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ABEL-ERGODIC THEOREMS FOR SUBSEQUENCES

RYOTARO SATO

Let T be a positive linear contraction on an IΛspace and
klf k2f an increasing sequence of positive integers. In this
paper the almost everywhere convergence of Abel averages
Σ £ = i r k i T k ί f l Σ ? = i r k i ίor t h e s e q u e n c e k u h , ••• a s r | 1 i s
investigated.

In [3], A. Brunei and M. Keane defined uniform sequences for
increasing sequences of positive integers and proved that if φ is a
measure preserving transformation on a finite measure space then
for any uniform sequence kί} jfc2, and for any integrable function
/, Cesaro averages of f{φki ) converge almost everywhere. The author
[13], [14] has recently generalized and extended this result to one at
the operator theoretic level. On the other hand, the work of G.-C.
Rota [11] suggests that it would be of interest to consider the almost
everywhere convergence of Abel averages for uniform sequences.
These are the starting points for the study in this paper.

2/ Main results* Let {Ω,^,m) be a ^-finite measure space
with positive measure m and LP(Ω) — LP(Ω, &, m), 1 ̂  p ̂  °o, the
usual (complex) Banach spaces. Let T be a positive linear operator
from L\Ω) to L\Ω) with H Γ H ^ l . We shall say that the Abel-
individual ergodic theorem holds for T if for any uniform sequence
kl9h2, ••• (for the definition, see [3]) and for any feL\Ω), the limit

exists almost everywhere and / e L\Ω). The main results of this
paper are the following two theorems.

THEOREM 1. // T maps, in addition, LV{Ω) into LP(Ω) for some
p with 1 < p < oo and || T\\p ̂  1, then the Abel-individual ergodic
theorem holds for T.

THEOREM 2. If there exists a strictly positive function h e Lι(Ω)
such that the set

Ul-r)±rkTkh;O<r<l\

is weakly sequentially compact in L^Ω), then the Abel-individual
ergodic theorem holds for T.
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In §4 it is proved that if T maps, in addition, L~(Ω) into L~(Ω)
and IITIIoogl, then the Abel-maximal ergodic theorem holds for T;
i.e., for any uniform sequence ku k2, ••• and for any feLp(Ω) with
1 < p < oo, the function /* defined by

belongs of LP(Ω). The last section is concerned with point transfor-
mations from Ω into Ω. A necessary and sufficient condition that a
measure preserving transformation on a probability space be weakly
mixing is given in terms of Abel-ergodίc limits.

3* Proofs of the main theorems*

3.1. Proof of Theorem 1. Our proof is similar to that given in
[14]. Let kl9 k2, be a uniform sequence, and let (X, 3f, μ, φ) and
y, Y be the apparatus [3] connected with this sequence. Φ will denote
the operator on L\X) induced by <p. Taking (Ω\ &\ m') to be the
direct product of (Ω, &, m) and (X, ^7, μ) and T the direct product
of T and Φ, it follows that V is a positive linear operator from &{Ωr)
to Uψ') and || T'||i ^ 1. Since || T\\p ̂  1 by hypothesis, it also follows
that T maps L*{Ωf) into Lv{Ωf) and || T'\\p ^ 1.

Suppose first that fe L\Ω) Π LP(Ω) and / ^ 0. As in [3], for any
fixed ε > 0, choose open subsets Y\ Y" and W of X such that
Y'czY(zY",μ(Y" - Y')<e,yeW, and for any xeW and any

lτ,(<P*χ) ^ lτ(φny) ^ lM<p*χ) .

Define

g(ω, x) = f(ω)lγ(x) ,

g'(ω, x) = f(ω)lτ,(x)

and

flf"(α>, x) - f{ω)lτ.,{x) .

Since every Cesaro summable sequence is Abel summable (see, for
example, [16, Chapter III]), it follows from [1] that

and

$r(ω, x) = lim (1 - r) Σ rkT'kg'(ω, x)
r | l fc=0

g"(ω, x) = lim (1 - r) Σ rkT'kg"(ω, x)
rU k=0
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exist and are finite almost everywhere. Clearly gf and g" belong to
LV{Ω'). It aflso follows from Cohen's mean ergodic theorem [7] that

lim (1 - r) Σ rhTtkg' - g% = 0

and

lim I (1 - r) Σ rkT'kg" - g" p = 0 .
rί l | fc=O

Put

S(ω) = lim sup (1 - r) ΣjkTkf(ω)lγ(φky)

and

s(ω) = lim inf (1 - r) Σ rkTkf(ω)lγ(φky) .

Since ϊ7 is positive, it follows that

(/'(ω, a?) <̂  s(ω) ^ S(ω) ^ ^"(ω, α?)

almost everywhere onflx W. Thus for any ΩL e ^ with m{Ω^ <
we have

ί (S(α>) - s(ω))dm(ω)

(S(ω) - 8(fl)))im'(α), α?)

