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ON QUASI-COMPLEMENTS

WILLIAM B. JOHNSON

Results of H. P. Rosenthal and the author on w*-basic
sequences are combined with known techniques and applied
to quasi-complementation problems in Banach spaces.

l Introduction* Recall that (closed, linear) subspaces Y, Z of
the Banach space X are quasi-complements (respectively complements)
provided Yd Z = {0} and Y + Z is dense in X (respectively, Y +
Z= X).

Suppose that Y, Z are quasi-complements, but not complements,
for the separable space X. We show that there exist closed subspaces
Yγ and Y2 of X with Yxd Yd Y2, dim Y/Y, = oo = dim Y2/Y, such
that Ylf Z are quasi-complements and Y2, Z are quasi-complements.
This generalizes a theorem of James [5], who proved the existence
of Yi for the case of general separable X and the existence of Y2

for separable, reflexive X. Our proof uses James' method (and w*-
basic sequences), but seems simpler than James' construction. Also,
our argument provides information for some nonseparable spaces.

We show also the following.

THEOREM 2. Suppose Y is a subspace of X and F* is weak*-
separable. If X/Y has a separable, infinite dimensional quotient space,
then Y is quasi-complemented in X.

Theorem 2 was discovered by J. Lindenstrauss and H. P. Rosenthal
[unpublished], both of whom apparently use an idea from [3]. Our
argument uses w*-basic sequences and RosenthaPs proof of Theorem
2 in the case where X/Y has a reflexive, infinite dimensional quotient
(cf. [12]).

The final result of the paper is that every subspace of a separable
conjugate space admits a weak*-closed quasi-complement which is
spanned by a boundedly complete w*-basic sequence.

The notation and terminology agree with [6]. In particular,
subspaces and quotients are assumed to be infinite dimensional and
complete. For AciX,AL is the annihilator of A in X*, while for
BaX*, Bτ is the annihilator of B in X and B is the weak*-closure
of B in X\

II. THE THEOREMS. We recall the definition of w*-basic sequence
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[6]: A sequence (yn) c X* is called w*-basic provided that there exists
(xn) c X biorthogonal to (yn) and, for each y in the weak*-elosure [#J
of the closed linear span [yn] of (yn), y = w*-\imn Σ?Σ?=i

In [6] it was proved that, when X is separable, if (yn) c X*,

2/» > 0> but liminf ||yΛ | | > 0, then (yn) contains a w*-basic subse-
quence. Let us note that the same result is true when X admits a
weakly compact fundamental set Indeed, in this case there exists by
[1] a norm one projection P on X with PX separable and (yn) c P*X*.
P*X* is isometric to (PX)* and the relative weak* topology on P*X*
from X* agrees with the weak* topology on P*X* considered as the
conjugate of PX. Therefore, the above mentioned result from [6]
applies to show that (yn) has a w*-basie subsequence.

First we prove the extension of James' theorem:

THEOREM 1. Suppose that Y, Z are quasi-complements, but not
complements, for X.

( a ) If Y has a weakly compact fundamental subset, then there
exists a subspace YΊ of Y with dim YjYι= °° and Yl9 Z are quasi-
complements*

(b) If Xj Y has a weakly compact fundamental subset (in par-
ticular, if X does), then there exists a subspace Y2 of X with Y2 z> Y,
dim Y2/Y — °°> and Y2, Z are quasi-complements.

Proof. Pick positive numbers (an) less than 1 so that aι + αLα2 +
axa2a3 + < oo. Let p be a bijection of N x N onto N (N is the
set of natural numbers) so that for each n and j, p(n, j) ^ j.

To prove (a), we use the fact that Y + Z is not closed to select
unit vectors (yn) in Y with d(yn, Z) = inf {\\yn + z\\: z e Z) —> 0. Since
7 Π ^ = {0}, 0 is the only possible weak cluster point of (yn), and
hence either yn > 0 or the weak closure of (yn) is not weakly com-
pact. Thus, by either [2] or [11], (yn) has a basic subsequence,
which we also denote by (yn).

