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ON THE COUNTABLE UNION OF CELLULAR
DECOMPOSITIONS OF ^-MANIFOLDS

W. VOXMAN

Suppose that Gίf G2 are cellular upper semicontinuous
decompositions of an %-manif old with boundary M(n Φ 4) such
that for i = 1, 2, ,ilf/G< is homeomorphic to M. Let G be
the decomposition of M obtained from the decomposition of
Gi in the following manner. A set g belongs to G if and
only if g is a nondegenerate element of some Gi or g is a
point in ilf~(US=i •#?;)• I* W*H ^ e shown that if the various
decompositions fit together in a "continuous" manner and if
G is an upper semicontinuous decomposition of M9 then MjG
is homeomorphic to M.

Our principal result thus extends previous results obtained by
the author ([6], [7]) and Lamoreaux [4], by removing the 0-dimen-
sionality restriction in [6] or, alternatively, by eliminating the finite-
ness condition in [7]. Furthermore, with the aid of recent work of
Siebenmann [5], generalizations to ^-manifolds (n Φ 4) may be made.
As was observed in [7], some conditions must be imposed on the
manner in which the decompositions are pieced together. The example
described by Bing in [2] demonstrates that the continuity condition
to be described below is a necessary one.

Notation and terminology* Suppose G is an upper semicontinu-
ous decomposition of a topological space, X Then X/G will denote
the associated decomposition space, P will denote the natural projec-
tion map from X onto X/G, and HG will denote the collection of
nondegenerate elements of G. If U is an open subset of X, then U
is said to be saturated (with respect to G) in case U = P ^ P f Z7]].
If <%f is a covering of a subset of X, then P [ ^ ] = {P[U]ι Ue^S}.

The statement that M is an n-manifold with boundary means that
M is a separable metric space such that each point of M has a neigh-
borhood which is an ti-cell. If A is a subset of M, then A is cellular
in M if there exists a sequence Clf C2, of w-cells in M such that
(1) for each positive integer i, Ci+1 c Interior Ciy and (2) f|Γ=i C< = A.
If M is an ^-manifold with boundary, the statement that G is cellular
decomposition of M means that G is an upper semicontinuous decom-
position of M and each nondegenerate element of G is a cellular subset
of M.

If M is a metric space, A a subset of M, then Sε(A) denotes the
ε-neighborhood of A and Cl A denotes the closure of A in M. If K
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is a collection of subsets of M, then if* = \J{k:keK}. The word
map will always be used to indicate a continuous function. If ^ is
a collection of subsets of M and Ad M, then

8t(A,%f) = U f ^ ^ i ί l ί 7 ^ 0} .

The main result* The principal theorem will be proved by means
of repeated applications of the Lemma which appears below. We say
that a cellular decomposition G of a manifold M satisfies condition S
if for each saturated open cover ^ of HQ, there exists a closed map
h from M onto M such that (1) G = {hr\xy. x e M}, (2) if x e M - f?*9

then h(x) = x, and (3) for each ge G and gc ^ * , there exists a Ue^
such that # U /&(#) c E7.

LEMMA 1. Suppose G is a cellular decomposition of an n-manifold
with boundary M(n Φ 4). Then M/G is homeomorphic to M if and
only if G satisfies condition S.

Proof. Clearly if G satisfies condition S, then M/G is homeomor-
phic to M. Suppose now that M/G is homeomorphic to M and that
^ is a saturated open cover of HQ. Without loss of generality we
may assume that ^ is locally finite. Suppose xeiZS* and Ulf , Un

are those sets in ^ which contain x. Set

e. = max {d(P(x)9 M/G - P[CTJ), . . f d(P(x), M/G - P[Un])}

and define f{x) = εJ2. Then /x is a lower semicontinuous function
from ^* into (0, oo), and, hence, there exists a continuous map f2

from ^ * into (0, oo) such that 0 < / 2 </ x . For xe^S*, define /8(a?)
to be d(P(x), M/G - P [ ^ * ] ) , and finally define f(x) to be min
{/2(#),/3(#)} Siebenman's projection approximation theorem [5] may
be applied to find a homeomorphism k from ^ * onto P [ ^ * ] such
that d(P(a?), &(«)) < /(α?) for each xe^S*. Then Λ, = krΨ is the desired
map. To see this we need only check that for geG and # c ^ * ,
there is a Ue^ such that h(g) U gci U. Let 7/ = k^Pig). By our
construction there exists a Ue^S such that both P(#) and &(#) belong
to P[U]. But &(2/) = P(g); therefore, y and r̂ belong to U, which
completes the proof.