(g"-g')dmf

= μ( W)-1 lim ί (1 - r) Σ r^Γ^ίy)!^,,^,^^)^™'^, α>)
r ί l J^XTF fc=0

ύ lim (1 - r) ΣΣ
A;=0

Since ε > 0 is arbitrary, this demonstrates that S(co) = s(α>) almost
everywhere on Ωx. Since (i3, ̂ , m) is a cr-finite measure space, we
conclude that

S(ω) = lim (1 - r) Σ rkTkf(ω)lγ(φky)
rίl λ;=0

r f l

exists and is finite almost everywhere. On the other hand, it is known
[3] that
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from which it follows that

oo

lim (1 — r) Σ rki = Kγ)

Therefore,

- l i m

exists and is finite almost everywhere.
Next suppose that feL\Ω). It can be easily seen that

almost everywhere. Since Lι{Ω) Π Z#p(β) is dense in Lι(Ω) in the norm
topology and for almost every ωeΩ the series ΣΠ=irkiTkif{ω) has at
least unit radius of convergence as a power series in r, it follows
from the Banach convergence theorem [8] that for any feLι{Ω), the
limit

fa - π

exists and is finite almost everywhere. Fatou's lemma implies now
that feU(Ω). This completes the proof of Theorem 1.

3.2. Proof of Theorem 2. If we define an integrable function
h' on Ωr = Ω x X by &'(ω, a?) — A(ft>), then the set

.-r)Σr*T'*Λ' ;0 < r < 1

is weakly sequentially compact in Lι{Ω'). Thus Cohen's mean ergodic
theorem [7] implies that there exists a function gf in L\Ωf) such that
TV = flr' and

lim 11(1 - r) Σr fcΓ'*A' - #']| - 0 .

Clearly #' ^ 0. Let us denote A! = {(ω, α?) efl'; flr'(ω, α?) = 0}. We
shall first prove that A! coincides with the dissipative part [5] of T".
In fact, since g' is invariant under I", it follows at once that T'*1A, ^
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1A, where T'* denotes the corresponding adjoint operator on Lι{Ω')* ~
L°°{Ω'). Hence if we define Br = A Π C, where C" denotes the con-
servative part [5] of T, then T'*ls, = 1B, on C. Thus

' ^ lim ((1 - r) Σ rkh'(T'*)klB,dm'
r T l J fc=0

- lim [Γ(l - r) Σ ̂ T '
rTl JL £=0

= l^'l^dm' = 0 .

Since h! is strictly positive, it follows that mf{Bf) = 0. Consequently
Af c Ω' - C". On the other hand, it is clear that A' => Ωf - C\

Let / ' be any function in L\Ω'). It follows that

f(ω, x) = lim (1 - r) Σ rkT'kf'(ω, x) = 0

almost everywhere on A' On the other hand,

/'(ω, a?) = lim (1 - r) Σ rkT'kf'(ω, x)

= α'&>, a?) lim

exists and is finite almost everywhere on Ω' — A', since the right
hand side of the last formula exists and is finite almost everywhere
on Ωr — A! by the ergodic theorem of Baez-Duarte [2]. This together
with the fact that the average

converges in the norm of Z/(ί2') to a function in L^fl') as r | 1,
which may be proved by a slight modification of an argument in
[10], implies that

lim (l-r)±rkT'kf - / ' | | - 0
fc=0

Therefore, an argument analogous to that in the proof of Theorem
I is sufficient to prove the present theorem, and we omit the details.

4* The Abel-maximal ergodic theorem- Throughout this sec-
tion it is assumed that T maps, in addition, L°°(Ω) into L°°(Ω) and
II T|L ̂  1. It follows from the Riesz convexity theorem that T maps
LP(Ω) into LP(Ω) for each p with 1 ̂  p ^ <χ> and || T\\p ̂  1. Let /
be a function in LP(Ω) and α > O Following R. V. Chacon [4], we
define
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f-(ω) = [sgn/(ω)] min (a, \f(ω) |) ,

/•+(<») = [sgnf(ω)](\f(ω)\ - min (a, \f(ω)\))

and

J0 (α) = \ω; sup (1 - r) Σ rkTkf(ω) > a\ ,
I 0<r<l &=0 J

where sgn/(α>) = f(ω)/\f(ω) | if /(α>) ̂  0 and sgn f(ω) = 0 iίf(ω) = 0.
The following lemma is the Abel-analogue of Chacon's maximal

ergodic lemma [4].

LEMMA. If 1 ίg # < °° α ^ / e £p(42) then for each a > 0 we have

(a - I /

Proof. It may and will be assumed without loss of generality
that / is a nonnegative function. Let ωeE*(a). Then it follows
that su.'po<r<1

1ΣSc=ίOrk(Tkf(ω) — α) > 0. Hence there exists a positive
real r with r < 1 and an integer n ^ 0 such that

±rk(Tkf(ω) - α ) > 0

a n d

Σ rk(Tkf(ω) - a) ̂  0 f o r 0^j<n.

