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A CLASS OF INFINITE DIMENSIONAL SUBGROUPS
OF DIFF7(X) WHICH ARE BANACH LIE GROUPS

W. D. CurTis, Y. L. LEE, AND F. R. MILLER

It is known that if X is a compact C~-manifold then
Diff7(X) with the usual manifold structure is a Banach mani-
fold but not a Banach Lie group. In this paper we construct
a class of infinite dimensional subgroups of Diff"(X) which
are Banach Lie groups.

If X and Y are C~-manifolds and X is compact the construction
of a Banach manifold structure on C"(X, Y), the space of mappings
of class C7, has been given in [1]. The elementary theory of abstract
Banach Lie groups has been given in [3]. In this paper we show
that if Y = G, a finite dimensional Lie group, then C"(X, G) is a
Banach Lie group. Now suppose that 7: X — Z is a principal G-bundle.
We show that the group of C’-self-equivalences of 7 is a closed sub-
group of C"(X, G) which inherits a natural Banach Lie group struc-
ture. This gives a class of examples of effective infinite dimensional
Banach Lie group actions on compact manifolds.

The Lie group structure. Let X be a compact connected C~-
manifold and G be a finite dimensional Lie group. There is a canonical
right invariant C= spray, s: TG — TTG, on G which is defined as
follows. If ve T,G let ¥ be the unique right invariant vector field
which satisfies 7(x) = v. Then T7: TG — TTG and we have s(v) =
Tv(w). Now s determines an exponential mapping whose domain is
all of TG, exp: TG — G, and which satisfies exp (TR,(v)) = R,(exp (v))
where R, is right translation by g. If we define Exp: TG — G X G by
Exp (v) = (7(v), exp(v)), where n: TG — G is the natural projection,
then it is well known that Exp maps some open neighborhood of the
0-section in TG diffeomorphically onto an open neighborhood of D =
{(9,9)9€G} in G X G [2].

LEMMA 1. There is an open neighborhood S of the 0-section in
TG and an open neighborhood U of D such that

(a) Exp maps S diffeomorphically onto U

(b) forall gin G we have that TR,(S)=S and {(hg, k9)|(h, k) € U} =
U.

Proof. Note that exp|T,G = exp, is the classical exponential
mapping for the Lie group G. Choose an open set V in 7T,G which
contains 0, and which satisfies
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(1) there is a set M which is open in TG, which is mapped by
Exp diffeomorphically onto an open subset of G x G, and which satisfies
MNT.G=1V.

(2) V is mapped diffeomorphically by exp, onto an open set
W in G which contains e.

Let S=U{TR,(V)|geG} and U= U{g x WglgeG}. It is easily
checked that S and U have the desired properties.

The differential structure on C7(X, G) is now constructed in the
usual way [1]. Let feC"(X, G). A manifold chart about f is con-
structed as follows. f*TG, the pull-back of TG under f, is a bundle
over X, and f*S = {(z,v)e f*TG|ve S} is an open subset of this
bundle. Let N; = {ge C"(X, G)|(f(x), g(x) € U for all xe X} and define
e Ny —I"(f*TG) by aq9)(@) = (z, Exp™'(f(), 9(x))). a, maps N;
bijectively onto an open subset of I""(f*TG) and (Ny, a,) gives a chart
at f.

The coordinate chart at e is particularly nice. We use ¢ to denote
the identity in G and also to denote the constant map e¢: X — G, e(x) =
e for all . N, ={geC(X, G)|(e, 9g(x))e U for all xeX} = {ge
C"(X, G)|g(x)e W for all xe X}. Here W is the set used in the proof
of Lemma 1 to construct Sand U. Now ¢*TG = X x T,G so we may
identify I(e*TG) with C"(X, T,G). With this identification we see
that a,: N, — C"(X, T,G) is given by a,(9)(x) = exp;* (g(%)).

THEOREM 1. C"(X, G) is a Banach Lie group with respect to
pointwise multiplication and inversion. If E:C"(X, T,G) — C"(X, G)
18 the exponential of this Lie group then we have E(f) = expeo f where
exp: T,G — G is the exponential of G. The Lie bracket in C"(X, T,G)
18 the pointwise bracket; [f, gl(x) = [f(®), g(x)].