Suppose M i s a metric space and K is a collection of mutually
disjoint subsets of M. If g e K, then K is said to be continuous at
g in case for each positive number ε, there exists an open subset V
of M containing g such that if g' e K and g' Π F Φ 0 , then $ c Sε(g')
and g'aSε(g).

THEOREM 1. Suppose Gl9 G2, are cellular decompositions of
an n-manifold with boundary M(n Φ 4) such that
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( 1 ) If ge HG. and g Π H£. Φ 0 , then g e HGj.
( 2 ) For each k = 1, 2, , if geHGjc> then {HG.: i Φ k) (j {g} is

continuous at g.
( 3 ) For i = 1,2, , M/Gi is homeomorphic to M.
( 4 ) G = {g: g e UΓ=i HGi or g is a point of M — (US=i -Hi?*)} is αw

upper semicontinuous decomposition of M.
Then M/G is homeomorphic to M.

Proof. We show that G satisfies condition S. Let *W be a
saturated open cover of H$. The required function h will be defined
as a limit of a sequence of closed, onto maps which are obtained in
the following steps.

Step 1. Let Kx = {p e M: there exists a sequence of nondegenerate
elements, each from a different HG., which converges to p). Note
that Kx is a closed subset of M. We construct a saturated (with
respect to G) open refinement of W~ which covers HG and misses Kx.
For each geHG, let L7, be saturated open set with compact closure
such that

( 1 ) If ε, = min {diam g, 1/2 dfo, i Q , 1}, then U9 c S.,(flr).
( 2 ) If & e i ϊ ^ and gά e iί̂ .̂ (i ^ i) and ^ and gs are contained

in Ϊ7 ,̂ then 1/2 diam gι < diam gό < 3/2 diam g4

( 3 ) ί7^ is contained in some W e ^^* which contains g.
Parts (1) and (2) are possible because of the continuity condition im-
posed on the decompositions. Define <2f[ = {Ug: geHG}. Let ^
be a saturated open locally finite star refinement of <%s[ and Y[ —
{Ue ^ : U Π H^ Φ 0 } . Observe that it follows from (1) that if p e K19

then p $ ^ j * . Furthermore, from (1) and (2) we have that if peKt

and {Xi} is a sequence of points in <&? which converge to p, then the
sequence {St (xi9 ^ ) } a l s o converges to p.

By Lemma 1, there exists a closed map hγ from M onto M such
that

( 1 ) G, = {/̂ Γ1 )̂: α? e M}
( 2 ) If O G M - ^7*, then /φ;) = a?.
( 3 ) If g e Gί and βr c ^ * , then there exists a set of Ue^ such

that # U λifor) c U.
In addition, since ^ is saturated with to respect to G, part (3)

holds for all geG which are contained in ^ * .

Step 2. The decomposition G'2 = {^ito): # e G2} is clearly cellular
and upper semicontinuous. Let P ' be the projection map from M
onto MjG'% and P the projection map from M onto M/(G1 U G2) Then

""1 is readily seen to be a homeomorphism from Λf/(Gi U G2) onto
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M/G'2. But it was shown in [7] that M/(G1 U G2) is homeomorphic to
M (using Siebenman's generalization [5] of Armentrout's "projection
approximation" theorem [1], the results of [7] may be extended to
^-manifolds for n Φ 4).

