A CLASS OF GENERALIZED FUNCTIONAL DIFFERENTIAL EQUATIONS

Muril Robertson

Abstract

In this paper, the equation $y^{\prime}=A y$ is solved, where A is a self-mapping of a certain set of functions. Also, a continuous dependence theorem is proven, and n th-order differential equations are considered.

1. Definitions. If p is a real number and $I=\left\{I_{1}, I_{2}, \cdots\right\}$ is a collection of intervals so that $p \in I_{1}$ and $I_{n} \subseteq I_{n+1}$ for each positive integer n, then I is said to be a nest of intervals about p. Let $I_{0}=$ $\{p\}$ and $\left[a_{n}, b_{n}\right]=I_{n}$ for each nonnegative integer n. Let I^{*} denote the union of all the elements of I.

In general, B denotes a Banach space; and if D is a real number set, let $C[D, B]$ denote the set of continuous functions from D into B. Whenever D is an interval, $C[D, B]$ is considered a Banach space with supremum norm $|\cdot|$.

Let $C(I, B)$ denote the set of continuous functions whose domain is either I_{0}, I^{*}, or an element of I; and whose range is a subset of B.

Suppose A is a mapping from $C(I, B)$ into $C(I, B)$ so that
(i) domain $f=$ domain $A f$, for all $f \in C(I, B)$,
(ii) $\left.(A f)\right|_{I_{k}}=A\left(\left.f\right|_{I_{k}}\right)$, for all $f \in C(I, B)$ and $I_{k} \subseteq \operatorname{domain} f$, for positive k, [Note: $\left.f\right|_{I_{k}}$ is the restriction of f to I_{k}.] and
(iii) there is a function M from I^{*} into the nonnegative reals that is Lebesgue integrable on any interval contained in I, so that $\|A f(x)-A g(x)\| \leqq M(x) \cdot|f-g|$, for all $f, g \in C\left[I_{i}, B\right]$ so that $\left.f\right|_{I_{i-1}}=$ $\left.g\right|_{I_{i-1}}$ and $x \in I_{i}$, for each positive integer i.

Then, A is said to be an I-map with function M. Furthermore, if the phrase " $\left.f\right|_{I_{i-1}}=\left.g\right|_{I_{i-1}}$ " is removed from part (iii) of the previous definition, A is said to be an I-map with strong function M.
2. Main results.

Theorem A. Suppose A is an I-map with function M; and $\max \left\{\int_{a_{i}}^{a_{i-1}} M, \int_{b_{i-1}}^{b_{i}} M\right\}<1$, for all positive integers i. Then if $q \in B$, there is a unique $y \in C\left[I^{*}, B\right]$ so that $y^{\prime}=A y$ and $y(p)=q$.

Proof. Let $\{(p, q)\}=y_{0}$. Then y_{0} is the unique function in $C\left[I_{0}, B\right]$ so that $y_{0}(x)=q+\int_{p}^{x} A y_{0}$ for all $x \in I_{0}$. Now, suppose n is a nonnegative integer so that y_{n} has been defined in $C\left[I_{n}, B\right]$ to be the unique function so that $y_{n}(x)=q+\int_{p}^{x} A y_{n}$ for all $x \in I_{n}$. Then, $D=$
$\left\{f \in C\left[I_{n+1}, B\right] /\left.f\right|_{I_{n}}=y_{n}\right\}$ is a complete metric space. If $f \in D$, let $T f(x)=q+\int_{p}^{x} A f$, for all $x \in I_{n+1}$. Now if $x \in I_{n}$ and $f \in D$, then $T_{f}(x)=q+\int_{p}^{x} A f=q+\left.\int_{p}^{x}(A f)\right|_{I_{n}}=q+\int_{p}^{x} A\left(\left.f\right|_{I_{n}}\right)=q+\int_{p}^{x} A y_{n}=y_{n}(x)$. Thus $\left.(T f)\right|_{I_{n}}=y_{n}$, and thus $T f \in D$.

