PACIFIC JOURNAL OF MATHEMATICS
Vol. 47, No. 1, 1973

SUBDIFFERENTIALS OF CONVEX FUNCTIONS ON
BANACH SPACES

GEORGE LunNa

This note was motivated by a paper of P. D. Taylor, which
contains a simple proof of Rockafellar’s basic theorem that
the subdifferential map df of a lower semicontinuous proper
convex function f on a Banach space is maximal monotone.
Taylor based his proof on a theorem which can be considered
as a sharpening (for the epigraph of a convex function) of
a result (Lemma 1.1) concerning support points and functions
of convex sets due to Brondsted-Rockafellar and Phelps. It
is shown that Taylor’s theorem can be generalized somewhat,
using related methods. (It is shown, by an example, that
there is a limitation on the extent of generalization possible.)
The theorem follows from a slightly technical result (Proposi-
tion 1.3) which admits a dual version (Proposition 2.2). As
an application of Proposition 2.2, a short proof of Rockafellar’s
theorem relating the graph of (3f*)~! to that of df is given.
The methods of this paper yield a generalization (Corollary
1.9) of one of the density results of Bishop-Phelps.

1. Let E be a topological vector space and E* its dual. The
natural pairing between these spaces will be denoted by <z, x*) for
zxe E and z*e E*.

We recall some standard definition and facts about convex sets
and functions. For more detail see Moreau [6] or Rockafellar [9].
If f: B —][oco, ] is a function, then its epigraph (or “supergraph”)
epi fis {(x, r) e E x R|f(x) =r}. Recall fis convex if and only if epi f
is convex and that f is lower semicontinuous (l.s.c.) if and only if
epi f is closed in E x R. If epi f is nonempty and contains no vertical
lines, i.e., sets of the form {(x, r)|r € R} where x ¢ E, then f is called
proper. The natural projection of epi f onto K is called the effective
domain of f and is written dom f; thus dom f = {xe E|f(x) < }.

If g is a function on a set X we write sup g(X) in place of
sup {g(x)|xe X}. If C is a closed convex nonempty subset of E, a
support point for C is a point x € C for which there exists an element
z* € E*\{0} such that (=, 2*) = sup 2*(C). Such an element «* is called
a support functional for C.

We identify (E x R)* and E* x R in the obvious way, so that the
pairing between E* x Rand E x Ris given by {(x, 1), (z*, s)> =<{x, *>+rs
for (x,r)e E X R and (x*,s) e E* x R.

If f is a convex function on E, a subgradient for f at a point
rxedomf is an element x* € E* such that (z*, —1) is a support func-
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tional of epi f at (x, f(x)). The collection (possibly empty) of all sub-
gradients at x is denoted 0df(x). In this way, a set valued map
of: E— E* is obtained.

A monotone set G in E x E* is a subset of E x E* for which
(& — y,x* — y*> = 0 whenever (z, 2*) € G and (y, ¥*) € G. A monotone
set is called maximal if it is not properly contained in any other
monotone subset of E x E*. By Zorn’s lemma any monotone set is
contained in a maximal monotone set.

If fis a convex function on E, then gr of = {(z, z*)|z* €of(x)}
is a monotone subset of £ x E*. Rockafellar [11, 10] showed that gr of
is actually maximal monotone if f is a l.s.c. proper convex function
and E is a Banach space.

If N is a closed subspace of E, then N* will denote the annihilator
of N in E*, ie., N* = {n* e E*|{(n,n*) = 0 for each ne N}. If f is
a convex function on FE, then the conjugate of f is the function
¥ E* — R U {co} defined by f*(z*) = sup &, 2*> — f(x)|xc E}.

We recall that the following three statements are equivalent [9]:
z* €0f(2), z €0 f*(2*), and f*(z*) + f(2) = <z, 2*).

If Cc E, the indicator fumnction ., for C is defined for each
xelE by Yo(x) =0 if xeC and by yo(x) = ~ if z¢ C.

If Cc E*, the support function S, for C is defined for each ze¢ E
by Se(x) = sup {<z, 2*)|2* € C}.

If Cis a nonempty convex subset of E, then 0*C will denote the
asymptotic cone of C, i.e., 0*C = {y e E|x + Ay e C for each N = 0 and
x € C}.

The following lemma of Phelps [7] is a geometric formulation of
the lemma of Brendsted-Rockafellar [2].

