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EXISTENCE OF DIRICHLET FINITE BIHARMONIC

FUNCTIONS ON THE POINCARE 3-BALL

LEO SARIO AND CECILIA WANG

In an earlier study we discussed the existence of quasi-
harmonic functions, i.e., solutions of Δn = 1. We showed,
in particular, that there exist Dirichlet finite quasiharmonic
functions on the Poincare 3-ball

Ba:{\x\ <l,ds = (l-\x\2)a\dx\}

if and only if αe(-3/5,1). We now ask: Is the existence
of these functions entailed by that of Dirichlet biharmonic
functions? This is known to be the case for dimension 2.
We shall show that, perhaps somewhat unexpectedly, it is
no longer true for dimension 3.

For preparation we first solve the problem, of significance in its
own right, of the existence of Dirichlet finite biharmonic functions.
In the notation of No. 1 below, we give the complete characterization

The problem also offers considerable technical interest, as the gener-
ating harmonic functions can not be presented in a closed form, but
only by means of expansions at the regular singular point of the
related differential equation. This makes the estimates somewhat
delicate. Also, the four cases a ;> 1, α e ( — 3/5,1), a < -3/5, and
a — —3/5 must be treated separately, each with its own approach.

To deduce the above result (Theorem 1), we first expand a
harmonic function on Ba in terms of spherical harmonics with respect
to our non-Euclidean metric (Theorem 2). As important applications
of Theorem 1 to the classification theory we obtain a decomposition
of the totality of Riemannian 3-manίfolds into three disjoint nonempty
subclasses induced by OQD and OH2D (Theorem 3), and establish the
existence of parabolic 3-manifolds which carry ίPD-functions and of
hyperbolic 3-manifolds which do not carry H2D-ΐunctions (Theorem 4).

An interesting open problem is whether Ba g OR2D if and only if
a> -3/(N+ 2).

1* A function u is harmonic or biharmonic according as it satisfies
Aλu = 0 or Δ\u — 0, where Δλ is the Laplace-Beltrami operator Δλ —
dδ + δd with respect to the metric ds = X(x) \dx\. Denote by H2 the
family of nonharmonic biharmonic functions, by D the family of

267



268 LEO SARIO AND CECILIA WANG

functions / with finite Dirichlet integrals D(f) = \ df A *d/< °o,

and set H2D = H2 Π D. Let OH2D be the class of Riemannian manifolds
which do not carry iPD-f unctions. We assert:

THEOREM 1. Ba g OHiD *=>a > —3/5.

The proof will be given in Nos. 2-7.

2* We start by expanding a harmonic function on Ba in spherical
harmonics. We recall that a function Sn{θ\ θ2), in polar coordinates
(r, θ\ θ2), is called a spherical harmonic of degree n if rnSn(θ\ θ2) is
harmonic with respect to the Euclidean metric. Every such function
is a unique linear combination of 2n + 1 linearly independent funda-
mental spherical harmonics Snm of degree n. The class {Snm; n =
0,1, 2, •; m — 1, 2, , 2n + 1} is not only an orthogonal system

with respect to the inner product (/, g) = \ fg dS, with ω the 2-sphere

and dS the surface element, but also a complete system with respect
to the family of IΛfunctions. For every harmonic function h in Ba,
we have a Fourier expansion

oo 2w + l

Z Σ '
=0 m = l

(1) h(r,ff) = Σ Σ dnm{r)Snmψ)
0 l

with (9 = (01, 02).

By virtue of

A + ^.)/'(r) - n(n + l)r-γ(r))Snm(θ) ,

and λ'λ"1 = -2ar(l — r2)"1, the function f(r)Snm(θ) is harmonic on Ba

if and only if f(r) satisfies the differential equation

( 2) r2(l - r2)f"(r) + r[2(l - r2) - 2ar2]f'(r)

- r2)f(r) = 0 .

We shall denote the solution of equation (2) for each n by Mr).
Since all coefficients in (2) can be expanded into power series of r,
the point 0 is a regular singular point of the equation. Thus there
exists at least one solution of (2) in the form

(3) Mr) =r^±Cnir
i ,

cn0 Φ 0. On substituting in (2) we have
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( 4 ) Σ [(P. + i - 1)(P + i) + 2(p» + i) - n(n + l)]cnir"-+i

- Σ {(P. + ί - 3)(p, + ί - 2) + (2 + 2α)(pB + i - 2)
i=2

- w(w + l)}cn,i_2r
p»+< = 0 .

