SIMPLE EXTENSIONS OF MEASURES AND THE PRESERVATION OF REGULARITY OF CONDITIONAL PROBABILITIES

Louis H. Blake

Throughout this paper, the following notation will be adopted. $(\Omega, \mathfrak{H}, P)$ will be a probability space with \mathfrak{B} a sub σ-field of \mathfrak{N}. H will denote a subset of Ω not in \mathfrak{N} and \mathfrak{X}^{\prime} will be the σ-field generated by \mathfrak{N} and $H . \quad P_{e}$ will be a simple extension of P to \mathfrak{H}^{\prime} if P_{e} is a probability measure on \mathfrak{A}^{\prime} with $\left.P_{e}\right|_{x}=P$.

The ability to extend the regularity of the conditional probability $P^{\mathfrak{g}}$ to regularity of $P_{e}^{\mathfrak{g}}$ has been explored earlier for canonical extensions of measures. The main results of this paper are:
(a) If $P_{c}^{\mathfrak{g}}$ is regular for some canonical extension P_{c} of P to $\mathfrak{U l}^{\prime}$, then $P_{e}^{2 g}$ is regular for any simple extension P_{e} of P to \mathfrak{Y}^{\prime}.
(b) For some choice of $(\Omega, \mathfrak{Q}, P), \mathfrak{B}$ and $H, P^{\mathfrak{B}}$ is regular but for no P_{e} is $P_{e}^{\mathbb{g}}$ regular. This will essentially extend the Dicudonné example,

Our notation regarding (regular) conditional probabilities will be consistent with [1].

For extendability see [4]. The example for (b) occurs in [2].

Proposition 1. Any simple extension P_{e} can be expressed as the sum of a canonical extension of P plus a finite signed measure on $\mathfrak{~}$. (Since the construction is carried out in a unique manner, this decomposition of P_{e} will be called the canonical decomposition of P_{e}.)

Proof. As in [1], let K be a set which extends P canonically to $\mathfrak{\mathfrak { X } ^ { \prime }}$. For any $A^{\prime} \in \mathfrak{X}^{\prime}$ with $A^{\prime}=A_{1} H+A_{2} H^{c}$ for some A_{1} and A_{2} in \mathfrak{X} write

$$
P_{e}\left(A^{\prime}\right)=P\left(A^{\prime} K^{c}\right)+P_{e}\left(A_{1} H K\right)+P_{e}\left(A_{2} H^{c} K\right) .
$$

It may be supposed that $P(K) \neq 0$. Thus, let $\alpha_{\Omega} \equiv P_{e}(H K) / P(K)$ and define a set function ε on \mathfrak{M} such that for every $A \in \mathfrak{M}$

$$
\varepsilon(A)=P_{e}(A H K)-\alpha_{\Omega} P(A K) .
$$

It is immediate that ε is a finite signed measure. It also follows that for any $A \in \mathfrak{Z}$

$$
P_{e}\left(A H^{c} K\right)=\beta_{\Omega} P(A K)-\varepsilon(A)
$$

where $\beta_{a} \equiv 1-\alpha_{a}$ inasmuch as it can be written that

$$
\begin{aligned}
& P(A)=P_{e}(A)=P_{e}\left(A H+A H^{c}\right)= \\
& P\left(A K^{c}\right)+\alpha_{\Omega} P(A K)+\varepsilon(A)+P_{e}\left(A H^{c} K\right)
\end{aligned}
$$

Thus, for $A^{\prime} \in \mathfrak{Z}^{\prime}$

$$
P_{e}\left(A^{\prime}\right)=\frac{P\left(A^{\prime} K^{c}\right)}{+\underline{\beta_{\Omega} P\left(A_{2} K\right)}-\varepsilon\left(A_{2}\right)} .
$$

(Let the sum of the underlined measures be called the canonical part of P_{e}.)

It is clear that the extension, P_{e}, of Proposition 1 is canonical if and only if the signed measure ε is identically zero.

Lemma 2. The signed measure ε is absolutely continuous with respect to P.