LEMMA 1.1. Let C be a closed convex subset of the Banach space
E. Suppose x€C, x* e E* and € > 0 satisfy

sup 2*(C) = <z, x*> + €.
Then for any k > 0 there exist we C and w* € E* satisfying
w, w*y = supw*(C), o — w|| = e/k and ||a* —w*|[[Sk.

We remark that Lemma 1 of [12] and the result [1, Theorem 2]
which inspired it are easy consequences of the above lemma.

We show next that the lemma yields a short proof of [1, Theorem 2].
THEOREM 1.2. [Bishop-Phelps]. Suppose that C and X are sub-

sets of a Banach space E, that C is closed and convexr and that X s
bounded and nonempty. If ¢ > 0 and if x* e E* is such that
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sup #*(C) < inf 2*(X) ,
then there exist w* e E* and w e C such that

la* —w*[| e and <{w,w*) = supw*(C) < inf w*(X) .

Proof. Let 6 = inf2*(X) — sup¢*(C); then 6 >0 and we can
assume 2¢ — 0 < 0. Choose zeC such that sup«x*(C) £ {7, *> + &.
Since X is bounded, there is a number N such that

N—~1>supf|jz — z||[lreX}.
Let & = ¢/N in Lemma 1.1; then there exist w* e E* and w e C such
that
sup w*(C) = {w, w*), ||w* — x*|| < ¢/N and |lw—2z| < N.

Since N > 1, we have ¢/N < ¢, so it only remains to show that
{w, w*y = sup w*(C) < inf w*(X) .
First notice that
o, w%) — <z, 2% = (e/N)llw — z[l + {w, w*) — <z, w*
for any xe X (since [|w* — z*|| < ¢/N). This implies that
(1) {2, w*) — Lz, 2*) + inf 2*(X) £ ¢ + inf w*(X) .

Similarly, sup w*(C) = <w, w*) < <z, w*) + (¢/N)[|w — @] — {z,2*) +
{w, #*> which combines with (1) to yield

{w, w*y < ¢ + inf w*(X) — inf 2*(X) + ¢ + sup 2*(C)
= 28 — 0 + inf w*(X)
< infw*(X) .

Proposition 1.3 (below) yields a slightly generalized version of
Taylor’s theorem [12]. The proof of the proposition, although technical,
is conceptually very simple: one separates epi f from an appropriate
subset of a given linear variety and then uses Lemma 1.1 to obtain
a supporting hyperplane of the desired type. In order to facilitate
this idea, we introduce some notation.

Suppose that N is a closed subspace of the Banach space E, that
B, is the unit ball of N, and that f is a convex function on E. For
each ¢ > 0, we let

S(f, e, N) = {z* € E*[sup (2%, —1)(epi f) = inf (2%, —1)(By x {—¢})} .

Thus, S(f,e, N) is the projection onto E* of those functionals in
E* x {—1}) which separate the convex set epi f from the convex set
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By x {—¢}. It can also be described by

{e* e B*[f*(2*) + |[z*|ly = ¢} where [|2*[ly = sup{[{n,2*)||neB,}.

ProPOSITION 1.3. Let f be a l.s.c. proper convexr fumction on a
Banach space E and let N be a closed subspace of E. Suppose that
f(0) = 0 and that z* € S(f, e, N). Then for each ke(0,1), there exist
welE and w* e E* such that

w* ed ), [<w, 0| S E(EEL), o, s £

lwl < efk, | flw)| < efk, [|2* — w*|| < .k(11+_llz*ll) )

Proof. Since z*eS(f,e, N) and (0,0)cepi f, it follows that,
0 < sup (z*, —1)(epi /) < — |[#*||[y + ¢ and hence that sup (z*, —1)
(epi f) < ¢ and ||2*||y < e. By Lemma 1.1, for any k > 0 there exist
Ge(Ex R)* and (w, f(w)) eepif such that

sup G(epi f) = G(w, f(w)), [|(w, f(w)) || S ¢/k and [[(z*, —1) — Gl|=k.

Thus |G(0, —1) — 1| < k and since k <1 we have 0 <1 — k< G(0, —1).
Let @ = (G(0, —1))7'; then there is an element w* € E* such that for
each ye K

{y, w*) = aG(y, 0) .