Suppose $f, g \in D$. Then,

$$
\begin{aligned}
|T f-T g| & =\max \left\{\|T f(x)-T g(x)\| / x \in I_{n+1}\right\} \\
& =\max \left\{\left\|\int_{p}^{x}(A f-A g)\right\|\right\} \\
& \leqq \max \left\{\left|\int_{p}^{x}\|A f(s)-A g(s)\| d s\right|\right\}
\end{aligned}
$$

Note that $\left.f\right|_{I_{n}}=\left.g\right|_{I_{n}}$ and this implies that $A\left(\left.f\right|_{I_{n}}\right)=A\left(\left.g\right|_{I_{n}}\right)$. Thus, $\left.(A f)\right|_{I_{n}}=\left.(A g)\right|_{I_{n}}$; that is, $A f(s)=A g(s)$ for all s in I_{n}. So

$$
\begin{aligned}
&|T f-T g| \leqq \max \{ \sup \left\{\int_{b_{n}}^{x}\|A f(s)-A g(s)\| d s / x \in\left[b_{n}, b_{n+1}\right]\right\} \\
&\left.\sup \left\{\int_{x}^{a_{n}}\|A f(s)-A g(s)\| d s / x \in\left[a_{n+1}, a_{n}\right]\right\}\right\} \\
& \leqq \max \left\{\sup \left\{\int_{b_{n}}^{x} M(s) \cdot|f-g| d s / x \in\left[b_{n}, b_{n+1}\right]\right\}\right. \\
&\left.\sup \left\{\int_{x}^{a_{n}} M(s) \cdot|f-g| d s / x \in\left[a_{n+1}, a_{n}\right]\right\}\right\} \\
& \leqq \max \left\{\int_{a_{n+1}}^{a_{n}} M, \int_{b_{n}}^{b_{n+1}} M\right\} \cdot|f-g|
\end{aligned}
$$

Hence T is a contraction map from the complete metric space D into D, and thus T has a unique fixed point y_{n+1}. So y_{n+1} is the unique function in $C\left[I_{n+1}, B\right]$ so that $y_{n+1}(x)=q+\int_{p}^{x} A y_{n+1}$ for all x in I_{n+1}. So by induction y_{k} is defined for each positive integer k. Define $y(x)=$ $y_{m}(x)$ whenever $x \in I_{m} \backslash I_{m-1}$. Then y is the desired function.

The following corollary (See [6].) shows that Theorem A guarantees the existence of solutions to some functional differential equations. Suppose g is a function from I^{*} to I^{*} so that $g\left(I_{n}\right) \cong I_{n}$ for each positive integer n. Such a function is said to be an I-function. Let $A_{k}=\left\{x \in\left[a_{k}, a_{k-1}\right] / g(x) \notin I_{k-1}\right\}$ and let $B_{k}=\left\{x \in\left[b_{k-1}, b_{k}\right] / g(x) \notin I_{k-1}\right\}$, for each positive integer k. Also, suppose $\|F(x, y)-F(x, z)\| \leqq M(x) \cdot\|y-z\|$ for all $x \in I^{*}, y, z \in B$; and M is Lebesgue integrable on intervals.

Corollary. If $q \in B$, and $\max \left\{\int_{A_{k}} M, \int_{B_{k}} M\right\}<1$, for all k; then there is a unique $y \in C\left[I^{*}, B\right]$ so that $y(p)=q$ and $y^{\prime}(x)=F(x, y(g(x)))$ for all $x \in I^{*}$.

Proof. Let $(A f)(x)=F(x, f(g(x)))$. Then A is an I-map with function T, where

$$
T(x)=\left\{\begin{array}{ll}
M(x), & x \in A_{n} \cup B_{n} \\
0, & x \notin A_{n} \cup B_{n}
\end{array}, \quad \text { for } x \in I_{n} \backslash I_{n-1} .\right.
$$

The proof of the following is straightforward.
Proposition. Suppose I is a nest of intervals about p, and each of α and β is an I-function. Then
(i) Suppose P is of bounded variation on each interval contained in I^{*}, and let $A f(x)=\int_{\alpha(x)}^{\beta(x)} d F \cdot f$, for $f \in C(I, B)$ and $x \in \operatorname{domain} f$. Then A is an I-map with function M, where $M(x)$ is the variation of F over $[\alpha(x), \beta(x)] \backslash I_{k-1}$ where $x \in I_{k} \backslash I_{k-1}$.
(ii) Suppose $K: I^{*} \times I^{*}$ to the scalars which is continuous, and $A f(x)=\int_{\alpha(x)}^{\beta(x)} K(x, t) f(t) d t$, for $f \in C(I, B)$ and $x \in d o m a i n f$. Then A is an $I-m a p$ with function M, where $M(x)=\left|\int_{[\alpha(x), \beta(x)] \backslash I_{k-1}}\right| K(x, t)|d t|$ for $x \in I_{k} \backslash I_{k-1}$.