Proof. Let $B \in \mathfrak{N}$ be a positive set for ε according to its Jordan decomposition and let $A \in \mathfrak{Q}$ with $P(A)=0$. Then,

$$
\begin{equation*}
P_{e}(A B H K) \leqq P(A B K) \leqq P(A)=0 \tag{2.1}
\end{equation*}
$$

and so $\varepsilon(A B)=0$. If $C\left(=B^{c}\right)$ is a negative set for ε then it follows that $\varepsilon(A C)=0$ where one merely inserts C for B in (2.1). Hence $\varepsilon \ll P$.

Lemma 3. If $\Omega_{0} \in \mathfrak{Z}$ with $P\left(\Omega_{0}\right)=1$ then $\varepsilon\left(\Omega_{0}\right)=0$.
Proof. Immediate.
The following lemma is needed before the main result can be presented.

Lemma 4. Let $(\Omega, \mathfrak{Y}, P)$ be a probability space with $\mathfrak{B} \subset \mathfrak{N}$. Let P_{0} be another measure on \mathfrak{U} with $P=P_{0}$ on \mathfrak{B} and $P \ll P_{0}$. Suppose P_{0}^{8} is regular. Then, P^{3} is regular.

Proof. Let $p_{0}(\cdot, \cdot \mid \mathfrak{B})$ be a version of $P_{0}^{\mathfrak{B}}$ such that $p_{0}(\omega, \cdot \mid \mathfrak{B})$ is a measure $\left(\left.P_{0}\right|_{s}\right.$ a.e. $)$. Also, let $X=d P / d P_{0}$ where for all $A \in \mathfrak{Z}$

$$
P(A)=\int_{A} X d P_{0}
$$

Hence, define

$$
\begin{equation*}
h(\omega, A)=\int_{A} X\left(\omega^{\prime}\right) p_{0}\left(\omega, d \omega^{\prime} \mid \mathfrak{B}\right) \tag{4.1}
\end{equation*}
$$

From (4.1) it is immediate that $h(\cdot, A)$ is \mathfrak{B}-measurable for every $A \in \mathfrak{N}$ and for fixed $\omega \in \Omega, h(\omega, \cdot)$ is a measure on \mathfrak{N}. It remains to show that for any $B \in \mathfrak{B}$

$$
\int_{B} h(\omega, A) P(d \omega)=P(A B)
$$

To show this, begin by establishing that

$$
\left.X \in L_{1}\left(\Omega, \mathfrak{N}, p_{0}(\omega, \cdot \mid \mathfrak{B})\right) P_{0}\right|_{\mathfrak{g}} \text { a.e. }
$$

This follows at once by observing that

$$
\int_{\Omega} X\left(\omega^{\prime}\right) p\left(\omega, d \omega^{\prime} \mid \mathfrak{B}\right)=\left(E^{\mathfrak{P}} X\right)(\omega)
$$

and

$$
\int_{\Omega}\left(E^{\mathfrak{Q}} X\right)(\omega) P_{0}(d \omega)=\int_{\Omega} X(\omega) P_{0}(d \omega)=1
$$

Next, write

$$
X=\lim _{n \rightarrow \infty} X_{n} \quad \text { where } \quad X_{n}=\sum_{k=1}^{m_{n}} \zeta_{k, n}\left(\Psi A_{k, n}\right) \quad \text { where }
$$

$\zeta_{k, n}$ is a real constant, $\left(\Psi A_{k, n}\right)$ is the characteristic function of $A_{k, n} \in \mathfrak{N}$ and $\left\{X_{n}\right\}_{n \geqq 1}$ is an increasing sequence.