If yedomf, then

Sy, w*) — fly) = aG(y, 0) — f(v)
= aG(y, f(y)
< aG(w, f(w))
= {w, w*) — f(w)
and therefore w* € o f(w).
Since (w, f(w)) cepi f, we have (w, z*) — f(w) < ¢; thus

0 = Gw, f(w) = [|(w, f(w)) [k + {w, 2*) — flw)
e+ e=2¢
and therefore
[{w, w*)| = |aG(w, 0)| = |aG(w, f(w)) + f(w)]

12—8k P ZGﬁ)

IIA

Because |[z* — G(0, —1)w*|| < k, the triangle inequality yields
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llz* —w*|l =k + 1 — G0, —1) [Jw*]|
Sk + kalk + ||z*])
k+ llz*]|
s w1+ S
k

= T—_k(l + [[z*]]) .

Clearly,

k * k+ e
l0# Ly = | Gllyeo < L1 < BE

and the proof is complete.

COROLLARY 1.4. Suppose that f is a l.s.c. proper convex fumnc-
tion on a Banach space E, that f(0) = 0, and that N is a closed sub-
space. Then the following two statements are equivalent:

(1) For each € > 0 the set S(f, e, N) is nonempty.

(2) For each &> 0 there ewist weE and w*eE* such that
w* €df(w), [{w, w*)| S ¢, [|wl| S &, [lw*]ly = ¢ and | f(w)] < e.

Proof. (1) —(2). We can suppose that 0 < & < 1. Choose ¢ > 0
so that (6'% + 0)/(L — ') < e. Let x* e S(f, 0, N) and apply Proposi-
tion 1.3 with k£ = 6", Since 6'* < (6'* + 0)/(1 — 0) < ¢ assertion (2)
follows.

2 — (). Let ¢> 0 and apply (2) with ¢/3. Since w* €df(w)
we have f*(w*) = {w, w*> — f(w), so that

Frw®) + flw*lly = <w, w*) — fw) + [[w*|ly
<¢B8+¢83+¢83=c¢

and therefore w* e S(f, ¢, N).

It is now easy to prove the more general version of the theorem
of Taylor [12] referred to earlier. It is readily seen that (1) of
Corollary 1.4 is equivalent to (1)’ For each ¢ > 0 we have

0¢cl (By X {—¢} —epif),

which is in turn equivalent to saying that there exists a hyperplane
in E X R which strictly separates epi f from By x {—¢}. This suggests
that a generalization of Taylor’s theorem is not possible for arbitrary
closed subspaces N and the example following Theorem 1.5 shows
that this is indeed the case. In [12], the space N is assumed to be
one dimensional.
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THEOREM 1.5. Suppose f is a l.s.c. proper convex function on a
Banach space E and that N is a reflexive subspace of E. Suppose
also that yedom f and y* € E* are such that for each ne N

Sy +n) = f(y) + {n,y*> .
Then for each € > 0 there exist z€ K and z* € E* satisfying

#edf(@), llz* —yrlly =& lly—zll=e and [Ky—2z2)|=e.

Proof. Let h = f(y + -) — f(y) — {-,y); then & is a l.s.c. proper
convex function on E, h(0) = 0 and = 0 on N. Hence the weakly
closed convex set epif is disjoint from the weakly compact convex
set By X {—¢} for every €>0. By the separation theorem, there is a

G e (E x R)* such that
sup G(epi h) < inf G(By X {—¢}) .

Since (0, 0) eepi , we have G(0, —1) > 0. Thus for any &> 0, the
set S(h,e, N) is nonempty. By applying Corollary 1.4, with ¢ =
e/l + ||ly*]]) in place of ¢, we obtain w e E and w* € E* such that

w* €oh(w), [Kw, w*)| =6, [[w]| =4 and [[w*[y=4.

Let 2* = w* + y* and 2z = w + y; it is easy to check that z* and z
satisfy the conclusion of the theorem.

We refer the reader to [12] for the application of this result to
an easy proof of Rockafellar’s theorem that for any l.s.c. proper
convex function f on a Banach space, the subdifferential map af is
maximal monotone.

The following is an example of a l.s.c. proper convex function
F and a subspace N of codimension 1 for which F(0) = 0 and F(n) = 0
for all n e N, but (1) of Corollary 1.4 does not hold. This shows that
Theorem 1.5 is not valid for arbitrary closed subspaces N.

