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APPROXIMATE IDENTITIES FOR
CONVOLUTION MEASURE ALGEBRAS

CHARLES D. LAHR

Let (A4, *) be a commutative semisimple convolution
measure algebra with structure semigroup /. It is proved
that A has a weak bounded approximate identity if and only
if I” has a finite set of relative units; moreover, I" has an
identity if and only if some weak bounded approximate
identity is of norm one. Considering now a commutative semi-
group S, the existence of a bounded (norm) approximate
identity in A = #(S) is equivalent to the existence in S of a
finite number of nets {U,)}otiresy ©=1,2, -+, » with the
property that for every x<cS there exist j and p(j), such
that o(j) = o(7). implies xu,; = .

Basic definitions, notation, and background results are given in
§2. In §8 we study the relationship between (4, *) and I when
A has a weak bounded approximate identity of norm R. In §4 we
examine conditions on S that are equivalent to the existence of a
bounded (norm) approximate identity in 4 = #(S).

2. Preliminaries. Let (B, *) be a commutative Banach algebra
under || -|l. Let 4(B) denote the maximal ideal space of B, that is,
the space of all continuous homomorphisms of B into the complex
field C together with the weak-*(Gelfand) topology [9]. As usual
for any a e B, define @(y) = y(«) for each y € 4(B), and let

B={& acB}.

A weak bounded approximate identity of norm R for B is a net
{E,},c~ of elements of B such that (a) || E,|| < R for some positive
number R and for all pe .7, and (b) (@*E,)"(x) — a(y) for all y e 4(B)
and for every awecB. A bounded approximate identity of norm R
for B is a net {E,} of elements of B such that (a) || E,|| < R for
some positive number R and for all p, and (b) ||a*E, — a|| — 0 for
all «e B; we sometimes use the terminology “bounded (norm) ap-
proximate identity of norm R” for the same concept.

If X is any normed linear vector space, the continuous linear
dual of X is denoted by X*; («, f) represents the action of fe X*
on aeX; and if YS X, Z< X*, then let w(Y, Z) be the weak
topology on Y & X induced by Z< X*. The natural mapping of X
into X** is denoted by j: X— X**. Often, we simply denote
(f,ij(@) by (a,f), acX, fe X*, in those circumstances where the
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meaning is clear.

Now let S be a commutative locally compact Hausdorff semigroup
with jointly continuous multiplication (sometimes herein referred to
as a commutative locally compact topological semigroup); and let
M(S) denote the complex Banach algebra of all bounded regular
Borel measures on S where the product * is defined by convolution.
For p, yve M(S), F a Borel subset of S,

@) @) = | s:@idu@a)

where ¢, denotes the characteristic function of F. The norm on M(S)
is the total variation norm, denoted || - ||. See Taylor [10]. A semi-
character ¥ on S is a nonzero continuous complex valued function
on S of modulus less than or equal to one which satisfies

x(@y) = x@)xW) for all #,yeS.

The collection of semicharacters of S is denoted by S. It is well
known that C,(S)* = M(S), where £ € M(S) induces a linear functional
on C,(S) by

@,1) = | 9@dn@) for all g Gy(S) .

This paper is devoted to characterizations of approximate identities
for certain semisimple convolution measure algebras. For a definition
of convolution measure algebra see [10]. If G is a locally compact
abelian topological group, and if L,(G) is the algebra of Haar inte-
grable functions on G under convolution multiplication, then L,(G)
is a convolution measure algebra. Likewise, M(S) is a convolution
measure algebra.

Taylor proves in [10] that if (A4, *) is a commutative convolution
measure algebra, we may identify the maximal ideal space of (4, *)
with ", the set of all semicharacters on a compact topological semi-
group /7, which he labels the structure semigroup of (4, *), (we will
denote the structure semigroup of any convolution measure algebra
under discussion by I"). There is a homomorphism p: g£— g, of A
into M(I") with the following pertinent properties: p(4) is weak-*
dense in M(I"), that is, dense in the w(M(I"), C(I")) topology (where
we have identified C(I") with its natural image in M(I")*); p is an
isometry if and only if (4, *) is semisimple. I" also has the property
that the uniformly closed linear span of I" is C(I). We make use
of this fact in observing that I"'< A(M(I") is enough to imply the
semisimplicity of M(I"): that is, suppose g, ve M(I") and Z(x) = D(%)
for all y e I; then because the linear span of I" is uniformly dense
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in C(I'), the formula (x, ) = (y,v) for y eI’ can be extended to all
fe C(I"); therefore, ¢ and v agree as linear functionals on C(I") and
so as elements of M(I).