Proof. Let geC"(X, G). We show that R: C"(X, G) — C"(X, G)
is smooth. Fix fe C"(X, G) and consider the chart (N, a;). We will
show that R;: C"(X, G) — C"(X, G), R,(f)= fg, is smooth. At fg there
is the chart (N,, a;,) and we first note that R,(N;,) = N,. This
follows from the definition of the coordinate neighborhoods and the
property of U which is given in (b) of Lemma 1. To show the
smoothness of B, we need only show smoothness of the composite
0 Ra7 af(N)—I"((f9)*TG). Let ée I'"(f*TG). Then &(x)=(z, &,(x))
where &:2— TG is C” and 7n&, = f. If £eay(N,) then for each x
in X we have (a,,R,a7'()@®) = (v, Exp~ (f(®)g(@), (R,a7()(®))) and
(R,a7'(6)) (@) = a7'(€)(@)g(x) = exp (§,(2))g9(w) = exp (TR, (§.(x))). Now
TRy (6.(®) is in Ty G so that Exp™(f(2)g(x), exp (TR, (5.(2))) =
TR, (¢ (x)). We thus have (a,R,a7'()(®) = (&, TR, (&(x)) which
shows that a,R,a;* is a continuous linear map, hence smooth.
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In a similar manner we can use the canonical left invariant spray
on G to show that left translation in C"(X, G) is smooth. Here we
make use of the fact the Banach manifold structure on C"(X, G) does
not depend upon the choice of spray [1]. Now to prove that multipli-
cation m: C"(X, G) x C"(X, G) — C"(X, G) is smooth we need only prove
smoothness in a neighborhood of (e, ¢) where e: X — G is the constant
mapping which is the identity for C"(X, G). The coordinate neighbor-
hood around ¢ is given by N, = {he C"(X, G)|M(X) c W}. Let W, be a
neighborhood of ¢ in G such that W2c W, and M={he C"(X, G) |M(X)C
W}, Vi=exp (W) V, M,={ge C"(X, T.G) |g(X)c V}}. Then ¢, (M)=
M,, and a,m(a;* xa;Y): Myx M,—a,(N,), M,Ca,(N,). We have (a,m(a;* X
a)(h, k))(@) = Exp~i(e, a7'(R)(x)a;'(k)(x)) = exp™ (exp (h(x)) exp (k(x))).
Now there is a C=-mapy: V, X V,— V given by v = exp~'m(exp X exp)
where 7 denotes the group multiplication in G. A basic result of
[1] is that the mapping Q,: C(X, V, x V,) — C"(X, V) which is given
by 2,(h) = v-his C°. Let v: M, x My,— C"(X, T.G x T,G) be defined
by +r(h, k)(x) = (k(x), k(x)). Then + is continuous and linear so that
Q0 M, x M,— C"(X, T,G) is smooth. But we get that (2,4 (k, k))(z) =
exp~* (exp (h(z)) exp (k(x))) = (a,m(a;* X a;')(h, k))(x) so that we have
the joint smoothness of multiplication in C"(X, G).

We could prove directly that inversion is smooth but since
C"(X, G) is a Banach manifold this can be deduced from the implicit
function theorem [4].

Now consider E: C"(X, T,G) — C"(X, G) given by E(f) = expo f.
Again, since exp is smooth we get that E is smooth. Let he
C"(X, T.G). Now the mapping ¢g: R— C"(X, G) given by g(t) = E(th)
satisfles g(f, + t)(x) = exp ((t, + t)h(x)) = exp (t,h(x)) exp (Lh(x)) =
g(t)(@)g(t)(®) = g(t)g(t.)(x) for all xe X. Thus g is a one-parameter
subgroup of C"(X, G). To show that E is the exponential map as
asserted it is enough to show, (d/dt)(a,E(th))|.—o = h. But for small
t,the C"(X, V) so that a.(th) = th and the result is immediate.

It remains to verify the Lie bracket formula as given in the
theorem. We leave this as an exercise for the reader.

The group of self-equivalences of a principal bundle. Let X
be as before, G be a compact Lie group, and suppose that (z, g) —
xg is a free differentiable right action of G on X. Then the orbit
projection has the structure of a principal G-bundle. Thus X/G has
a differentiable structure making 7: X — X/G a smooth map and for
every 7(x) € X/G there is an open set U in X/G, 7#(x)e U, and an
equivariant diffeomorphism @:z~*(U) — U x G such that the following
diagram commutes.
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7 (U) —— U x G

AN /
77:\ /71'1
U.

