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THE TOTAL SPACE OF UNIVERSAL FIBRATIONS

DANIEL HENRY GOTTLIEB

It is shown that the total space of a universal fibration
for a fibre F is a classifying space for the monoid of self
homotopy equivalences of F which fix the base point.

For any space F, there exists a universal Hurewicz fibration
F-^E^-^Bn, where !?«, is a CW complex which classifies Hurewicz
fibrations over CW complexes (See Dold [2], Theorem 16.9.). Now B^
is the Dold-Lashof classifying space for the monoid of self homotopy
equivalence of F, which we shall denote by FF. At least, this is the
case when F is a CW complex, (See Allaud [1], §IV.) The purpose
of this note is to show that E^ is the classifying space for the monoid
of self equivalences of F leaving the base point fixed, denoted Fξ9

when F is a CW complex with homotopy equivalent path components.
In fact, we shall show E^ is the base space of a Serre fibration with
fibre Fξ and a total space which is essentially contractible We need
this characterization of Ew in order to calculate the induced homomor-
phism on integral cohomology of the evaluation map ω: Xx —• X where
X = CPn. This is done in [3].

Let D = p*(EJ)9 the pullback of E» by p: E^-^B^. Thus D =
{(e, ef) 6 JSΌo x JSΌo I p(e) = p{e')}9 and ψ.D-^E^ given by p(e, e') = e is
the projection. Let Dζ be the set of maps of F —* D endowed with the
C-0 topology such that:

(a) Each map carries F into some fibre of D^ E^ and is a
homotopy equivalence of F and the fibre.

(b) Each map carries the base point, *, into a point of the
form (e, e).

Let g: Dξ -»E» be given by q(f) = po/(*).

THEOREM.

(1) q is a Serre Fibration, and if F is locally compact q is
a Hurewicz fibration.

(2) The fibre of q is Fξ.
( 3 ) There is a fibrewίse action Dξ x Fξ —> Dζ if F is locally

compact.
( 4 ) Dξ is essentially contractible.

Proof of (1). First note that q is onto since all the components
of F have the same homotopy type.

We shall assume that F has a whisker. That is, assume F has
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the form J V F' where J is the unit interval with the base point *
being the 1 and with 0 e F\ Every space is homotopy equivalent to
a space of this type, so we do not lose any generality.

Let X be a compact polyhedron (or F is locally compact). We
must show that p has the covering homotopy property with respect
to any map X—>Dξ. Since X is compact (or F is locally compact)
X x F is a CW complex; so we may consider the adjoint map

f:Xx F >D ,

where / is a fibre preserving map which carries X x * into ΔaD,
where Δ = {(e, e) \ee E^}. Then the covering homotopy property trans-
lates into a statement involving a fibre homotopy of / which at each
stage sends X x * into A. Reflecting on the definition of D, we see
that the covering homotopy property is equivalent to the following
statement: Let /: X x F—^E^ be a fibre map and let ht: X-+E«> be
any homotopy such that hQ(x) = f(x, *) for all xeX. Then there exists
a fibre homotopy ht: X x F—^E^ such that Kt(x, *) = ht(x) and h0 — f.

Now this statement is a special case of the statement that q has
the covering homotopy extension property for the space X x F relative
to X x *. See Hu, page 62 [4] for the definition. But this follows
from Satz 5.38, page 107 in [5]. (The fact that * is on the end of
a whisker allows us to satisfy the technical requirements of Satz 5.38
concerning a halo about X x *.)

Proof of (4). First note that (2) and (3) are obviously true. The
action in (3), Dξ x Fξ -> Dξ is given by (g,f)-»g<>f. (This action is
continuous if F is locally compact.)

Now we shall show that Dξ is essentially contractible. That is,
any map X-+Dξ is homotopy trivial if X is a finite CW complex.
Consider the adjoint map g: X x F—+D. Then g is defined by, and
defines, a fibre map h: X x F—^E^ by means of the relation

g(x, y) = (h{x, *), h(x, y))eD.

Now h can be extended to a fibre map H: CX x F —> E^, (because Eί
is essentially contractible, [1] Theorem 4.1). We define a fibre map
G:CXx F^D by

G(x, y) = (H{x, *), H(x, y)) , x e CX, y e F .

Note that G extends g. The adjoint situation now shows that our
original map X—>Dξ factors through X—+CX—*Dξ.

COROLLARY.
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This corollary plays an important role in the computation of the
homomorphisms induced in cohomology by the evaluation map
ω: FF —>F. The program is based on the use of the Federer spectral
sequence and obstruction theory to compute some homotopy groups
of FQI and hence of E^ by the corollary. From the homotopy group
information, we obtain information about the cohomology of E^.
Then we use the Serre exact sequence and the slogan "α>* factors
through the transgression" to recover information about ω*.

This program has been used successfully to compute ω* for
H2(CPn; Z). See Theorem 16 of [3].
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