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ERGODICITY IN VON NEUMANN ALGEBRAS

CHARLES RADIN

We investigate the ergodicity of elements of a von Neumann
algebra % under the action of an arbitrary cyclic group of
inner ^-automorphisms of %. A simple corollary of our results
is the following characterization: A von Neumann algebra %
is finite if and only if for each A e % and inner ^-automorphism
a of a, there exists Ae% such that 1/N X S α*(A)-^— ^A

in the weak operator topology.

1* Introduction* Our purpose is to explore in a new direction

the ergodic theory of von Neumann algebras presented by Kovacs
and Szucs [2]. In [2] the essential contribution was the introduction
of a certain restriction (called G-finiteness) on a group of ^automor-
phisms of a von Neumann algebra, fashioned so that all elements of
the algebra behave ergodicly with respect to the group. Instead we
consider the action of a natural class of (cyclic) groups of ^automor-
phisms, namely the inner ones, and investigate which elements of the
algebra behave ergodicly with respect to all such groups.

2* Behavior of infinite projections* From the ergodic theory
developed in [2], we note the following simple consequence.

THEOREM 0. (Kovacs and Szϋcs). Let Wi be a finite von Neumann
algebra. For each A e 31 and each inner *-automorphism a of 2t,
there exists Ae2I such that l/iNΓΣί=o an(A)~- >A in the strong

iV—>oo

operator topology.

Our first result is a complement to this and provides a new
characterization of finiteness for von Neumann algebras.

THEOREM 1. Let %be a von Neumann algebra. For each nonzero
infinite projection P e §1 there exists an infinite projection θ e §1,
θ ^ P, and a unitary U e 91, such that 1/N Σί=o Unθ U~n does not con-
verge in the weak operator topology.

First we need the following lemma.

LEMMA. There exists a nonzero properly infinite projection
P' ^ P.

Proof. Let S be the set of all central projections E of 21 such
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that EP is finite. 0 6 S so S is not empty. Let {Ea} be an orthogonal
family of elements of S. If Σ« EaP ~ Q £ Σ« ^«P (where - is the usual
equivalence relation for projections in 21), then EaP ~ EaQ ̂  J?aP so
that EaQ = EaP and therefore Q ̂  Σ« #«Q - Σ« #«-P. Therefore, Q =
Σ« -̂ α-P a n ( i Σ« #«J° is finite. It follows easily that there exists a
(unique) maximal element F in S. From [1, III.2.3.5] it follows that
(I—F)P is nonzero and infinite. Assume it is not properly infinite.
Then from [1, IΠ.2.5.9] there exists a central projection G such
that QΦG(I~F)P is finite. But then from [1, IΠ.2.3.5] F<F +
G(I— F) e S, which contradiction proves our lemma with P' = (/— F)P.

Proof of Theorem 1. From [1, III.8.6.2] there exists a set
{Pn\ne Z) of nonzero projections Pn e SX such that PnPm = δn,mPn and
Pn~Pm for all m,neZ, and such that Σ i m ^ P* * P' in the

strong operator topology. Therefore, there exist Vn e §X such that
Vn*Vn = Pn and VnVn* = Pn+ι for all neZ, so that Pn+1Vn - F Λ
and P n 7 n * - Vn*Pn+1 for all w e Z. Define for each/e 3έ* (the Hubert
space of definition of SI),

Uf - (norm lim Σ VnPJ) + (I - P')/ ,

where the limit exists since HFΛ/H - \\PJ\\ and F K P K / = P»+ 1FJ"
so that {VnPnf\neZ} are pairwise orthogonal and

In fact U is clearly a linear and norm preserving surjection, and
therefore unitary. Now since

( Σ F.PΛnorm lim Σ P«/ = Σ VnPuf
\\k\<ιl / m->oo \n\ί*m \n\Sl

it follows that Ut = I — Pf + Σ VkPk has U as a strong operator limit

as Z-> oo. Therefore, Ue%. It also follows that UPnU~ι = P w + 1 for
all % e Z , and so by induction UmPnU~m = P u + m for all m,neZ.
Now define g: N-+ {0, 1} by

1 if 32m ^ iz, < 32 m + 1 for some m G N
g(n) =

0 if 32 m + 1 ^n< 32 m + 2 for some m e N.