Here G acts on the right of U X G by (u, 9)9’ = (&, g9’). A self-
equivalence of this bundle is a G-equivariant diffeomorphism f: X —
X so that zf = 7.

LEMMA 2. Let f: X— X be a Cr-self-equivalence of w. Then
there s a unique C™-map ®: X — G such that f(x) = x@(x) for each x
m X. Conversely, suppose that ¢: X— G is a C™-map and define
[ X=X by f(x) = xp(x). Then f is C™ and it is equivariant if and
only if p(xg) = g~'p(x)g for all xe X, geq.

Proof. Given f: X — X a Cr-self-equivalence. The existence and
uniqueness of @ are immediate from the assumptions that nf ==
and that the action is free. Smoothness is easily verified using the
local triviality of #. Now suppose that we are given a C"-map ¢: X —
G and we define f: X— X by f(x) = xp(x). Assume that f is equi-
variant. Then f(zg) = (ag)P(wg) =(g9P(@g)) and f(wg) = f@)g = (@P(@)g=
x(@(x)g). Since the action is free we get the equation gp(xg) = P(x)g
which is the desired result. Conversely, if  satisfies the stated condition
then we have f(xg) = (vg)P(xg) = (xg)(¢7'P(x)9) = (xP(x))g = f(v)g so
that f is equivariant.

We define 57 = {f e C"(X, G)| f(xg) = g~ f(x)g for all =, g}, and
Fx* = {heC'(X, T.G)|h(xg) = ad(g™*)(h(z)) for all z, g}. Here ad: G —
Aut (T,G) is the adjoint representation of G. Now S#7* is a Lie
subalgebra of C"(X, T,G) which is the Lie algebra of C"(X, G).

THEOREM 2. 27 is a closed subgroup of C"(X, G). In fact 5%
s an imbedded submawifold, hence a Banach Lie group, with Lie
algebra S#*.

Proof. Clearly 57 is a subgroup of C"(X, G) and since the mani-
fold topology on C7(X, G) is finer than pointwise convergence it follows
that o7 is closed. Similarly 5#* is a closed subalgebra of C"(X, T.G).
Consider the exponential E: C"(X, T.G) — C"(X, G). We will show
that there is a neighborhood M of 0 in C"(X, T,G), and a neighbor-
hood M* of ¢ in C"(X, G) such that E maps M; diffeomorphically
onto M* and E(Ms N 5#*) = M* N 2# Using the sets constructed
in the proof of Theorem 1, we know that E maps M, diffeomorphi-
cally onto M. If h is in M,N S5#* then E(h) is in M N 5% since
E(h)(wg) = exp (h(zg)) = exp (ad(g™")(k(2)) = g7 exp (k(2))g = g~ E(h)(x)g.
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Now using the continuity of the adjoint representation and the com-
pactness of G there is a neighborhood V* of 0 in T,G such that V*cCV,
and if ve V*, ge G then ad(g)(v) e V.. Let M}={heC'(X, T.G)| MX)C
V*} and M* = E(M;). Then E maps M diffeomorphically onto M*
and E(Ms N s7*) < M* N 4 If, conversely, E(h) e M* N 57, he M},
then for g in G, x in X we have E(h)(xg) = exp (h(xg)) = g 'exp(h(x))g =
exp (ad(g™")(h(x))). Now h(xg)e V*C V, ad(g™")(h(x)) C V and since
exp is injective on V we can conclude that h(xg) = ad(¢7")(h(x)). Thus
he 2#* which completes the proof.

Now 2£# acts on X by f*2 = 2f(x). Since the evaluation map
C"'(X, G) x X— G is smooth and the group action is smooth it follows
that *: 2 x X — X is smooth.

LEMMA 3. = is an effective action of the Bamnach Lie group S#
on X.

Proof.  fx(hxx) = (hx)f(h+2) = (h(®)) f(xh(®)) = 2(h(z) f(xh(®))) =
2(f(x)h(x)) where the last equality follows from the assumption that
fes# Wehave shown that fx*(h+x) = 2((fh)(x)) = (fh)x2 so that =
is a group action. Suppose that f+x=x« for all xin X. Then x2f(x) =
2 for all # and since the original action of G on X is free we get
that f(x) = e for all . Thus f is the identity in C"(X, G) and we
have shown that the action of = is effective.