To determine pn we equate to 0 the coefficient of rPn and obtain
the indicial equation

(pn - l ) p n + 2pn - n ( n + l ) = 0

which gives p% — n or pn — —(n + 1). Since OeB f f, pn can not be
negative, and therefore pn — n.

We then equate to 0 the coefficient 2(n + l)cnl of rPn+1 and obtain

Cm = 0.

To find cΛi, i ^ 2, we equate to 0 the coefficient of rPn+ί:

On letting pw = ̂  and c%0 = 1 we have

(5) c.,M = π \n + ?>-

for i ^> 1, and cw>2ί+1 = 0 for i ^ 0.

The limit of /Λ(r) = ΣΓ=o <V2*T%+2i as r —> 1 exists since the eu,2ί

are of constant sign as soon as i is sufficiently large. Furthermore,
this limit can not be zero, for otherwise l im,^/ Λ S n w = 0, and conse-
quently fn Ξ 0, contrary to cn0 = 1. In a similar fashion we see that
fn(r) Φ 0 for 0 < r < 1. Hence for arbitrary but fixed r0, 0 < r0 < 1,
there exist constants anm such that anmfn(r0)Snm = ώ%m(r0)S%m, and

(6) ΣΣ^^ΛWS.J^)

is a series of functions harmonic on Ba which converges absolutely
and uniformly to Λ(r0, θ) on the 2-sphere of radius r0. Now let
n < ^' < 1; then by the same argument there exist constants a'nm

such that

( 7 ) Σ 2 Σ <L'*~fJr)S.Jβ)

converges to h on the ball of radius r\ Hence (6) and (7) are identical

on the ball of radius r0, so that anm = a'nm for all (n, m).

We have proved:
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THEOREM. Every harmonic function h(r, θ1, θ2) on the Poincare ball
Ba has the expansion in terms of the fundamental spherical harmonics

(8 ) h(r, θ\ θ>) = £ 2 Σ anm Σ cn,u
n = 0 m = l i = 0

where the cn>2i are given by (5).

3* After this preparation, we proceed with the proof of Theorem
1. An essential aspect of the proof is that the cases α ^ l , α e
(-3/5,1), a < —3/5, and a = —3/5 all require a different treatment.

We first establish the following crucial estimate:

LEMMA 1. If a ;> 1, then

fi(r) = Σ c1)2ir
ι+2i - O((l - r)-2a) as r > 1 .

Proof. By (5),

e - Π (2j ~ 1 ) ( 2 i + 2 α :) - 2

Π
M (2i + l)(2i + 2) - 2

= π 2j + 2« - 1 # 20-1 + (2j - 3)/(2j + 2a - 1) #

M 2j 2j + 3

We claim that

(9) cιM<ύ2i + ^-1

or, equivalently,

In the case a ^ 1 under consideration this is clearly so for all j ^ 1.
Consequently

m < r + Σ (Π ^ ± | ^

We compare this with the expansion

= r + Σ _

2j

and obtain the lemma.
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4* We shall make use of Lemma 1 to prove:

LEMMA 2. Ba £ 0H2D for a :> 1.

Proof. A necessary and sufficient condition for the existence of
an H2D-ΐunction u is that the Laplacian An — h satisfies

(11) I (h, φ) I ̂  KVW)

for all φeC~ and some constant K independent of φ (Nakai-Sario [5])
Let h=f1(r)Sn =/i(r) cos θ\ and take any φ e C~(Ba). By Lemma 1

and the Fourier expansion

^ Σ Σ Km{r)Snm{θ\ θ2) ,
n=0 m = l

we obtain

ψ) const Γ bn{r)f(r)r2(l - r2yadr
Jo

Γ 1

< const I δu(r) | (1 —
Jo

By Schwarz's inequality,

I (h, φ) |2 ^ const f1 (1 - r)adr (' b2

n(r)(l - r)adr
(12) J ; J o

= const b\x{r){l - r)adr .
Jo

On the other hand,

D{φ)

(13) - ( I grad φ \2 dV ^ const f r~2(l - r

2)"2a(^)r2{l - r2fadr

^ const Γ b2

n(r)(l - r)adr .