Let K2 = {p e M: there exists a sequence of nondegenerate ele-
ments, each from a different 2ΓAl[σ<], which converges to p). We
construct a saturated (with respect to h^G]) open refinement of ΛJ^Ί]
which covers HhlίG] and misses K2. Suppose gr = hjjj) where geHG —
HGl. Choose Ua, to be saturated (with respect to h\G\) open set such
that

( 1 ) If egt = min {diam g', 1/2 d(g', K2), 1/2}, then Ug, c Stg,(g').
( 2 ) If g{ e HhlίG.} and #, e Hhlίβjl(i Φ j) and #< and ^ are contained

in Ug>9 then 1/2 diam ^ < d i a m ^ < 3/2 diam gt.
(3) t W ^ c S ^ ) .
( 4 ) If TΓ= Π(C/: Uehά&Ά and M g ) c t7}, then Ug,<z W.
( 5 ) If F e ^ and ^ U ̂ (flr) c F, then ί/̂ , c F.
( 6 ) lΓg/ n Cl {K [HG\]) = 0.
Let ^ 2 ' = {Z7̂ : ^' e Hhl[G]} and let ^ 2 be a saturated open locally-

finite star refinement of fέ[ covering H*^. Let

Note that λf W ) c ^ ^ * ) and Arx( 3^*) c Sll2(HG*2).
By Lemma 1, there is a closed map &2 from M onto ikf such that
( 1 ) G'2 = {hϊ'ixy.xeM}.
( 2 ) If x6ikf- ^ * , then ^(a?) = a?.
( 3 ) For each gr e G2 contained in <&}, there exists a Z7e ^ 2 such

that h2{g') \Jg'aU.

Claim. For each geG contained in ^ * , there exists a I f G ^
such that g U hji^g) c TF.

Proof of Claim. Suppose # e G and # c ^ * . Then there exists
Ue^ such that ^ ( ^ \J gaU. If g eHGl or if /̂ 1(̂ ) is not contained
in 3^*, then h^g) = hig), and we are done. Suppose then that
g£HGι and ft^) Π ^ί* Φ 0 . Since ^ 2 ' is a refinement of ^ [ ^ J and
^ 2 is a locally finite star refinement of ^ 2 , we may find U2 e ^ 2 and
Ugf G ̂ 2 , where h^g) = g\ such that hγ(g) c !72 c St (Z72, ̂ 2 ) c ?7^.
We first show that there exists a 7 e ^ Ί such that £/,/ c F. Of
course, ^(gr) = c/'c C/,/. Let Fi, F2, •••, F % be those members of ^
which contain g. Then by our construction of ^ 2 ,

Since h^cz Ug,, it follows that ^ c F i ί l ••• ΓΊ F». But for at least
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one i = 1, 2, , or n, h^g) Π g U F*. Therefore, by (5) in our con-
struction of %fί, it must be the case that Ug> is contained in y i #

We need only observe now that if Ze^f2 and hL(g) c Z, then
ZaVi. This is clear since Za St (Z72, ̂ 2 ) c E7,/ c Vie Hence, we
have that St (/^(#), ^<2) is contained in Vi and since

hA(g) c St (/α<7), ̂ 2) >

the proof of the claim is complete.
We continue inductively. Assume now that covers %?[, •••, ^ ,

^ Ί , , ^ , 3^1, , T^n have been defined so that the conditions
listed below are satisfied. We denote hkhk^γ hx by hk, and h0 = h0 =
identity. For ί = 1, 2, , n, let K{ = {pe M: there exists a sequence
of nondegenerate elements converging to p where each element is a
member of a different fl"^_l[σ ]}.

(1) <g/\' = {£7 :̂ flf'e jHii-l[G]} is a collection of saturated (with
respect to hi-.\G]) open sets which refines /^-il^i-i] and misses i^.
For each #', Ug, is chosen to contain g' such that

( a ) If εg, = min {diam ^', 1/2 d(flf', ^)l/i}, then ϋ,, c Sv(<?')
( b) If Λ e Hϊ.^aβ and ^& e iί^_l[ί?A;] 0" ^ fc) and #, and ^fc are

contained in Ug,, then 1/2 diam g5 < d i a m ^ < 3/2 diam gs.
(2) ^ is a saturated open locally finite star refinement of <&[

and Ti - {Ue ^ : J7n fiίHw ^ 0 >
(3) For ΐ = 1, 2, , w and 1 ^ i ^ ΐ - 1,

and

A71 fefeM 3̂ *) c S^hUHS)) .