The set of discrete measures in M(S) forms a subalgebra of
M(S), denoted by #(S). Of course, if S is discrete, then 4(S) =
M(S). Hewitt and Zuckerman present a detailed study of #(S) in
[5]. An interesting fact is that the existence of an identity in 4(S)
is equivalent to the existence of a finite set of relative units in S,
where U is defined to be a set of relative units for S, if for every
xe S, there exists we U such that zu = x. Lardy [6] proves that
the same conditions on S are necessary and sufficient for the existence
of an identity in M(S), and in fact an identity for M(S) must lie
in #£(S).

3. Weak approximate identities. Throughout this section
(4, *) is a semisimple convolution measure algebra. Assume that A
is embedded in M(I"). The first result relates the existence of a
weak bounded approximate identity in A to the existence of an
identity in M(I).

THEOREM 3.1. ' has a finite set of relative units if and only if
A has a weak bounded approximate identity.

Proof. Suppose A has a weak bounded approximate identity
{E.}, | E,|| £ R for all p. Then {E,} is a subset of the closed ball
of M(I'") of radius R. In the weak-* topology, this ball is compact.
Thus, there is a subnet {E,} and Ee M(I") such that E, — E in
the weak-* topology of M(I"). Our aim is to show that E is an
identity for M(I"). If ac A, (y, a*E,) — (y, @) for all yxel. Thus,
(o, a*E) = (x, @) for all xel implies that a*E = a for all ac A.
Since A is weak-* dense in M([I") [10], if ¢ is an arbitrary element
of M(I"), there exists a net {¢;,} ¢ A such that y¢; — ¢ in the weak-*
topology; hence, (f, . * E)— (¢, t*E) for all yxel, while
O, ta* BE) = (1, tta) — (1, 1) for all yel. Therefore, (y, p1* E) =
(1, &) for all ye " implies that p* B = u for all g€ M(I"), and hence
E is an identity for M(I"). Finally, I" has a finite set of relative
units [6].

Conversely, assume now that /7 has a finite set of relative unitg
and without loss of generality assume that U= {v, 7, -+, 7.} is a
minimal set of relative units with 7=, for all 7 [6]. Let
{@oi}oire =, be a neighborhood system for v;,,7i=1,2, .-+, n; for each
i, Z; is ordered by set inclusion, that is, p(?) = 0’(?) if and only if
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Wpiiy & Worsye Now, since A is a weak-* dense L-subspace of M(I"),
for each p(i) e &;, there is a nonnegative measure f,; of norm one
in A such that g, is concentrated on ®,;,7=1,2, -+, n [10].
For each feC(I"), we assert that (f, fow) — (f,0;), 1=1,2, «++, m:
fix 7 and let ¢ > 0 be given; there exists 0,(7) such that

[f) — fv)l<e for all vew,,,
by continuity of f; thus, p(i) = 0,(7) implies
= ||, 170 = reda )|
<{, |ro - s

Further, by the weak-* joint continuity of convolution multiplication
on the unit ball of M(I") [4], for (0(%), p()) € F: X Z;

[ 7zt — £

Ao (7) < €.

Loy * Moy — Or; * 0y, = Oy,
weak-* for all v and j =1,2, -+, m, ©# J.
Now, set F = F, X F, X -+ X F, and let pe & be denoted
by 0 = (0(1), 0(2), -+, o(n)); for each pe & define
E, = 15%11, Hoiy — ) 20 Mo ¥ Loty

si<j=n

F oo F (DM Yoy F Moy ¥ o F Moy

If E is the Hewitt-Zuckerman identity for M (I") constructed from
U (see [5] and [6]), then from above (x, E,) — (X, E) for each xef,
which implies (x, #* E,)) — (, #* E) = (x, pt) for each ye [ and for
all #e A. Clearly, || E,|| < R for some positive number R and for
all p. Thus, {E,} is a weak bounded approximate identity for A.
This completes the proof.

The next corollary should be contrasted with Theorem 3.1 of [10].
We are unable to verify that the existence of an identity in I” im-
plies the existence of a bounded approximate identity in A of norm
one.

COROLLARY 3.2. I" has an identity if and only if A has a weak
bounded approximate identity {E,} of morm one.