Let (yS) be a bounded sequence of functional in Γ* biorthogonal
to (yn). Since Y admits a weakly compact fundamental set, the unit
ball of F* is weak* sequentially compact (cf. [1]), so we may assume,

by passing to a subsequence, that yt > y*. (y* — y*) converges w*
to 0 and is bounded away from zero, so it has a w*-basic subsequence.
Thus by passing to a subsequence of (yn, yt — y*), we have that there
exists a biorthogonal sequence (xn,xt) in Y with ||a?H|| = 1, (||a£||)
bounded, d(xn, Z) ^ n^a.a^ an, (xn) is basic, and (xt) is w*-basic.
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Let Y, = [{xf)τ U (aiXp{nti) - xp{n,i+i))Γ,n=i]- (The annihilator of (x?)
is of course taken in Y.) We claim that Yx Π [aw,n] = W To see
this, first note that wt — xp(nΛ) + αi#*u,2) + aλa2x^{n>z) + is absolutely
convergent, wϊ{xp{ntl)) = 1, while wS{xplnΛ)) — 0 when n Φ m. By
construction, Γx c (w*)Γ, and (w*)Γ Π [(a?P{»,i>)] = {0} because (α?p{Λ>1)) is
basic under some ordering and (αjp(Λfl),tί;*) is biorthogonal. Hence,
Yx n [xPinΛ)] = {0}, whence dim

We complete the proof by showing that Yx + Z is dense in X.
Now (a?*)Γ + [#%] is dense in Y because (α?ί) is w*-basic, so we need
show only that (xp{nΛ)) c Γi + Z But

^ί»(Λ,i) ttl (tolXpin,!) &p(n,2)) (^1^2) (^2^3>(»,2) ^p(w,3))

— — (aλa2 a3)"1{aάxp{ntό) — xP{n,j+1))

Since d(xp[ntί+1), Z) ̂  p(w, i + l ) " 1 ^ αp ( W f i + 1 ) ^ (i + l ) " 1 ^ ^ aj9

it follows that d(xp{n>1), Yx + Z) ̂  (i + I)""1. Since j is arbitrary, this
completes the proof of (a).

The proof of (b) is very similar to the above: Since Y, Z are

not complements, Y1 + Z1 is not closed in X*. Thus there exists

a sequence (y*) of unit vectors in Y1 with d(yϊ, Z1) —> O Of necessity,

Vt > O Now YL = {XjY)* in the canonical way, so (2/*) has a
^*-basic subsequence. Hence for an appropriate subsequence {x*) of
(yi)> we have that there exists a biorthogonal sequence (α?Λ, α?ί) in X
with (||a?Λ||) bounded, ||α?* || = 1, (α?*) c Γ 1 , (α?*) w*-basic, and d(a?*, Z 1 ) ^
n^a^βz αΛ.

We define Y2

λ to be the weak*-closure of [Y1 Π (a?*)1 U (<&*#?<»,{> —
^ίci+i))?,*^]. Since Γa1 c Γ 1 , we have y2iD Y. To show that dim YJ
Y — 00, it clearly suffices to prove that Y"/ Π [̂ *(%)1)] = {0}. But note
that yn Ξ xpintl) + ckOiXp^i) + <h<h<h^nΛ) + is absolutely convergent,
xt(»,i){Vn) = 1> while xpimtl){yn) — 0 when mΦ n. By construction,
(2/J1 => (α*«Jn,ί) - »ί(n,ί+i))?,<=i and {yn)

L 3 (α?n)
x, hence (2/J1 D Y"/. But

(I/*)"1 Π [$p(n(i)] = {0} because {xP{nΛ)) is w*-basic in some ordering and
{Vnj »?(»,D) is biorthogonal.

Since Y2

λ Γ\ Z1 cz Yλ Π Z1 = {0}, we have that Y2 + Z is dense
in X. To show that Y2C\ Z = {0}, we prove the equivalent fact that
Y2

L + Z1 is w* dense in X*. But Y1 Π (a?»)x + [α?ί] is w* dense in
F 1 because {x*) is t(;*-basic, so we need only show that each xplntl)

is in the closure of Y2

λ + Z. To see that this last statement is true,
write
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= (αxα2 α^^Jίn.i+D .

Since d(α£(n>y+1), Z) ^ p(w, i + 1)"%^ αp ( n, i + 1 ) ^ (i + l ) " 1 ^ aj9 we
have d(x*lnΛ), Y2

X + Z) ^ 0* + I)""1 for arbitrary j .

Next we prove the result of Lindenstrauss and Rosenthal.