(4) For ΐ = 1, 2, , n, h{ is a closed map from M onto Λί such
that if G'i = {hi^(g): g e G%) then

(1) G ; = {fc^JiίBeΛf}.
(2) If x e ilf - ^Γ*, then h^x) = α?.
(3) For each gr£G\ which is contained in ^ * , there exists

Ue^n such that ^(0') U g' c C7.
(5) For i = 1, 2, , n and 0 ^ i ^ i - 1, if g e G and /^fe)

is contained in ^ * , then there exists Ue^j+ί such that h3{g) Ό
Ho) c Z7.

(6) ^ r n ci (Uffί, u u flsu)) - 0.

+ 1. Let G»+1 = {ΛΛ(flr): ^ e GΛ+1}. A proof similar to that
employed in Step 2 shows that MjGf

n+ι is homeomorphic to M. Let
iΓΛ+1 = {p e M: there exists a sequence of nondegenerate elements con-
verging to p where each element is a member of a different Hhn{G.^.
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We construct a saturated (with respect to hn[G]) open refinement of
K[%Sn] which covers H%nίG^ and misses Kn+1. Let g' — hn(g) where
geHG — (HGι U U HGn). Choose Ug, to be a saturated open set
containing g' such that

(1) If 6g, = min {diam g\ 1/2 d(g', Kn+l), 1/n + 1}, then Uβ, c Sεg,(g').
(2) If gi e Hinίβil and g, 6 flίn[(?i] (i Φ j) and ^ and gό are contained

in E7,/, then 1/2 diam & < diam g5 < 3/2 diam g{.
(3) For i - 1, 2, , n, (AΛ+i ^)~ 1 (^ ') c ^..(^(flr)).
(4) For i = 1, 2, , n, if Ui is the intersection of those sets

in ^ which contain h^ig), then

tf,, c KiU1) n w . . ! h(U2) n n K(un).

( 5 ) For 0 ^ i < n, if Λ<(flr) U fen(^) c Ϊ7e ̂ Λ , then Z7g/ c U.

(6) ^ n c i M ^ u uflSJ = 0.
Let ^ + i = {?7ff̂ : g' eHG>n+J9 let ̂ + i be a saturated open locally finite
star refinement of <%Ί+ί9 and let ^ ; + 1 = {C7e ̂ n + 1 : ί7Π ϋn[H$n+1] Φ 0 } .
By Lemma 1 there exists a closed map hn+1 from ikf onto M such
that

(l) G:+1 = K # ^ I } .
(2) If xeM- ^ Ti, then hn+1(x) - α?.
(3) For each geG'n+1 contained in ^* + 1 , there exists Ue^n+1

such that g U hn+1(g) c ί7.

Claim. Suppose </' = hn+1(g) is contained in ̂ Λ*+1 (̂  is an element
of G). Suppose 0 <£ ΐ < n + 1. Then there exists £/e ^ ί + 1 such that
gr U ̂ (flr) c J7.

A proof patterned after the proof of the Claim in Step 2 may be
used to establish this Claim.

Define h = Lim hn. To see that h is well defined, we observe
that for each xe M, there exists an integer N such that for n> N,

hn(x) = hN(x) = h(x) .

This is clearly the case if xeH%, since if N is the first integer such
that xeHβN, then hN(x) does not belong to the succeeding ^*9 and,
hence, is left fixed. If x £ Cl HG then choose N such that

d(x,C\H$)>±.

Then ^(a?) ί ^ Λ i (see (3) in the inductive Step n + 1) and it follows
that fc(α?) = hn(x) for each n> N. Finally, consider the case where
x e (Cl Hi) — H | If there exists an open set U such that U Π JBΓ£ =
0 for all but a finite number of i, then it again follows from (3) of
Step n + 1 that the required positive integer N exists. On the other
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hand, if no such U exists, then there is a sequence {gH} of nondegen-
erate elements from distinct decompositions Gin which converges to x.
But it was noted in Step 1 that in this case x $ <%S? and thus h(x) — x.

We next show that h is continuous. Suppose {#J is a sequence
of points in M converging to a point x. If there exists an open set
U containing x such that U Π H%. — 0 for all but at most a finite
number of ί, then it follows again from (3) of the induction Step
n + 1 that {h(Xi)} converges to h(x). If no such U exists, then there
are two cases to consider.