Then define θ as the strong operator limit as

i f - - co of Σ 5 U , ί 7 ( - m ) P m ,

and let f be a unit vector in PQ£ίf. Now consider
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Ψ, VN
w=0 I w=0

= 1/N5! Σ g(-m)U,Pn+mPoψ
0 \n=0 m=—o

It is easy to see that for all Me N, l/32Λf+1 S ί ™ " 1 g(n) ^ 2/3 yet
l/3 ϊ J f + t ΣΪΓo"4"8"1 flr(^)^l/3, and the theorem is proven.

Using Theorem 0, we have immediately,

COROLLARY 1 (resp.2) A von Neumann algebra % is finite if
and only if for each A e 21 and inner *-automorphism a of 21, there

exists A e 21 such that l/N^jζ~Q an(A) >A in the weak (resp. strong)

operator topology.

3. Finite elements* Theorem 1 raises the question of the ergodic
behavior, under arbitrary inner *-automorphisms, of "finite elements"
of infinite von Neumann algebras. The following theorem gives some
information in this direction.

THEOREM 2. Let % be a von Neumann algebra and τ a faithful
normal semi-finite trace on 2I+ invariant under the *-automorphism
a of 21. Then for each A e 2t such that r(A*A) < oo, there exists A e 21
such that WΣS^ W (A) >A in the strong operator topology.

Proof. First we define the following (standard) objects: see e.g.
[1, 1.6.2.2]

|| | | 2 :AeSt > [τ(

Let L2 be the abstract completion of Λ" in the norm || ||2, and extend
|| ||2 to L2 in the usual way. Let i be the isometric embedding of
<sK into L2. L2 is a Hubert space with the obvious addition and
scalar multiplication, and inner product <, > defined as the extension
to L2 x Lz of

^ x ^ > τ{A*B) .

We note the simple inequalities

|J5| |2 for all B ,

IBII for all B e ^ T , Be%.
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We then define the C*-representation π of SI on L2 by

π(A)i(B) = i(AB)

and noting that || π(A)i(B) ||2 = || AB\\2 ^ || A || | | J? | | 2 so that 7r(-4) ex-
tends uniquely to L2 by continuity. It is easy to see that π is faithful
and normal and that

U: i(B) > i(a[B]) for B

extends to a unitary operator on L2. Defining, for B e 21,

1
B v = — Σ #%(B)> we know by von Neumann's

N =̂°

mean ergodic theorem that for each Ae^V,i(AN) is || ||2-Cauchy.
Define for each

DA: i(B) > norm lim π(AN)i(B)

which limit exists since

| | π(AN - Au)i(B) | |2 £ || AN - Ax | |2 \\B\\ .

DA is obviously linear. Furthermore,

|| DΛi(B) ||2 = lim || π(AN)i{B) ||2 ^ || A \\ || B |

so D^ extends uniquely to a bounded operator on L2 by continuity.
It is easy to see that π{AN) converges to DA in the strong operator
topology. Since π is normal, ττ(2C) is strong operator closed [1, 1.4.3.2]
so there exists Ae2C such that DA — π(A). Since π is faithful,
AN — > A in the strong operator topology [1, 1.4.3.1].

COROLLARY 1. Let % be a countably decomposable von Neumann
algebra. For each finite projection Pe% and inner *-automorphism
a of 2t, there exists P e St such that

1 N~1 —
— Σ ocn(P) * P in the strong operator topology .
N M=0 iV—>0O

Proof. Let

A 6 21 > A, 0 A2 e % 0 2t2

be the canonical decomposition of 2C into its countably decomposable
semi-finite and purely infinite components. From [1, 1.6.7.9] we know
that any finite countably decomposable von Neumann algebra has a
faithful, normal, tracial state. Inserting this fact into the proof of
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[3, 2.5,3], we see that there exists a countable faithful family
{τn I n e N} of normal semi-finite traces on Stί" with pairwise orthogonal
supports such that τίl(P1) < co for all neN. Define

τ' = Σ TJlτΛPd + 2]

on Stί; it is faithful, normal and semi-finite. Since a is also inner
for Stj. and therefore leaves τ' invariant, we may apply Theorem 2 to
SCi. Since P2 = 0 from [1, ΠI.2.4.8], we are finished.

In the countably decomposable case, Theorem 2 gives us an es-
sentially different proof of Theorem 0, namely

COROLLARY 2. Let 21 be a finite countably decomposable von
Neumann algebra. For each A e 21 and inner ^-automorphism a of 21,
there exists A e 21 such that

1 N—l _

— X OL%(A) > A in the strong operator topology .

Proof. Just combine the existence of a faithful finite normal
trace on 2I+ [1, 1.6.7.9] with Theorem 2.
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