Let
E=10" and N={z={z}el>|z,=0}.
Define F:1"— R U {c} by
F(@) = lim inf (7() ||}y — o]l <}
where, for y = {y;} el~,

) =—(flwd)" i€ welo,y

i=1
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for each ¢ and y;, = 0 for almost all ¢ (n is the smallest positive
integer such that ¢ > n» implies y; = 0); f(y) = - otherwise. We have
using [11, p. 27] that f is convex and hence F is a l.s.c. proper convex
function. Also, F(0) = 0 and F(n) = 0 for each ne N. Let

k K —k
. e
Y, = {ek,...,a",l’l,l,... 1,0...

and m, = y, — ‘¢, where ¢, = {1,0---}. Then F(y,) = —¢ for each
k, and m;, — y,— 0. Thus Oecl (By X {—¢} —epi F') and the discussion
preceding Theorem 1.5 shows that the conclusion of Theorem 1.5 does
not hold.

We remark that if f is continuous at some point of N, then as
has been noted by Ioffe [5, Theorem 1] 0f|y = Yodf on N where
v: B* — E*[/N* is the canonical projection. Our example shows that
continuity cannot be weakened to lower semicontinuity even if one
supposes N has codimension one, where [1, Lemma 4] applies. Since
0€0F|y(0), we have to show that if y* €dF(0), then y*¢ N+. Sup-
pose y* €0F(0) i.e., <z, y*> < F(x) for each x ¢ E. Take k large enough
so that |{m, — y., ¥*>| < €/2; then for large enough £k,

{my, y*) < &/2 + {yi, ¥
= ¢/2 + F(y)
= —¢/2

and so y*¢ N*‘.

We now give a sufficient condition for w* in Corollary 1.4 (2) to
be contained in N+ i.e. ||w*||y = 0. This result (Proposition 1.8) fol-
lows (in the same way Proposition 1.2 was a consequence of Lemma
1.1) from a lemma which extends to Lemma 1.1. We need the fol-
lowing proposition of Dieudonné [3] for the proof of the lemma.

PROPOSITION 1.6. Let E be a topological wvector space and A, B
two closed convexr and nonempty subsets of E. Suppose A is locally
compact and that 0*A N 0*B = {0}. Then B-A is closed in E.

LEMMA 1.7. Let C be a closed convex subset of a Banach space
E and N a finite dimensional subspace of E. Suppose 0FC N N = {0}
and that x* e N*, e C and ¢ > 0 are such that

sup #*(C) < <z, 2*) + €.
Then for any k > 0, there exist we C and w* € N* such that

(w, w*) = supw*(C), ||z — wllyr < e/k and ||Jw* —z*||Z k.
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Proof. By Proposition 1.6, the set C + N is closed in E. Let
Q: E — E/N be the quotient map. Since @ (Q(C)) = C + N, it follows
from the definition of the quotient topology that Q(C) is closed. We
identify (E/N)* with N+ and apply Lemma 1.1 to Q(C) in E/N. Then
for any k& > 0 there exist 2 + NeC + N and w* € N* such that

{z+ N, w*> =supw*(C+ N), ||t —2+N||Z¢/k and |[z*¥—2*||Zk.

Since z + NeC + N, there exist w € C and n € N for which z = w + n.
Because w* e N*, we have

{w, w*y = {z + N, w*)> = sup w*(C + N) = sup w*(C) .
Also, we have
le — wlly: = ||z —w + N||= ||t — 2+ N|| = ¢/k,

and the proof is complete.

ProrosiTION 1.8. Let f be a l.s.c. proper convex function on a
Banach space E and let N be a finite dimensional subspace of E.
Suppose that z* € S(f, €, N), that 0" epif N (N x {0}) = {0}, that (0,0) e
epi f and that z* ¢ Nt. Then for each ke (0,1) there exist we E and
w* e N+ such that

w* e of(w), ||lwllyr = &/k, |fw)] = ¢/k
and
k@ + [[z*])
* x| < P\ Tl )
Iz — w* ) s TEE
Proof. By hypothesis, sup (z*, —1)(epi /) < ¢ and (2*, —1)¢
(N x{0})* = N* x R and Lemma 1.7 applies with « = (0, 0). Thus for
any k > 0 there exist (w, f(w)) cepif and Ge N* X R such that

G(w, f(w)) = sup G(C), || (w, f(w)) |Iy1xz = &/k
and
G — =%, -Dll=k.