Proof. If I' has an identity e, let {w,} be a neighborhood system
at e. Since A is a weak-* dense L-subspace of M(I"), there is a
nonnegative measure E, of norm one in A such that E, is concen-
trated on each w,. As in the proof of Theorem 3.1 it is seen that
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{E,} is a weak bounded approximate identity for A since

(X’ #*Ep)—') (X, #* ae) = (Xy /'!)

for all y eI and for each ze A.

Conversely, if {E,} is a weak bounded approximate identity of
norm one, the proof of Theorem 3.1 shows that there is a subnet
{E,} and Ec M(I") such that E, — E in the weak-* topology and
E is the identity of M(I"). In fact, E is the Hewitt-Zuckerman
identity for ~4(I") formed from the set of relative units of I" [6].
Thus, || E,|| <1 for all p implies || E|| =1, so E is concentrated on
a single point e of I". Thus, e is the identity of I".

COROLLARY. 3.3. A has a weak bounded approximate identity
if and only if M(I") has an identity.

Proof. M(I') has an identity if and only if 7" has a finite set
of relative units [6].

4, Approximate identities for #4(S). We now begin the study
of 4(S). The semisimplicity of 4(S) is equivalent to the algebraic
condition on S that «* = 9* = xy implies x =y, , yeS [5]. If S
satisfies this condition, we follow Petrich [7, p. 811] in saying that
S is separative.

The maximal ideal space of «(S) is just S. If 4 is the uni-
formly closed subspace of 4(S)* = /.(S) generated by S, then 4
is a C*-algebra with identity. Therefore, I°, the maximal ideal
space of 4, is compact and if S separates points of S, then there is
a natural isomorphism 4, of S onto a dense subset of I'. Also note
that (y, i.(x)) = x(x) for all xS, % eS. The author originally proved
all of these results by pursuing Rennison’s techniques [8] of applying
the Arens product [1] to the task of describing 4(4(S)). It was very
kind of the referee to point out the much simpler arguments just
presented. We restate the main conclusion in the next proposition.

ProrosITION 4.1. If S s separative, them there is a natural
isomorphism i, of S onto a dense subset of I'.

In examining conditions on S that are imposed by the existence
of a norm approximate identity in 4(S), we find that the following
proposition holds without regard to the semisimplicity of 4(S).

PROPOSITION 4.2. Let S be a commutative semigroup. If 4(S)
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has a norm approxvimate identity {E,} (bounded or mot), then S has
a set of relative units.

Proof. Let xeS. Then there exists o such that

Ha,*Ep—axn<%.
Set E, = >.7,¢0,. Then

1- 3 &

2
g;2=%

implies there exists g€ S such that gz = =.

COROLLARY 4.3. If S is a cancellative semigroup and if £(S)
has a norm approximate identity, then S has an identity.

Proof. Let xzeS. Then there exists zeS such that xz = =.
Now if ye S, 22y = 2y implies 2y = y, so 2z is the identity for S.

PROPOSITION 4.4. Suppose {E,} C 4(S) is such that ||E,|| <R
Sfor all p and some positive number R, and in addition
| E,*0, — 0,|]|—0 for all xeS.
Then {E,} is a bounded approximate identity for #(S).
Proof. Let ae4(S) be arbitrary and let ¢ > 0 be given. Then

there exists N, such that X2y .. |a(@;)| < ¢3R. Also, there exists
0, such that p = p, implies

E, %6, —0,||<—%—, §i=12 +--,N,.
N AT TR °
Thus,
|| B * (@) (Bp * 04, — 0a)

+||E S a@)h, |+ S
t=Np+1 1=No+1

<, 8,8 _¢ for all o= p, .

333 =

This completes the proof.
We now confine our attention to separative semigroups. Using
Proposition 4.1, we consider S to be embedded in the compact
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topological semigroup I” as a dense subsemigroup.

It is possible to use the semicharacters of S to decompose the
semigroup into a set of equivalence classes as follows: for z, y€ S,
write @ ~ y if for each xe§, x(@) = 0 if and only if x(y) = 0; let
H, ={yeS: y~ a}; then ~ is an equivalence relation on S and the
mapping 2+ H, is a homomorphism of S onto the idempotent semi-
group {H,: x¢S}, multiplication in the latter space being given by
H.H, = H,,. Then define a partial ordering which makes {H,: xz¢€ S}
a semilattice by setting H, < H, if and only if H.H,= H,, ®, ye S,

further, define A, = {yeS: H, < H,}, x€S. Then for each xz¢S,

H, and A, are subsemigroups of S; H, is cancellative;
A, ={yeS:if xeS and x(x) = 0, then x(y) = 0} ;

and the characteristic function of A, is always a semicharacter of S
(see [2, 3, 5] for more details).