It is easy to show that the set of I-maps, for a fixed nest of intervals I, is a near-ring under composition and addition. Thus, there are many types of differential equations that may be solved by combining I-maps of the types given in the corollary and the proposition.

3. Continuous dependence.

Theorem B. Suppose $A(z, \cdot)$ is an I-map with strong function $M_{b_{k}}^{b_{k}}$ for each z in the topological space $K, q \in B$, and $M_{k}=\max \left\{\int_{a_{k}}^{a_{k-1}} M\right.$, $\left.\int_{b_{k-1}}^{b_{k}} M\right\}<1$, for all positive integers k. Let $y(z, \cdot)$ be the unique function, guaranteed by Theorem A , so that $y_{2}(z, \cdot)=A(z, y(z, \cdot))$ and $y(z, p)=q$. Then, there exists a sequence $\left\{L_{i}\right\}$ so that for $z, z_{0} \in K$, $\left|y(z, \cdot)-y\left(z_{0}, \cdot\right)\right|_{I_{i}} \leqq L_{i} \cdot\left|A\left(z, y\left(z_{0}, \cdot\right)\right)-A\left(z_{0}, y\left(z_{0}, \cdot\right)\right)\right|_{I_{i}}$, for each i. [In the previous inequality the norm is the supremum norm over I_{i}.]

Indication of proof. Define $\left\{L_{i}\right\}$ as follows: Let $L_{1}=\max \left(p-a_{1}\right.$, $\left.b_{1}-p\right) /\left(1-M_{1}\right)$. For $i \geqq 1$, let $L_{i+1}=\left\{L_{i}+\max \left(a_{i}-a_{i+1}, b_{i+1}-b_{i}\right)\right\} /$ $\left(1-M_{i+1}\right)$.

Example. Let g be an I-function and let $N>0$. Then let K be the metric space of all I-functions that are pointwise never more that N from g. Define $A(h, y)=y\left(\left.h\right|_{\text {dom } y}\right)$ and $d\left(h_{1}, h_{2}\right)=\sup \left\{\mid h_{1}(x)-\right.$ $\left.h_{2}(x) \mid / x \in I^{*}\right) ; d$ is the metric.
4. Nth order equations.

Theorem C. Suppose A is an I-map with function M, n is a positive integer, and $q_{0}, q_{1}, \cdots, q_{n-1} \in B$. Let

$$
\begin{gathered}
N_{k}=\max \left\{\int_{a_{k}}^{a_{k-1}} \int_{s_{1}}^{a_{k-1}} \cdots \int_{s_{n-1}}^{a_{k-1}} M\left(s_{n}\right) d s_{n} \cdots d s_{1},\right. \\
\left.\int_{b_{k-1}}^{b_{k}} \int_{b_{k-1}}^{s_{1}} \cdots \int_{b_{k-1}}^{s_{n-1}} M\left(s_{n}\right) d s_{n} \cdots d s_{1}\right\} .
\end{gathered}
$$

Then, if $N_{k}<1$, for all positive integers k, there is a unique $y \in$ $C\left[I^{*}, B\right]$ so that $y^{(n)}=A y$ and $y(p)=q_{o}, \cdots, y^{(n-1)}(p)=q_{n-1}$.

Indication of proof. Use induction, Theorem A, and the following lemma.

Lemma. Suppose H is an I-map with function S, and $q \in B$, then define $K f(x)=q+\int_{p}^{x} H f$, for all $f \in C(I, B)$ and $x \in \operatorname{domain} f$. Then K is an I-map with function T, where $T(x)=\int_{x}^{a_{k}-1} S$, whenever $x \in$ $\left(a_{k}, a_{k-1}\right]$; and $T(x)=\int_{b_{k-1}}^{x} S$, whenever $x \in\left[b_{k-1}, b_{k}\right)$.

The proof of Theorem D is straightforward and Theorem E is a special case of Theorem D. Both of these theorems are imitations of standard theorems of ordinary differential equations.