Thus |G(0, ~1) — 1| < k and since k < 1wehave 0 <1 — k < G(0, —1).
Hence there is an element w* € E* such that for each ye F

G(y, 0)

{y, w*) = m .

Since Ge N* X R, we have w* ¢ N*; the verifications that w* € of(w)
and that
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. e < L 11z* )

IE Tk

are the same as in Proposition 1.3.

It is a trivial consequence of Lemma 1.1 that if C is a closed
convex subset of a Banach space E, then the support functionals of
C are norm dense in the set of linear functionals bounded above on
C. The following corollary to Proposition 1.8 shows that the support
functionals of C which are bounded above on C and positive at some
point of C have a norm dense intersection with any finite codimen-
sional linear variety M satisfying 0°C N 0*M° = {0}.

COROLLARY 1.9. Let C be a closed convex and monempty subset
of a Banach space E and let N be a finite dimensional subspace of
E with 0fCN N = {0}. Let z* € E* be such that 0 < Sy(x*) < oo.
Then for each € > 0 there exist z* ¢ E* and z e C satisfying

{z,2*> = supz*(C), z*eN*+a*, |z*¥—a*|Zc¢
and
|Se(@*) — Sp(z*)| = €.

Proof. Choose 0 € (0, Sg(x*)) such that 26'*/(1 — 26'®*) <¢ and yeC
so that

(1) Se(@*) = <y, ™) + 0.

Define the function i: E— R U {co} by h(x) = yo(x) — <z, 2*> + {y, x*).
Clearly (1) implies 0€ S(h, d, N). We check that

0epi 2 N (N x B{y}) x {0}) = {0} .

Suppose (n, 0) € 0tepi  for n € N; then since h(y) = 0, we have for any
A =0 that (y +wn,0)cepih ie., h(y + An) < 0. Hence v (y +xn) <
{uvn, %) < o and therefore y + xneC. Thus ne0"CNN = {0}.
Suppose (¥, 0) € 0%epi z; then we have ((1 + M)y, 0)cepih for each
A = 0 and hence y + My € C for each )\ = 0; but since <y, *> > 0 this
contradicts Sy(x*) < . Finally suppose (—v,0)ec0%epih; then
(1 —2N)y,0)cepih for each x =0, so Qwy,2*) <0 for each A =0
which contradicts <y, *) > 0.

We can apply Proposition 1.8 with k& = 24'” to obtain w* € (NxR{y})*
and zeC satisfying w* eoh(z) and [|w*|| < 26'*/(1 — 26'%) < ¢ and
[h(z)| < 6'7/2 and ||2]||yxript = 6/2. Let 2* = w* + a*; then ||z* —z*||=Z ¢
and it is easy to check that w* € oh(z) implies <z, z*) = S,(2*). Since
hz) = <y — z,2*) we have
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0 = Sc(z*) — <y, 2%
= Se(2*) — <y, &*)
= <z — Y, z*>
= <z’ W*> + <z - Y, x*>
=0t <e,
and combining this inequality with
—5 <y, #*) — Se(@®) < 0
we obtain
|Se(z*) — Se(@*)| = €

which completes the proof.

2. In this section we obtain dual results for most of those in
§1. The key is the following lemma which is a dual version of Lemma
1.1. It was essentially proved in [8, Theorem 1] and can be easily
obtained from the Brondsted-Rockafellar lemma.

LeEMMA 2.1. Let C be a weak*closed convex subset of the dual
E* of the Banach space E. Suppose x* € C and x€ E and ¢ > 0 satisfy
sup C(x) < <z, 2*> + €.
Then for any k > 0 there exist w* € C and w e E satisfying
{w, w*y = sup C(w), [|lo — w|| <k and ||a* —w*||Z¢k.

This lemma can be used to prove the following dual version of
Proposition 1.8, by much the same method.

PROPOSITION 2.2. Let f be a l.s.c. proper convex function on a
Banach space E and N a subspace of E. Suppose f*(0) = 0 and
2e€S(f*, e, N*) where € > 0. Then for each k€ (0, 1) there exist we E
and w* € E* satisfying:

w € 0 f*(w*)
X 1+k
w, w0y = Em(TE)
lwlly: < £+
[w*]] < e/k

Iz —wj < £FEEIED
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Proof. Since z€S(f*, ¢, N*) and (0, 0) cepi f*, it follows that
0 <sup(z, —1)(epi f*) £ — ||#||ly. + ¢ and hence that

sup (2, —L)(epi f*) < ¢ and ||z|lyr Z €.