If 4(S) has a bounded approximate identity {E,}, then certainly
{E,} is a weak bounded approximate identity. Thus, Theorem 3.1
with A = 4(S) implies the existence of a finite set of relative units
in I". In the next theorem we show that if we assume that S has
a set of relative units, then the existence of a finite set of relative
units in 77 allows us to construct a bounded approximate identity for
4(8).

THEOREM 4.5. Suppose 4(S) 1s semisimple and S contains a set
of relative units. If I' contains a finite set of relative wunits, then
(a) there exist in S a finite number of mets

{up(i)}r)(i)e.?',-, 1= 1: 2, see, M

such that for every xS there exist 7 and o(7), for which 0(5) = 0(9).
implies u,;,x = 2, and (b) £4(S) has a bounded (norm) approximate
identity. Moreover, if I’ has an identity, then n = 1 in (a) and the
approzimate identity in (b) is of morm one.

Proof. Let U= {7, 7, «++, 7.} be a set of relative units for I,
and assume without loss of generality that v} = v; for all 7 [6]. Then
there exist nets {x,:}oies;, ©S such that 5 —v, ¢=1,2, -+, n.
Let {uom)}omes; ©8S be such that w,.2.; = 2,4 for all p(t) e Z,, i =
1,2, -+, n. Now, let xeS; then there exists j such that vz = «.
Thus, %2 — 2 in I'. If ¢, is the characteristic function of 4,, ¢, € S
[2, Proposition 3.8] and hence ¢,(x,;,%) — ¢.(x) = 1; thus, there exists
p(j), such that o(j) = o(j), implies ¢,(%,;) = ¢.(%,;,@) = 1. Hence,
by the choice of w,), ¢.(u,;) =1 for all o(j) = o(j).; we thus have
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that o(j) = p(j). implies @, € A,y %o € A.. We now show that
Up® = « for all p(j) = p(j),. If not, there 'exist p(j) and y e /" such
that y(u,;x) # x(x). Since u,;xe€ H,, if follows that x(w.; )+ 0
and y(x) # 0. Also since %, € 4,, X(®.;)) 0 and since

ToiiyWoiiy = Lois X (Uoin) = 1.

However, this leads to the contradiction y(x) = x(w,;%) # X ().
Therefore, if xe S is arbitrary, then it is possible to find j and 0(j),
such that o(j) = o(j), implies wu,;x = . This proves (a). To see
that ~4(S) has a bounded approximate identity, let

F = F X Fy X o0 X F,,

with pe & denoted by p = (o(1), p(2), -+, o(n)). Further, for each
o€ . Z, define
B, = 15425'7»3“’"“ - 1§%§n5“mi>“ﬂj>

n+1
+ e + (—1) 5up(1)up(2)...up(n) .

We assert that {E,},.- is a bounded approximate identity for ~4(S).
To substantiate this, let £e S and let j and p(j), be such that p(j) =
0(), implies that xu,; = #. Thus, for all pe & with

= (s++,00), ) and p@) = ().,

we have that E,*d, = ,. Since z is arbitrary, E, * 6, — 0, for all
xeS in 4-norm. Clearly, ||E,|| < R for some positive number R
and for all pe.&. Thus, Proposition 4.4 implies that {E,},.- is a
bounded approximate identity for ~(S). If I has an identity, say
7., then {E,} with E, =J,,, is seen to be an approximate identity
of norm one for #(S).

COROLLARY 4.6. Suppose 4(S) is semisimple. Then 4(S) has a
bounded approximate identity if and only if S has a set of relative
units and I' has a finite set of relative units. Moreover, 4(S) has a
bounded approximate identity of morm one if and only if S has a
set of relative units and I has an identity.

Proof. If ~4(S) has a bounded approximate identity, then S has
a set of relative units by Proposition 4.2; I" contains a finite set of
relative units by Theorem 3.1. Now if «4(S) has a bounded approximate
identity of norm one, then /" has an identity by Corollary 3.2.

