geqq 1, \alpha_{i}$ and ξ_{i} are positive.
(4) In the notation of (3) above, we have for $i \geqq 0, \xi_{i}=$ $\left\langle a_{i}, a_{i+1}, a_{i+2}, \cdots\right\rangle$. In particular, $\xi_{0}=\left\langle a_{0}, a_{1}, a_{2}, \cdots\right\rangle$.
(5) There is a positive integer N such that, if $i>N$, then $q_{i}>0$.
(6) There exist nonnegative integers j and k such that $j<k$, $m_{\jmath}=m_{k}$, and $q_{\jmath}=q_{k}$. We may choose j to be the smallest integer such that for some $k>j, m_{j}=m_{k}$ and $q_{j}=q_{k}$. We may then choose k to be the smallest integer such that $j<k, m_{j}=m_{k}$, and $q_{j}=q_{k}$. Then, if t is a nonnegative integer, then $m_{\jmath+t}=m_{k+t}, q_{j+t}=q_{k+t}$, $a_{j+t}=a_{k+t}$, and $\xi_{j+t}=\xi_{k+t}$. Therefore, if $i<j$, then

$$
\xi_{i}=\left\langle a_{i}, a_{i+1}, \cdots, a_{j-1}, \overline{a_{j}, \cdots, a_{k-1}}\right\rangle
$$

while if $i \geqq j$, then $\xi_{i}=\left\langle\overline{a_{i^{\prime}}, a_{i^{\prime}+1}, \cdots, a_{k-2}, a_{k-1}, a_{j}, a_{j+1}, \cdots, a_{i^{\prime}-1}}\right\rangle$, where i^{\prime} is the integer such that $j \leqq i^{\prime} \leqq k-1$ and $i \equiv i^{\prime}(\bmod (k-j))$. In particular, $\xi_{0}=\left\langle a_{0}, a_{1}, \cdots, a_{j-1}, \overline{a_{3}, \cdots, a_{k-1}}\right\rangle$.
(7) If $\xi_{0}=\sqrt{\bar{d}}$ then we may take $m_{0}=0$ and $q_{0}=1$ in (3). In (6), we have $j=1$ and $k=r+1$ for some positive integer r. Then $\xi_{0}=\left\langle a_{0}, \overline{a_{1}, \cdots, a_{r}}\right\rangle$ and, for $i \geqq 1, \xi_{i}=\left\langle\overline{a_{i^{\prime}}, \cdots, a_{r}, a_{1}, \cdots, a_{i^{\prime}-1}}\right\rangle$, where i^{\prime} is such that $1 \leqq i^{\prime} \leqq r$ and $i \equiv i^{\prime}(\bmod r)$.
(8) In (7), if $t \geqq 0$ then $m_{1+t}=m_{r+1+t}, q_{1+t}=q_{r+1+t}, a_{1+t}=a_{r+1+t}$, and $\xi_{1+t}=\xi_{r+1+t}$. It follows from this that if $i \geqq 1$ and $s \geqq 0$, then $m_{i+r s}=m_{i}, q_{i+r s}=q_{i}, a_{i+r s}=a_{i}$, and $\xi_{i+r s}=\xi_{i}$.

Throughout this paper it will be assumed that d is a positive integer, not a perfect square. The period r of the s.c.f. expansion of \sqrt{d} will be denoted by $p(d)$.
2. Preliminary results. In this section, m_{i}, q_{i}, a_{i}, and ξ_{i} will refer to the sequences defined in (3)-(8) above, with $\xi_{0}=\sqrt{d}, m_{0}=$ 0 , and $q_{0}=1$.

Lemma 1. If $i \geqq 0$, then $q_{i}>0$.
Proof. From (5), there is an N such that, if $i>N$, then $q_{i}>0$. Suppose $i \geqq$. Then there is an integer s such that $i+r s>N$. By (8), $q_{i}=q_{i+r s}$. But since $i+r s>N, q_{i+r s}>0$. Therefore, $q_{i}>0$. That is, if $i \geqq 1$, we are done. Since $q_{0}=1$, this result holds for $i=0$ also, so the proof is complete.