By Lemma 2.1, for any k> 0 there exist G € E x R and (w*, f*(w*))
epi f* satisfying

sup G(epi f*) = Gw*, f*(w*)), [[(w*, f*(w*))|| = ¢/k
and
[z, -1) —Gll=Fk.

Thus |G(0, —1) —1| < k and since &k < 1, we have 0 <1 — k < G(0, —1).
Hence there is an element w e E such that for each y* e E*

G*, 0)

{w, y*) = GO, -1

The rest of the proof is obtained by interchanging the roles of w,
and w* in the proof of Proposition 1.3.

We have seen that Theorem 1.5 requires some restriction in the
subspace N. This is not the case with the following dual version
which uses the weak* compactness of the unit ball of the weak*
closed subspace N*.

THEOREM 2.3. Suppose f is a l.s.c. proper convex function on a
Banach space E and that N is a subspace of E. Suppose also that
yeE and y* edom f* satisfy

fEy* + n*) = f*(y*) + {y,n*) for each m*eN*.
Then for each € > 0 there exist z€ E and z* € E* satisfying

zedf (@), llz —yllyr S ¢ [lyf — 2% S ¢
and
[<z,y* —2")|=e.

Proof. Let h= f*(y* +-)-f*(*) — {y, +>; then h is w*-ls.c.
proper and convex. Also #(0) = 0and &~ = 0 on N*‘. Hence the weak*
closed convex set epik is disjoint from the weak* compact convex set
By x {—0o} for every 6 > 0. By the separation theorem, there exists
G e E x R satisfying

sup G(epi b)) < inf G(By: X {—¢}) .

Since (0, 0) cepi s, we have G(0, —1) > 0. Thus for any 6 > 0, the
set £ N Sk, 0, N') is nonempty. Choose é > 0 so that



172 GEORGE LUNA

o+ o e
T or 1+ |y’

and apply Proposition 2.2 with 6 in place of € and & = §'% to obtain
we K and w* e E* satisfying

wedf*(w*), Kw, w*>| =9, ||lwlly: =0 and [[w*[|=9.

Let 2* = w* + y* and z = w + ¥; it is easy to check that z* and z
satisfy the conclusions of the theorem.

If one considers E as a subspace of E**, then grdf is a subset
of E** x E*, as is gr(0f*)™" where gr(@0f*)™" = {(x**, a*)|x** € 3 f*(x*)}.
Since z* €df(x) if and only if xeodf*(x*) if is evident that gradfc
gr(@f*)~* and it is natural to ask if there is any other relationship
between these two sets. Rockafellar [11] (cf. Gossez [4]) has answered
this question: grdof = gr(3f*)~', where the closure is taken with
respect to the product of the % topology on E** and the norm topology
on E*. The U topology on E** is the weakest topology on E** con-
taining the weak** topology and for which the norm on E** is a
continuous function. In general, it is not a vector topology.

We will give a short proof of this result of Rockafellar using
Theorem 2.3, after first proving an easy lemma.

LEMMA 2.4. Let f be a l.s.c. proper convex function on the Banach
space E. Suppose f*(0) =0 and x**€df*(0) and 6> 0. Then
x** € o(f + v5)*(0), where B = B(0; ||x**|| + 0).

Proof. Let K = dom f and let K, be the weak** closure of K in
E**. By [6, p. 62], we have (yx + ||-[)** = yx, + ||-|; hence
inf {||z|||2z € K} = inf {|]|2**|||2** € K|} and it follows that KN B %= @.
By [6, p. 62], (f + ¥p)** = f** 4+ 5**; hence

0 = inf f** (since f*(0) = 0)
= f**(@**) (since z** €9 f*(0))
= (f + ¥)** (™)
=inf (f + ¢5)**; so 0e(f + yvp)* (@*) .