5* Denote by Q the class of quasiharmonic functions u, charac-
terized by Δλv, = 1. We recall (Sario-Wang [9]) that Ba g OQD if and
only if ae (—3/5,1). Since QDczH2D, we have trivially:

LEMMA 3. Ba£ OH%Ώ if ae (-3/5,1).

6* Next we consider the case a < —3/5.

LEMMA 4. Ba e OHiΌ if a < -3/5.

Proof. Suppose there exists an £Γ2D-function u on Ba, that is,
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Δu = h satisfies (11). By Theorem 2, h has the expansion

oo 2W + 1

h — V V
n~o m = l

If α%m ^ 0 for some (n, m), choose for our testing functions φt,
0 < t ^ 1,

9>t(r, θ) - pt(r)Snm(θ), pt(r) =

where g(r) is a fixed nonnegative C~-function with suppg c (/3, 7),
0 < /3 < 7 < 1. Since lim^Λίr) Φ 0,

S i—jβί Γr

pt(r)dr = ί
i-rί J i S

and (1 - r2)3α > 23α(l - τfn ^ 23α(7ί)3α for a < 0, we have for sufficiently
small t,

I (h, φt) I - const I Γ~'7 (r)ft(r)r2(l - r 2 ) 3 ^

^ const (1 - 7)2(7ί)3α \ pt(r)dr = const fa+1 .
Ji-rt

On the other hand,

D(φt) = \ | g r a d ^ | W

~βt (1 - rA)'Za{c1{(/{r)Y + c2r-2ρ2(r))r2(l - r2)dadr

< const {Ίt)a \ (cάf/ir))* + c2ρ\r))dτ
h-rt

= dj"-1 + d2t
a+1 < dta~ι ,

a < 0, where dl9 d2, and d are independent of t. If a < —3/5, then
(11) is violated as ί —> 0, a contradiction. Thus 5 α e OH-Ό for α: < —3/5.

7. It remains to consider the case a = —3/5.

LEMMA 5. S_3/5 6 OHzD.

Proof. We choose a decreasing sequence of real numbers t3- e (0,1]
tending to 0 such that 1 — βt3- < 1 — Ύtj+1 and (14) is satisfied for
each t3: Set q5 = ί73α~V~1#sign (h,φtj) and take for the testing
functions 9V = Σ*= 1 g^^.. We obtain by (14)

(h, Ψn) I - > const
J-ί
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and by (15)

D(Ψn) = Σ q)D{φt) < const ΣΓ8(ί7βf t"8) .

For a = -3/5, we have D{φn) < const ΣΓi~2> which stays bounded as
w—*co whereas [ {h, φn) \ —* oo. Thus (11) is violated, and we con-
clude that B_3/5 G 0 ^ .

The proof of Theorem 1 is herewith complete.

8* Since Ba £ 0QD if and only if a e (-3/5,1), Theorem 1 has the
following applications to the classification of Riemannian manifolds,
with 0 standing for the complement of 0:

THEOREM 3. The totality of Riemannian S-manifolds has the
decomposition

{R} = 0H2D U (0QD n 0H2D) U 0QD

into three disjoint nonempty subclasses.

THEOREM 4. There exist parabolic Riemannian ^manifolds which
carry H2D-functions, and hyperbolic Riemannian 3-manifolds which
do not carry H2D-functions.

For dimension 2, this was shown in Nakai-Sario [5], but for
higher dimensions it has been an open problem.

For the proof of Theorem 4, let 0G be the class of parabolic
Riemannian manifolds. It was proved in Sario-Wang [9] that Ba e 0G

if and only if a ^ 1. As a consequence,

Bae0Gf] 0H2D <=> a ^ 1 ,

Ba e 0G n 0H2D <=>a^ - J . .
5

We shall return to the classification of higher dimensional
Riemannian manifolds in further studies.

We are indebted to Mr. Dennis Hada, who preused the manuscript
and made his valued comments.
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