Conversely, if S has a set of relative units and v has a finite set
of relative units, then 4(S) has a bounded approximate identity by
Theorem 4.5 (b). Moreover, if I has an identity, then ~(S) has a



APPROXIMATE IDENTITIES FOR CONVOLUTION MEASURE ALGEBRAS 155

bounded approximate identity of norm one by Theorem 4.5. This
completes the proof.

Note the existence in S of the nets described in Theorem 4.5 (a)
is all that is required in order to construct a bounded approximate
identity in 4(S).

Once again referring to Theorem 3.1 of [10], if S is separative
and we make the additional assumption that S contains a set of
relative units, then the existence of an identity in /" is a sufficient
condition for +(S) to have a bounded approximate identity of norm
one by Corollary 4.6. Each of the next two results gives conditions
on S that are equivalent to the existence of a bounded approximate
identity in #(S). Theorem 4.8 is almost a restatement of Theorem 4.5
and Corollary 4.6.

PROPOSITION 4.7. Suppose #4(S) is semisimple. Then #(S) has
a bounded approvimate identity of morm omne if and only if S has a
set of relative units and there exists a met {x,} S such that x(x,) —1
for all y e S.

Proof. If #(S) has a bounded approximate identity of norm one,
then Corollary 4.6 implies that S has a set of relative units and I”
has an identity e. Assuming S is embedded in I" as a dense subset,
there exists a net {x,} © S such that x, —e. Hence, y(x,) — () =1
for all ye S.

Conversely, if S has a net {x,} such that y(z,) —1 for all ye S,
then {9,,} is a weak bounded approximate identity of norm one.
Thus, I" has an identity e by Corollary 8.2. Since by assumption
S has a set of relative units, Corollary 4.6 implies that ~(S) has a
bounded approximate identity of norm one.

THEOREM 4.8. Suppose 4(S) is semisimple. Then £(S) has a
bounded approximate identity if and only if there exist a finite
number of mnets {U,w}owes; S, 1=1,2, <, m such that for every
x €8 there exist j and 0(j), for which p(j) = p(j), implies wp;% = x.

Proof. If #4(S) has a bounded approximate identity, then S
contains a set of relative units and 7" contains a finite set of relative
units by Corollary 4.6. Therefore, by Theorem 4.5 (a) there exist in
S the nets {upi)}omesp i =1,2, -+, n with the designated properties.

Conversely, if S contains a finite number of nets {U,u}ow e
1=1,2 .-, n as specified in the statement of this theorem, then as
in the proof of Theorem 4.5 (b), it is possible to construct a bounded
approximate identity for ~(S).
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COROLLARY 4.9. Suppose 4(S) is semisimple. Then £(S) has a
bounded approximate identity of norm one if and only if there is a
net {u,} C S such that for every xe S there exists p, for which o = o,
implies xu, = . In this case {0.,} forms a bounded approximate
wdentity for Z(S).

Proof. Most of this corollary is obvious. In any event, the fact
that [|d,,* 0, — d,||— 0 for all x€ S proves that {0.,} forms a bound-
ed approximate identity of norm one for ~(S) by Proposition 4.4.
This completes the proof.

If S is an idempotent semigroup, there is a natural partial
ordering on S that is sometimes helpful in constructing the net {u,}
of Corollary 4.9. We define “<” by ¢ <y if 2y = @, 2, y€ S.

PROPOSITION 4.10. Let S be an idempotent semigroup. Then
Z(S) has a bounded approximate identity of nmorm one if and only
if S has the property that for any %, y€ S there exists z€ S such that
22 = x and yz = Y.

Proof. Suppose S has the designated property. Then the semi-
group itself forms a net under the partial ordering described above,
since by assumption, given %, ye€ S it is possible to find ze S such
that 2 < z, y < 2. Now, if ze S, choose ze€ S such that # < z. Then
ye S, y = z implies that 2y = # and so by Corollary 4.9 {d,},.s forms
an approximate identity for #(S).

Conversely, if ~#(S) has a bounded approximate identity of norm
one, then by Corollary 4.9 there is a net {u,} S such that given
%, y € S it is possible to find u,, with the property that u,» = « and
%,y = Y. This completes the proof.

We would like to prove a theorem analogous to Proposition 4.10
for semigroups that are unions of groups, but not necessarily idem-
potent. Let S’ = {H,: xe S}; recall that under the multiplication
H,H,= H,,, S’ is an idempotent semigroup [2, 3].