This effective action of 5~ on X allows us to identify 57 with
a subgroup of Diff"(X). As noted before, this subgroup is precisely
the group of self-equivalences of the bundle 7: X — X/G. We have
shown:

THEOREM 3. Let the compact Lie group G act freely and smoothly
on a compact C=-manifold X. Let E"(X, G) be the group of Cr-self-
equivalences as defined above. Then E"(X, G) has the structure of a
Banach Lie group.

Concluding remarks. In addition to the assumptions made above
suppose that compact Lie group G is abelian. Then the condition
P(xg) = 9g~'¢(x)g simplifies to P(xg) = P(x) so that we get o7 =
{flfeC"(X, G) and f is constant on the G-orbits}. Thus £# is iso-
morphic to C"(X/G, G) and the Lie algebra of 57 can be identified with
C"(X/G, T,G). An example of this is given by the standard action of
S* on S+, The action is obtained by representing S**' as {(z,, 2,
cee, 2,) €C™ |2 P+ |2 P+ o o + |2, [° = 1} and defining (2o, 2,, +++, 24)2 =
(2,2, 2,2, «++, 2,2). This action satisfies all of our hypothesis and the
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orbit manifold is CP", complex projective n-space. Thus C"(CP", S'
acts on S**' and the resulting subgroup of Diff"(S***') consists of the
equivariant diffeomorphisms of S***' which cover the identity map
on CP",

If the Lie group P acts differentiably on the manifold X and pe
P is in the image of the exponential map then we know that the
diffeomorphism f,: X— X by f,(x) = #p is imbeddable in a smooth
flow. Since we have the Banach Lie group 57 acting on X we can
say that any self-equivalence which is of the form f(x) = z@(x), e
image(E), is imbeddable in a flow. More specifically we have

THEOREM 4. Let G be a compact, abelian, connected Lie group
(i.e., a torus). Let X be a compact, connected, simply connected, C=-
manifold and suppose that G acts freely and differentiably on X.
Then every CT-self-equivalence of the action is imbeddable in a CT-flow.

Proof. C"(X/G, @) acts on X by @xx = 2@(n(v)) where 7: X —
X/G is the projection. Let f: X— X be a C7-self-equivalence of the
action of G. Choose ® such that f(z) = @+« for all x. It isenough
to show that there is an & in C"(X/G, T.G) such that E(h) = #. But
this is just the lifting problem for . Since exp: T,G — G is a covering
and X is 1-connected it follows that given ® e C"(X/G, G) there is h
in C(X/G, T,G) so that exph = @;i.e., E(h) = ®.

We now comment on our assumption that G acts on the right of
X. If G acts on the left we still get a subgroup of C"(X, G) acting
as a group of diffeomorphisms of X. The appropriate subgroup is
H = {feC(X, G)|f(gx) = f(z) for all geG,zc X}. However, the
diffeomorphism x — fxx, f € H,, is G-equivariant if and only if f(X)
is contained in the center of G. Thus H, does not act as group of
equivariant diffeomorphisms and, conversely, not every equivariant
diffeomorphism which covers the identity of X/G is representable as
x — fxx for some fe H,. Letting G act on the right and C"(X, G)
act on the left obviates these difficulties.

Finally let us note a comparison between our results and those
in N. Kopell’s paper, “Commuting Diffeomorphisms”. Assume G is
a compact, connected Lie group acting smoothly and freely on the
compact connected [manifold X with dim (G) < dim (X). Suppose a
diffeomorphism f is imbedded in this action, that is, there exists
g € G such that f(x) = xg. Then there is a whole Banach manifold
of diffeomorphisms which commute with f. To see this choose a torus
Tc G with ge T. Then for he C"(X/T, T) the diffeomorphism z—
h+x commutes with f. (Of course we need dim (7') > 0 in order that
C"(X/T, T) be infinite dimensional.) Since dim (X/T) > 0 we can
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easily define he C(X/T, T) so that h(V) = {e} for a nonvoid open
V < X/T but h is not globally constant. Then x — k=2 is the identity
on an open set but not globally. In contrast if f is a special M. -S.
diffeomorphism and h: X — Xis a diffeomorphism which commutes
with f then if h|V = id. for some open set V ++ @ then Kopell shows
that & is the identity diffeomorphism. It follows for example that no
special M. -S. diffeomorphism is imbeddable in a group action of the
type we have considered. The authors wish to thank the referee for
directing our attention to Kopell’s paper.
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