Theorem 1. If $i \geqq$, then $0<m_{i}<\sqrt{\bar{d}}$ and $\sqrt{\bar{d}}-m_{i}<q_{i}<$ $\sqrt{\bar{d}}+m_{i}$.

Proof. From (7), if $i \geqq 1$, then $\xi_{i}=\left\langle\overline{a_{i^{\prime}}, \cdots, a_{r}, a_{1}, \cdots, a_{i^{\prime}-1}}\right\rangle$ so the s.c.f. for ξ_{i} is purely periodic. But $\xi_{i}=\left(m_{i}+\sqrt{\bar{d}}\right) / q_{i}$, so from (2), $\quad\left(m_{i}+\sqrt{\bar{d}}\right) / q_{i}>1$ and $-1<\left(m_{i}-\sqrt{\bar{d}}\right) / q_{i}<0$. Since, from Lemma $1, q_{i}>0$, we obtain $m_{i}+\sqrt{\bar{d}}>q_{i}$ and $-q_{i}<m_{i}-\sqrt{\bar{d}}<0$. This yields $m_{i}<\sqrt{d}$ and $\sqrt{d}-m_{i}<q_{i}<\sqrt{d}+m_{i}$.

Thus $-m_{i}<m_{i}$ and $m_{i}>0$, so the proof is complete.
For given d, let $T=T(d)$ be the set of ordered pairs (m, q) which satisfy $m<\sqrt{\bar{d}}, \sqrt{d}-m<q<\sqrt{\bar{d}}+m$, and $q \mid\left(d-m^{2}\right)$. That is, $T=\left\{(m, q)|m<\sqrt{d}, \sqrt{d}-m<q<\sqrt{d}+m, q|\left(d-m^{2}\right)\right\}$. Let $g(d)=c(T)$, the cardinality of T.

From (6) and (7) of Section 1, if $1 \leqq i<l \leqq r$ then $\left(m_{i}, q_{i}\right) \neq$ $\left(m_{l}, q_{l}\right)$. Therefore, the set $U=\left\{\left(m_{i}, q_{i}\right) \mid 1 \leqq i \leqq r\right\}$ has exactly r elements. By Theorem $1, U \subset T$ so $r=c(U) \leqq c(T)=g(d)$. Since $r=p(d)$, we obtain

LEMMA 2. $\quad p(d) \leqq g(d)$.
3. An upper bound on $g(d)$.

Theorem 2. $g(d)<d^{1 / 2+\log 2 / \log \log d+o\left(\log \log \log d /(\log \log d)^{2}\right)}$.
Proof.

$$
g(d)
$$

$$
\begin{aligned}
& =c(T)=c\left(\left\{(m, q)|0<m<\sqrt{d}, \sqrt{d}-m<q<\sqrt{\bar{d}}+m, q|\left(d-m^{2}\right)\right\}\right) \\
& =\sum_{m=1}^{[\sqrt{d}]} c\left(\left\{q|\sqrt{\bar{d}}-m<q<\sqrt{\bar{d}}+m, q| d-m^{2}\right\}\right) \leqq \sum_{m=1}^{[\sqrt{d}]} \tau\left(d-m^{2}\right),
\end{aligned}
$$

where $\tau(n)$ denotes the number of divisors of n.
It is shown in [3] that

$$
\log \tau(N)<\frac{\log 2 \log N}{\log \log N}+O\left(\frac{\log N \log \log \log N}{(\log \log N)^{2}}\right)
$$

It follows that

$$
\tau(N)<N^{\log 2 / \log \log N+O\left(\log \log \log N /(\log \log N)^{2}\right)} .
$$

Therefore, for $m=1,2, \cdots,[\sqrt{d}]$,

$$
\tau\left(d-m^{2}\right)<d^{\log 2 / \log \log d+o\left(\log \log \log d \mid(\log \log d)^{2}\right)}
$$

and the theorem follows by summing this expression over the $[\sqrt{\bar{d}}]<d^{1 / 2}$ values of m.