Proof of Theorem 2. Since X/Y has a separable quotient, there
exists a biorthogonal sequence (xn,xZ) in X with (#£) c Y1, (x*) w*-
basic, and normalized so that ||α?n|| — 1. Since Y* is w*-separable, a
biorthogonalization argument (cf., e.g., [8] or [7]) shows that there
exists a biorthogonal sequence (yn, yZ) for Y with (yZ) c X*, Y" Π {yZY =
{0}, and normalized so that | | # ί | | — 1.

Define T: X-+X by Tx = Σ~=i 2—Vί(«)»«. Then || Γ| | ^ 1/2, so
1 + Γ is an isomorphism. Hence (I + T)* is a weak*-isomorphism on
X*, whence {xt + T*£j) is a w*-basic sequence w*-equivalent to (#*).

Computing Γ*x:, we have T*x*(x) = x*Tx = x* Σ ϊ = i 2-w-1τ/m(^)α;w =
2—12/*(α;); i.e., Γ*a?* - 2 — ^ .

We claim that (a ί + 2~%~1?/ί)r is a quasi-complement to Y. First
we show that Y1 f]]x[+ 2"*" ΐy*^= {0} (so that Γ + (aj* + 2—-tyί)1"
is dense). But if x* e~[xt + 2-*-^*], then, since (α* + 2-*-^*) is ^*-
equivalent to (α?*), we can write x* = <u;*-limί,_>00 Σ?=i <*A* + ΣΓ=i 2~i~1aiy*
for some sequence (<X;) of scalars. Thus for each n, x*{yn) = 2"w"1αΛ,
hence, since α;* e Y"1, α:w = 0.

We complete the proof by showing that YD (x£ + 2~n~~1yt)τ = {0}.
For suppose 2/ is in this intersection. Since yeY, xt{y) = 0 for each
w. Hence 2/ί(y) — 0 for each n, whence y e (yt)τ Π Y = {0}.

THEOREM 3. Suppose X* is separable and Y is a subspace of
X* with dim X*/Y= 00. T%ew there exists a weak*-closed subspace
Z of X* wΐ£/& Y, Z quasi-complements and Z — [zn] for some boundedly
complete, w*-basic sequence (zn).

Proof. Mackey [8] showed that Y has a quasi-complement, say,
W. Let (wnfwi) be a biorthogonal sequence in W with |[wn | | = 1
and [wn] = TΓ (cf. [9]). By Theorem III. 2 of [6], there exists a
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biorthogonal sequence (xn9 xt) in X with (x*) c Y, (x*) boundedly com-
plete and iί;*-basic, normalized so that \\xn\\ = 1.

Define T:X-+Xby Γa? = Σ ^ i Z " * " 1 ^ ^ ) ^ . Then || Γ| | ^ 1/2, so J + T
is an isomorphism and hence (I + ϊ 7 )* is a weak*-isomorphism. One
checks that T*#ί = 2~n~1wn, so that (x* + 2rn~ιwn) is a w*-basic
sequence w*-equivalent to (x*). Letting Z = [#* + 2"-w'~1wΛ], we have
by Proposition 1 of [6] that Z is weak*-closed.

Certainly Z+ Yz)(wn), soZ+Y^Y+W and thus is dense.
Suppose that zeZ ίΊ F. Then z — Σ?=i # n(#? + 2~w~1ww) for some scalars
(αn) because (x* + 2~~?ι-1wίl) is basic. Hence also Σ»=i α ^ ί converges,
whence z — Σ ; = 1 anxt = Σ?=i a«2"'n'"1wn is again in F. Certainly
ΣΓ=i 0ίn2r%~γwn is also in TF so that Σ?=i α:Λ2-Λ-1ίί;n = 0. Thus α:Λ2-ft-1 =
^ : ( Σ m = i ^ 2 - w - % J - 0, so that z = 0.

REMARK. Separability of X* in Theorem 3 is essential to get
that Z is weak*-closed. Indeed, regard m = If. Rosenthal [12]
showed that c0 is quasi-complemented in m. However, if Z is a quasi-
complement for c0 in m, then Z cannot be weak*-closed. For if Z
were w*-closed, then m/Z would be isomorphic to {ZτY But mjZ
is separable, hence reflexive (cf. [4]). Thus Zτ would be a reflexive
subspace of l19 a contradiction (cf., e.g., [10]).
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