Theorem D. (A generalized system of equations theorem.) Suppose B_{i} is a Banach space with norm $\|\cdot\|_{i}$, for each positive integer i between 1 and n. Let $B^{\prime}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n}\right) / x_{i} \in B_{i}\right\}$. Also, let $\|\left(x_{1}, \cdots\right.$, $\left.x_{n}\right) \|=\max \left\{\left\|x_{i}\right\|_{i} / 1 \leqq i \leqq n\right\}$, for all elements of B^{\prime}. [Then B^{\prime} is a Banach space.] Furthermore, suppose $H_{i}: C\left(I, B^{\prime}\right)$ to $C\left(I, B_{i}\right)$ for $1 \leqq$ $i \leqq n$ so that
(1) if $f \in C\left(I, B^{\prime}\right)$, domain $f=\operatorname{domain} H_{i} f$,
(2) if $f \in C\left(I, B^{\prime}\right)$, and $I_{k} \cong \operatorname{domain} f, k>0$, then $\left.\left(H_{i} f\right)\right|_{I_{k}}=$ $H_{i}\left(\left.f\right|_{I_{k}}\right)$, and
(3) there is $M_{i}: I^{*}$ to the reals which is Lebesgue integrable on intervals so that if $f, g \in C\left[I_{k}, B^{\prime}\right],\left.f\right|_{I_{k-1}}=g \mid I_{k-1}$, and $x \in I_{k}$, then $\left\|H_{i} f(x)-H_{i} g(x)\right\| \leqq M_{i}(x) \cdot|f-g| . \quad$ Now, define $A: C\left(I, B^{\prime}\right)$ to $C\left(I, B^{\prime}\right)$ so that $A f=\left(H_{1} f, H_{2} f, \cdots, H_{n} f\right)$, for all $f \in C\left(I, B^{\prime}\right)$.

Then A is an I-map with function $\max \left\{M_{i} / 1 \leqq i \leqq n\right\}$.
Theorem E. Suppose B^{\prime} is as in Theorem D , with $B=B_{i}$, for all i. Also, suppose $H=H_{n}$ and $M=M_{n}$, where H_{n} and M_{n} are as in Theorem D. Suppose $q_{0}, \cdots, q_{n-1} \in B$ and

$$
\max \left\{\int_{a_{k}}^{a_{k-1}} \max \{1, M\}, \int_{b_{k-1}}^{b_{k}} \max \{1, M\}\right\}<1, \text { for all } k>0 .
$$

Then, there is a unique $y \in C\left[I^{*}, B\right]$ so that

$$
y^{(n)}=H\left(\left(y, y^{(1)}, \cdots, y^{(n-1)}\right)\right) \text { and } y^{(i)}=q_{i}, \text { for } 0 \leqq i \leqq n-\iota .
$$

Example. Suppose each g_{i} is an I-function, then for appropriate functions F_{i}, Theorem E guarantees the existence of a solution to

$$
y^{(n)}(x)=\sum_{k=1}^{n} F_{k}\left(x, y^{(n-k)}\left(g_{k}(x)\right)\right) \text {, for all } x \in I^{*} .
$$

References

1. David R. Anderson, An existence theorem for a solution of $f^{\prime}(x)=F(x, f(g(x)))$, SIAM Review, 8 (1966), 359-362.
2. Gregory M. Dunkel, On nested functional differential equations, SIAM J. of Appl. Math., 18 (1970), 514-525.
3. W. B. Fite, Properties of the solutions of certain functional differential equations, Trans. Amer. Math. Soc., 22 (1921), 311-319.
4. Jack Hale, Functional Differential Equations, Springer-Verlag, New York, 1971.
5. Robert J. Oberg, On the local existence of solutions of certain functional differential equations, Proc. Amer. Math. Soc., 20 (1969), 295-302.
6. Muril Robertson, The equation $y^{\prime}(t)=F(t, y(g(t)))$, Pacific J. Math., 43 (1972), 483491.
7. Y. T. Siu, On the solution of the equation $f^{\prime}(x)=\lambda f(g(x))$, Math. Z., 90 (1965), 391392.

Received May 10, 1972. This research was supported in part by a National Aeronautics and Space Administration Traineeship, and is part of the author's Ph. D. thesis, which was directed by J. W. Neuberger, Emory University.

Auburn University