ProrosiTION 4.11. Suppose #(S) is semisimple. Then 4(S) has
a bounded approximate identity of norm one if and only if S has a
set of relative units and 4(S’) has a bounded approximate identity
of morm one.

Proof. The existence of a bounded approximate identity of norm
one in «4(S) is equivalent to the existence of a net {u,} in S with
the property that for every xe S there exists p, such that o= p,



APPROXIMATE IDENTITIES FOR CONVOLUTION MEASURE ALGEBRAS 157

implies au, = & by Corollary 4.9. Thus, S has a set of relative
units. Moreover, given z, y e S, there exists o, 0, = o, and p, = p,,
such that w,x = « and w,y = y. Thus, H,,, = H, and H,,, = H,.
The idempotence of S’ and Proposition 4.10 now imply that 4(S’)
has a bounded approximate identity of norm one.

Conversely, because ~(S’) has a bounded approximate identity
of norm one, Proposition 4.7 implies that there exists a net {H, }c S’
such that y(H,)—1 for all ye(S)" Let {u}cS be such that
u,%, = %, for all p. We assert that y(u,) —1 for all yeS. To sub-
stantiate this assertion, let y e § and define for all H,e S’,

gy = [ 90
0, y(x) = 0.

Then % € (S’)* and hence )’Z(pr) — 1. Thus, there exists p, such that

P = p, implies that J(H,,) = 1, which in turn implies that y(x,) = 0

for all p = p,. Therefore, p = p, implies that x(u,) = 1, or in other

words, x(u,) — 1. Thus, an application of Proposition 4.7 yields that

Z(S) has a bounded approximate identity of norm one.

THEOREM 4.12. Let S be a union of disjoint groups. Then 4(S)
has a bounded approximate identity of morm one if and only if S
has the property that corresponding to each x, y€ S there is ze S
such that H,, = H, and H,, = H,.

Proof. The fact that S is a union of disjoint groups is equiva-
lent to H, being a group for all x € S[5, Theorem 8.11]. Thus, each
H, contains an idempotent % such that ux = %, and so S has a set
of relative units. If for each z, ye S there exists ze€.S such that
H, = H, and H,, = H,, then ~(S’) has a bounded approximate iden-
tity of norm one. Thus, according to Proposition 4.11 #(S) has a
bounded approximate identity of norm one.

Conversely, if 4(S) has a bounded approximate identity of norm
one, then it is an easy matter to see how to use the net described
in Corollary 4.9 in order to obtain the property stated above. This
completes the proof.

For the sake of completeness we state following proposition.

PrOPOSITION 4.13. Suppose 4(S) is semisimple. Then 4(S) has
a bounded approximate identity of morm one if and only if S has a
set of relative units and S is a semigroup.

Proof. If 4(S) has a bounded approximate identity of norm one,
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then S has a set of relative units and /" has an identity by Corol-
lary 4.6. Hence, Sis a semigroup.

Conversely, if S is a semigroup, by Theorem 6.7 of [5], for each
x,y€ S there exists ze S such that H,, = H, and H,, = H,. Thus,
the idempotence of S’ and Proposition 4.10 imply that ~(S’) has a
bounded approximate identity of norm one. Therefore, by Proposition
4.11 and the fact that S has a set of relative units, we conclude that
Z(S) has a bounded approximate identity of norm one. This com-
pletes the proof.

ExAMPLE 4.14. Let S be the set of integers under the operation
of maximum multiplication and consider the subsemigroup S, of Sx S
consisting of the negative axes

{(x! 0)3 (0, y): x, yesswéoyyéo} .

Then, clearly, two sequences {(n, 0): n < 0} and {(0, m): m < 0} are
required having the properties specified in Theorem 4.8; thus, by
Theorem 4.8 «4(S,) has a bounded approximate identity. I is the two
point compactification of S, obtained by adjoining v, and 7, and defin-
ing the products: v = v,; 72 = 7 7.7, = (0, 0); 7.(n, 0) = (n, 0) for all
n < 0; 7,(0, m) = (0, 0) for all m < 0; 7,(0, m) = (0, m) for all m < 0;
and 7,(n, 0) = (0,0) for all » < 0. v, and 7, are relative units for
I with E = 0, + 0,, — 0, being the Hewitt-Zuckerman identity for
M), If for n 0, m=0, we let E,m = 000 + Ot0,m) — 00,00, then
{F..,m} is a bounded approximate identity for ~(S).
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