Corollary. $p(d)<d^{1 / 2+\log 2 / \log \log d+O\left(\log \log \log d /(\log \log d)^{2}\right)}$.
Proof. This follows immediately from Lemma 2 and Theorem 2.
4. A lower bound on the order of $g(d)$. Theorem 2 shows that $g(d)=O\left(d^{1 / 2+\varepsilon}\right)$ for any $\varepsilon>0$. It will follow from Theorem 3 that $g(d) \neq o\left(d^{1 / 2}\right)$. Thus, Theorem 2 is almost best possible. This, however, is not necessarily true of its corollary.

THEOREM 3. There exist infinitely many positive integers d for which $g(d)>\sqrt{d}$.

Proof. Let n be an arbitrary positive integer. Let

$$
S=\{(m, q) \mid q-n \leqq m, n+1-q \leqq m, m \leqq n\}
$$

Then, for $n^{2}+1 \leqq d \leqq n^{2}+2 n, T(d)=\{(m, q) \mid(m, q) \in S$ and $d \equiv$ $\left.m^{2}(\bmod q)\right\}$. Given $(m, q) \in S$, let $f(m, q)$ denote the number of integers d for which $n^{2}+1 \leqq d \leqq n^{2}+2 n$ and $d \equiv m^{2}(\bmod q)$. Then $\sum_{d=n^{2}+1}^{n^{2}+2 n} g(d)=$ $\sum_{(n, q) \in S} f(m, q)$. However, it is easily seen that if $(m, q) \in S$, then $f(m, q) \geqq[2 n / q]$. Also, note that $S=\{(m, q) \mid 1 \leqq q \leqq n, n+1-q \leqq$ $m \leqq n\} \cup\{(m, q) \mid n+1 \leqq q \leqq 2 n, q-n \leqq m \leqq n\}$. If $1 \leqq q \leqq n$, then $[2 n / q]>2 n / q-1$. If $n+1 \leqq q \leqq 2 n$, then $[2 n / q]=1$. Therefore,

$$
\begin{aligned}
\sum_{d=n^{2}+\mathrm{i}}^{n^{2}+2 n} g(d)= & \sum_{(m, q) \in S} f(m, q) \geqq \sum_{(m, q) \equiv S}\left[\frac{2 n}{q}\right]=\sum_{\substack{1 \leq q \leq n \\
n+1-q \leq m \leqq n}}\left[\frac{2 n}{q}\right]+\sum_{\substack{n+1 \leq q \leq 2 n \\
q-n \leq m \leq n}}\left[\frac{2 n}{q}\right] \\
= & \sum_{q=1}^{n} q\left[\frac{2 n}{q}\right]+\sum_{q=n+1}^{2 n}(2 n+1-q)\left[\frac{2 n}{q}\right]>\sum_{q=1}^{n} q\left(\frac{2 n}{q}-1\right) \\
& +\sum_{q=n+1}^{2 n}(2 n+1-q)=2 n^{2} .
\end{aligned}
$$

It follows from this inequality that at least one of the $2 n$ numbers $g(d)$ with $n^{2}+1 \leqq d \leqq n^{2}+2 n$ must be greater than $\left(2 n^{2} / 2 n\right)=n$. Since $n=[\sqrt{d}]$ for any such d, there is a d such that $n=[\sqrt{d}]$ and $g(d)>\sqrt{d}$. Since this is true for any positive n, the theorem follows.

References

[^0]Received April 28, 1972.
University of California, Davis

[^0]: 1. Ivan Niven and Herbert Zuckerman, An Introduction to the Theory of Numbers, 2nd ed., John Wiley and Sons, Inc., New York, 1966.
 2. Waclaw Sierpinski, Elementary Theory of Numbers, Monografie Matematyczne, Poland, 1964.
 3. Srinivasa Ramanujan, Collected Papers, 2nd ed., Chelsea Publishing Company, New York, 1962.