But this implies [2] that

Hence Chacon's maximal ergodic lemma [4] completes the proof of
the present lemma.

THEOREM 3. Ifl<p<oo}fe LP(Ω) and ku k2, is a uniform
sequence, then the function f* defined by

/*(α>) = sup
0<r<l

belongs to LP(Ω).

Before the proof we note that the positivity of T is not necessary
in this theorem. This follows from [6].

Proof. It may and will be assumed without loss of generality
that / is a nonnegative function. Since
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\im(l - r)±r"i = μ(Y)>0,

it suffices to prove that the function Λ* defined by

h*(ω) = sup (1 - r) Σ rkTkf(ω)
0<r<l Λ;=0

belongs to LV{Ω). But it follows easily from the previous lemma that
for each a > 0,

m({h* > α}) ̂  —( \f\dm < oo .
a J{h*>a}

Thus Theorem 2.2.3 in [9] completes the proof of Theorem 3.
Using Theorem 1, it may be readily seen that for any uniform

sequence kl9 k2, and for any fe LP(Ω) with 1 ̂  p < oo, the limit

exists and is finite almost everywhere. This together with the above
theorem implies at once the following Abel-mean ergodic theorem.

THEOREM 4, For any uniform sequence kί9 k2, and for any
feLp(Ω) with 1 < p < oo, we have

5* Applications to point transformations•

THEOREM 5. Let φ be a point transformation from Ω into Ω such
that φ"ιAe& if 4 G ^ and m{φ~xA) = 0 if m(A) = 0. Suppose
there exists a constant K such that

0 < lim sup — Σ m(Φ~kA) ^ Km{A)
« n k=o

for every measurable set A of positive measure. Then for any uniform
sequence kί9 k2, and for any fe LP(Ω) with 1 ̂  p < oo, the limit

exists almost everywhere and feLp(Ω).

Proof. It follows from [12] and [15] that there exists a σ-finite
measure v on (Ω, &) such that
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(a) v{A) ^ K2m(A) for all A e ^
(b) v(A) ί> m(A) for A e ^ with A = ςzΓ'A;
(c ) y(A) = 0 if and only if m(A) = 0;
(d) v is invariant under ^.

Therefore, if fe LP(Ω, &9 m) then, by (a), fe LP(Ω, &9 v). Since φ is
y-measure preserving, it follows from the previous arguments that
the limit (1) exists and is finite y-almost everywhere. This together
with (c) implies the m-almost everywhere convergence of (1). To
prove that fe LP(Ω, & 9 m), it suffices to show that for any nonnega-
tive function / in LP(Ω, &9 m), the function h defined by

h(ω) = lim (1 - r) ± rkf{φkω)

belongs to Lp{Ω,&ym). But, clearly, heLp(Ω,^?,v) is invariant
under φ, and hence (b) implies KeLp(Ω, &9m). The proof is com-
plete.

From now on it is assumed that (Ω, &9m) is a probability space
and φ is a measure preserving transformation on (Ω, &9m). The
transformation φ is called ergodic if A e έ%? and φ~*A = A imply
m(A) = 0 or m(A) = 1; weakly mixing if for each pair A, Be&, we
have

lim — Σ I w,(φ~kA Π B) - m(A)m(B) \ = 0
n γι fc=o

strongly mixing if for each pair A, Be&, we have

lim m{φ~kA Π B) = m(A)m(B) .

THEOREM 6. For a measure preserving transformation on a prob-
ability space (Ω, &, m), the following three statements are equivalent:

(a) φ is weakly mixing.
(β) For any uniform sequence kly k2, and for any fe &{Ω)9

we have

(2) f(ω) = \ fdm almost everywhere .

(y) For any uniform sequence kl9 k2, ••• and for any fe&(Ω),
we have

(3) lim

Proof, (a) implies (β): In the proof of Theorem 1, if we define
the measure preserving transformation φr on (£?', &\ mr) by
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Φ'{ω, x) = (φω, ψx) ,

then (a) implies that φ' is ergodic (cf. [3]). Hence for any nonnega-
tive function / e !/(£?) we have

lim (1 - r) Σ rkf(φkω)lr,(φkx) = μ{Y')[fdm

and

lim (1 — r) Σ '

almost everywhere with respect to m', from which (β) follows im-
mediately.

(β) implies (T): Obvious.
(7) implies (a): Suppose that (7) is true but φ is not weakly

mixing. Then there exists a bounded function / in L2(Ω) such that
| | / | | 2 = 1,1/dm = 0,f(φω) — cf(ω) almost everywhere for some con-
stant c with \c\ = 1. Define a uniform sequence ku k2, recursively
as:

&! = min {i ^ 1; — τr/4 < arg (cy) < τr/4} ,

AΛ = min {j > kn^; -τr/4 < arg {&) < ττ/4} .

It follows that for each positive real r with r < 1,

Since / is bounded, this contradicts our assumption, and hence φ must
be weakly mixing. This completes the proof of Theorem 6.
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