Finally, since $\left.X \in L_{1}\left(\Omega, \mathfrak{N}, p_{0}(\omega, \cdot \mid \mathfrak{B})\right) P_{0}\right|_{\mathfrak{B}}$ a.e., the monotone convergence theorem can be used on the following chain of equalities to give the desired result:

$$
\begin{aligned}
& \int_{B} h\left(\omega^{\prime}, A\right) P\left(d \omega^{\prime}\right)=\int_{B}\left\{\int_{A} X(\omega) p_{0}\left(\omega^{\prime}, d \omega \mid \mathfrak{B}\right)\right\} P\left(d \omega^{\prime}\right) \\
&=\int_{B}\left\{\lim _{n \rightarrow \infty} \sum_{k=1}^{m_{n}} \zeta_{k, n} p_{0}\left(\omega^{\prime}, A_{k, n} A \mid \mathfrak{B}\right)\right\} P\left(d \omega^{\prime}\right) \\
&=\lim _{n \rightarrow \infty}\left\{\int_{B} \sum_{k=1}^{m_{n}} \zeta_{k, n} p_{0}\left(\omega^{\prime}, A A_{k, n} \mid \mathfrak{B}\right)\right\} P\left(d \omega^{\prime}\right) \\
&\left.\quad \text { (since } P=P_{0} \text { on } \mathfrak{B}\right) \\
&=\lim _{n \rightarrow \infty}\left\{\int_{B} \sum_{k=1}^{m_{n}} \zeta_{k, n} p_{0}\left(\omega^{\prime}, A A_{k, n} \mid \mathfrak{B}\right)\right\} P_{0}\left(d \omega^{\prime}\right) \\
&=\lim _{n \rightarrow \infty}\left\{\sum_{k=1}^{m_{n}} \zeta_{k, n} P_{0}\left(A A_{k, n} B\right)\right\} \\
&=\lim _{n \rightarrow \infty}\left\{\int_{A B} \sum_{k=1}^{m_{n}} \zeta_{k, n}\left(\Psi A_{k, n}\right)(\omega) P_{0}(d \omega)\right\} \\
&=\int_{A B} X(\omega) P_{0}(d \omega)=P(A B) .
\end{aligned}
$$

Lemma 4 gives immediately

Theorem 5. Let $(\Omega, \mathfrak{X}, P), \mathfrak{B} \subset \mathfrak{X}$, and \mathfrak{Y} be given. Let P_{e} be any simple extension of P to \mathfrak{Z} '. Let $P^{\mathfrak{B}}$ be regular. A sufficient condition that P_{e}^{8} be regular is that $P_{c}^{\text {s }}$ be regular where P_{c} is the canonical part of P_{e}. (Let K be the set which extends P canonically to Y' as in [1].)

Proof. It is immediate that $\left.P_{c}\right|_{\mathfrak{B}}=P=\left.P_{e}\right|_{\mathfrak{B}}$. Thus the proof will be complete by Lemma 4 if it can be shown that $P_{e} \ll P_{c}$. To do so, suppose $A^{\prime} \in \mathfrak{Z} \mathfrak{Z}^{\prime}$ with $A^{\prime}=A_{1} H+A_{2} H^{c}$ and $A_{i} \in \mathfrak{Z}, i=1,2$. If $P_{c}\left(A^{\prime}\right)=0$, it follows that $P\left(A_{1} K\right)=P\left(A_{2} K\right)=0$. Thus

$$
\varepsilon\left(A_{1} K\right)=\varepsilon\left(A_{2} K\right)=0
$$

by Lemma 2. But, by Proposition 1 it follows that $\varepsilon(A)=\varepsilon(A K)$ for all $A \in \mathfrak{N}$; hence $\varepsilon\left(A_{1}\right)=\varepsilon\left(A_{2}\right)=0$ and thus $P_{e}\left(A^{\prime}\right)=0$.

Corollary 6. With the notation of Theorem 5, assume $P_{c}^{\text {s }}$ is regular with $0<\alpha_{a}<1$. Let $P_{c^{\prime}}$ be any other canonical extension of P to \mathfrak{Y}, then $P_{c^{\prime}}^{\mathfrak{B}}$ is regular.

Proof. $\quad P_{c^{\prime}} \ll P_{c}$ and the proof is complete by Lemma 4.