Case 1. x e (Cl H% — H$). Suppose for each i, xt e gn. e Gn.. We
may assume that the xt lie in ^ i* since if not h(Xi) = xt. But as it
was observed in Step 1, since the sequence {gH} converges to x, we
have that the corresponding sequence {St {g%v ^Ί)} also converges to
x. It follows from the Claim in Step n + 1, that h(Xi) e St (gn., ^ ί ) ,
and, therefore, [h(Xi)} converges to h(x).

Case 2. xeHg. Let n be the first integer such that x e gn e HGn.
But then hn(gn) is a point and our construction in the inductive steps
reduces this case to Case 1.

That h is onto may be seen by the following argument. Suppose
p is a point in M. We assume that peg'eG where g'c ^ i* (if not,
h(p) = p). For each positive integer ί, there exists a point xζ in f̂ *
such that hi(Xi) = p. It follows from the Claim in Step n + 1 that
for each ί, xt e St (g', ^ i ) . Since St (sr', ^Ί) has compact closure (see
Step 1), there exists an accumulation point x of the sequence {#J.
For simplicity of notation let us assume that {#J converges to x.
We show that h{x) = p.

Let g 6 G be the member of the decomposition which contains x.
Choose N large enough so that hn{g) = ft(#) for each w Ξ> iV. First
we suppose that there exists a positive integer K ^ N such that for
n^K, SuK(g) Π ί β n = 0 . Of course, the sequence {hκ(x%)} converges to
hκ(x). But it follows from (3) of Step n + 1, that for i sufficiently large,
we will have £*($<) = hi(Xi) = h(Xi). Thus h(x) = p, since ^(^) = p for all i.

Now suppose that each open set containing x intersects an infinite
number of the iJJ., and, hence, each open set containing hN(x) will
also intersect infinitely many of the sets HtNiGil. Thus, hN{x) belongs
to Kn+1 (see Step n + 1). Since {hN(Xi)} converges to hN(x)9 it follows
from conditions (1) and (3) of Step n + 1 that the sequence

also converges to hN(x).
But the Claim in this step ensures that for j > N, hj{xϊ) U hN(xϊ)
belongs to St (hN(Xi), %fN). In particular then for i > N,
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HXi) U hN(Xi) c St (ίiM, %fN) ,

and since, hifa) = p, it again follows that h(x) — p. Thus A is an
onto map.

It is easily seen from our construction of h that G — {hr^x): x e M}.
Finally, we must show that h is closed. It suffices to show that

if K is a compact subset of M, then h~\K) is also compact. Since
h is onto, for each xeK, there exists a unique element gzeG such
that h(gx) = x. If gxcz^*9 let U9χ be a member of ^ which con-
tains gx. If #3 is not contained in ^ * let U9χ be an open set con-
taining gx with compact closure. Note that it follows from Step 1
that if gx is contained in ^ * , then St(Z7,x, ^ Ί ) has compact closure.
Since if gx c ^7% then gx U &(£,) c St (Ugχ, ^ Ί ) , and if gx is not con-
tained in ^ * , then &(#,,.) = ^ , the collection {E/ :̂ a?e If} is an open
cover of K. Let UgXlJ •••, ί7^βn, be a finite subcover of K, where the
first ί terms are members of ^ . To finish the proof we need only
observe that

hr\K) c St (gβl, f?J U U St (gβi, ^ ) U U
βχi

and that the right hand set has compact closure. Thus, the condi-
tions of property S have been satisfied, and, hence, M/G is home-
omorphic to M.

A decomposition of a metric space is said to be nondegenerately
continuous if for each g eG, Hβ(J {g} is continuous at g.

COROLLARY 1. Suppose G is a cellular nondegenerately continu-
ous upper semicontinuous decomposition of EB. Suppose there exists
a countable number of planes in E3

9 Qί9 Q2, such that for each
g e HG, g is contained in at least one of these planes. Then E*/G is
homeomorphic to EK

Proof. For i — 1, 2, , let Gi be the decomposition of E3 such
that HG. = {geHoigczQi}. Then E3/Gi is homeomorphic to E* [3],
and since it is readily verified that Gu G2, satisfy the conditions
of Theorem 1, E3/G is homeomorphic to E\
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