THEOREM 2.5. [Rockafellar]. Let f be a l.s.c. proper convex
Sunction on the Banach space E. Consider (0f*)™ E** — E*. Then
gr 0f*)™ = gr f where the closure is taken with respect to the product
of the A topology on E** and the norm topology on E*

Proof. The Dbilinear function (., -): E**xE* — R is continuous
for the ¥ x norm topology, hence gr o f is monotone. Since we already
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know gr (0f*)~* is maximal monotone, it suffices to show that

gr@f*)"cgrof .
Let (x**, 2*) e gr (0*)™* and suppose we are given d €(0,1) and {z¥}i_,
in the unit sphere of E*. By considering g*(:) = f((-) + &*) — f*(=*%),
if necessary, we can assume ¢* = 0 and f*(0) = 0. Thus 0€0f**(x**)
and by Lemma 2.4 we have 0¢d(f + +,)**(@**), where

B = B(0; [[«**[[ + 9) -

Choose y € E such that <y, «> = {z**, x> for n =1, ---, k and apply
Theorem 2.8 to f+ 4, with y* = 0 and N* = span {z}}*_, and ¢ =
&/(1 + ||a**|]) where 0 < & < 6. We then obtain z*e€ E* and ze &
satisfying 2* €3(f + v)(@), ||z — ylly: S &, [{2, 2*)| < & and [|z*|| < &
Thus, z* = u* + t* where u* € df(2) and t* € dy5(2). Clearly zea** +
o(fwrte_)° and |[|z]| < ||&**|| + 6 and [|u*|| < 0 + [[t*]]. We will show
[[t*]] < 6 and this will conclude the proof. Suppose ||¢*|| > d, then
because u* €0 f(z) and 0eof**(x**) we have

0= (o**—z, —u*).
Hence
2] [[E*]] = <z, t*) = {@**, %) — {&**,2%) + (2,2%)

= e (LI + [la** ([ [2*]] + ¢

= [le** [[Ig*]] + ([a** ]| + D)e

= |[e [ {[e5]] + ¢

< e ([t ] + o,
so [[z]| < [|&**|| + 6¥/||t*|| < ||#**|| + 6 and since t* € dy5(z), we have
the contradiction ¢t* = 0.

Finally we prove a dual version of Proposition 1.8. We require
a lemma which is a consequence of Proposition 1.6 and Lemma 2.1.

LEMMA 2.6. Let C be a weak* closed convex subset of the dual
of a Banach space E and N a closed finite codimensional subspace of
E. Suppose 0*C N N* = {0}, and that x*€C, x € N and ¢ > 0 satisfy

sup C(x) < <z, 2*) + €.
Then for any k > 0 there exist ze N and z* € C satisfying

(2,2*) = sup C(2), [|[x — z[| S k, ||a* — 2* [y = ¢/k .

Proof. By Proposition 1.6, the set C + N* is weak* closed in
E*. Let Q: E*— E*/N* be the quotient map. Since Q(Q(C)) =
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C + N+, it follows from the definition of the quotient topology that
Q(C) is weak* closed. We identify E*/N* with N* and apply Lemma
2.1 to Q(C) in E*/N*. Then for any k > 0 there exist w* + Nt C
C + N* and zeN satisfying <z, w* + N> =supC(z), ||z — z|| =< k
and |[z* — w* + N*|| < ¢/k. Let n*e N* be such that w* + n*eC
and set z* = w* + n*, so that {(z,2*) = sup C(z). Finally, we have

lo* — 2*|ly = ||a* —2* + N*[| = [[&* —w* + N*[[ = ¢/k .

PROPOSITION 2.7. Let f be a l.s.c. proper convex function on a
Banach space E. Let N be a closed subspace of E of finite codimen-
sion. Suppose that 0tepi f* N (N* x {0}) = {0}, that (0, 0) cepi /* and
that ze NN S(f*,e, N*), where € > 0. Then for any ke (0,1) there
exist we N and w* € E* satisfying

w €0 f*(w*)
Iz —w) < FEELED
lw*[ly = e/k

| f*w*) | = elk .

Proof. By hypothesis, sup (z, —1)(epi f*) <e and (2, —1) e N x R.
We can apply Lemma 2.6 with & = (0, 0) and obtain, for any %k > 0,
Ge N x R and (w*, f*(w*)) eepi f* satisfying

G((w*, f*(w*)) = sup G(epi f*), |G — (2, = D[ =k
and
[, f*(w*) lyxr = €k .

Thus |G(0, —1) — 1| < k and since k <1 we have 0 <1 — &k < G(0, —1).
Hence there exists an element w € E such that
G(y*, 0)
G(0, —1)

Since Ge N x R, we have we N.
The verifications that w e df*(w*) and that

k@ + [[z]))
1-k

{w, y*> = for each y*e E*.

e —wl| =

are the same as in Proposition 2.2.
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