The representation of an arbitrary simple extension as constructed in Proposition 1 helps establish the following interesting

Proposition 7. Let $(\Omega, \mathfrak{X}, P)$ be given with \mathfrak{X} countably generated and $\{\omega\} \in \mathfrak{N}$ for all $\omega \in \Omega$. Suppose $H \notin \mathfrak{Z}$ with $P_{*}(H)=0$ and $P^{*}(H)=1$. Then there exists no simple extension P_{e} of P to $\mathfrak{X V}^{\prime} \equiv$ $\sigma(\mathfrak{Y}, H)$ such that P_{e}^{*} is regular.

Proof. With H so chosen, it follows that the set K associated with the canonical part of P_{e} has P-measure one.

By Proposition 1 write

$$
P_{e}\left(A^{\prime}\right)=\alpha_{\Omega} P\left(A_{1} K\right)+\varepsilon\left(A_{1}\right)+\beta_{\Omega} P\left(A_{2} K\right)-\varepsilon\left(A_{2}\right)
$$

for any $A^{\prime} \in \mathfrak{Z} \mathfrak{Z}^{\prime}$ with $A^{\prime} \in A_{1} H+A_{2} H^{c}$ and $A_{i} \in \mathfrak{Y}, i=1$, 2. It may be assumed that $0<\alpha_{a}<1$; otherwise, P_{e} would be canonical (see [1]) and the result would follow directly as in [3], p. 210.

Suppose there exists a version of $P_{e}^{q}, p_{e}(\cdot, \cdot \mid \mathfrak{Z})$, such that $p_{e}(\omega, \cdot \mid \mathfrak{Z})$ is a measure on \mathfrak{Z}^{\prime}. Define

$$
B \equiv\left\{\omega \mid p_{e}(\omega, H \mid \mathfrak{Z})=0\right\}
$$

It follows that $P(B)<1$, otherwise write

$$
\begin{aligned}
0 & =\int_{B} p_{e}(\omega, H \mid श) P_{e}(d \omega)=P_{e}(B H)=\alpha_{\Omega} P(B K)+\varepsilon(B) \\
& =\alpha_{\Omega} P(B)+\varepsilon(B)=\alpha_{\Omega}
\end{aligned}
$$

where $P(B)=1$ and $\varepsilon(B)=0$ by Lemma 3 , and get $\alpha_{\Omega}=0$, a contradiction.

Define a set E where E is the set of points ω for which it is not true that $p_{\varepsilon}(\omega, D \mid \mathfrak{R})=(\psi D)(\omega)$ identically for all $D \in \mathfrak{\Re}$ (where ψD is the characteristic function of D). Since \mathfrak{V} is countably generated, $P(E)=0$ (see [3, p. 210]).

It then follows that $(E \cup B)^{c} \subset H$. Suppose otherwise; that is, $\omega \in(E \cup B)^{c}$ and $\omega \in H^{c}$ and get

$$
\begin{aligned}
p_{e}(\omega,\{\omega\} \cup H \mid \mathfrak{N}) & =p_{e}(\omega,\{\omega\} \mid \mathfrak{N})+p_{e}(\omega, H \mid \mathfrak{N}) \\
& =(\psi\{\omega\})(\omega)+p_{e}(\omega, H \mid \mathfrak{N})>1,
\end{aligned}
$$

a contradiction.
But $P\left((E \cup B)^{c}\right)>0$ and $(E \cup B)^{c} \subset H$. This contradicts construction of H and so P_{e}^{α} cannot be regular for any simple extension of P to \mathfrak{Y}^{\prime}.

References

1. L. H. Blake, Canonical extensions of measures and the extension of regularity of conditional probabilities, Pacific J. Math., 41 (1972), 25-31.
2. J. Dieudonné, Sur le théorème de Lebesgue Nikodym, III, Ann. Univ. Grenoble Sect. Sci. Math. Phys., (N.S.), 25 (1948), 25-53.
3. P. R. Halmos, Measure Theory, Third Edition, D. Van Nostrand Company, Inc., Princeton, New Jersey, 1963.
4. E. Marczewski and J. Łoś, Extensions of measure, Fund. Math., 36, 267-276.

Received February 22, 1972.
Worcester Polytechnic Institute

