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ANGULAR LIMITS OF LOCALLY FINITELY
VALENT HOLOMORPHIC FUNCTIONS

DAVID C. HADDAD

A function / defined in a domain D is n-valent in D if
f(z) — w0 has at most n zeros in D for each complex number
w0. The purpose of this paper is to show that a sufficient
condition for a holomorphic function / i n \z \ < 1 to have
angular limits almost everywhere on \z \ — 1 is that there
exist a positive integer n and a positive number r0 such that
/ is w-valent in each component of the set {z: \ f(z) \ > r0}.

We have previously shown that the same conditions on / imply-
that / is a quasi-normal function of order at most n — 1 [3, Theorem
2], and / has angular limits at a dense subset of \z\ = 1 [3, Corollary
1]. Note that the bound n on the valence of / is the same for each
component of {z: \f(z)\ > r0}. This uniformity on n is essential to the
conclusion that / has angular limits almost everywhere on \z\ = 1;
for we have shown in the example in [2] that if the uniformity is
dropped, then / need not even have asymptotic values at a dense
subset of \z\ = 1.

If w — f(z) is a nonconstant, holomorphic function in \z\ < 1, we
denote by F the Riemann surface of / - 1 (as a covering surface over
the w-plane). If S is a subset of \z\ = 1, then m(S) denotes the
Lebesgue measure of S.

A Jordan arc T = {z = h(t): 0 < t < 1} lying in a domain D is a
crosscut of D if h(t) ~-+zoedD as t j 0, h(t) —• ^ e 3J9 as t | 1, and
20 =£ 2i. If 20 = Zi> then T is a loopcut of D.

If a holomorphic function / in | z \ < 1 is w-valent in a component
D(r) of the set {z: \f(z)\ > r} then the connectivity of D(r) is as most
n + 1 [3, Lemma 3]. We denote by D*(r) the simply connected domain
obtained by adding to D(r) those (at most n) components of {z: | f(z) \ ̂  r}
that punch holes in D{r).

LEMMA 1. Let f be a nonconstant, holomorphic function in \ z \ < 1
that is n-valent in each component of the set {z: \ f(z) \ > r0}. For each
r > r0, let {Dk(r)} denote the at most countable collection of components
of {z \f(z)\ > r}. Then there exists a countable subset E of (r0, oo)
such that dD*(r) is a Jordan curve for all k and all re (r0, oo) — E.

Proof. Define a set R = {r: r > r0, and F has no branch points
lying over the circle \w\ — r}. Then the set (r0, oo) — R is at most
countable. If reR, then for each k, dD*(r) Π {\z\ < 1} consists of at
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most countably many crosscuts and loopcuts T) of \z\<l by [2,
Corollary 1].

We show that if for a fixed k there are infinitely many curves
T! , then their diameters tend to zero as j ^ w , If the diameters
did not tend to zero, then the sequence {T1-} would have an accumula-
tion continuum in \z\ ̂  1. Since / is a nonconstant, holomorphic
function, {T)} cannot have an accumulation continuum in \z\ < 1. By
[2, Theorem 3], / has asymptotic values at a dense subset of \z\ = 1,
and hence, by a theorem of MacLane [4, Theorem 1], the sequence
{Tj} of level curves cannot have an arc of | z | = 1 for an accumulation
continuum. Hence, the diameters of the curves T] tend to zero as
j-+ oo.

We still must show that there exists a countable subset E of
(r0, oo) such that dDt{r) has no double points for all k and all r e
(r0, oo) — E. Suppose to the contrary that S is an uncountable subset
of R and that for each reS there exists a component D{τ) of the set
lz: 1/(2)1 > ro} such that dD*(r) has double points. This implies that
for each r e S , 3D*(r) contains a loopcut Tr, since the curves comprising
D*(r) Π {\z\ < 1} are Jordan arcs for all reR. The domain D*(r)
cannot be interior to a loopcut; for if it were, / would be unbounded
in D*(r) by the extended maximum principle, and, consequently, the
loopcut would determine two distinct asymptotic tracts ending at one
point contradicting [2, Theorem 2], (See [4] or [2] for the definition
of an asymptotic tract.) Let Gr denote the domain interior to the
loopcut Tr. The uncountable collection of open sets Gr must contain
a pair that intersect, say Gq and Gs where q < s. Since the loopcuts
Tg and Ts cannot intersect inside \z\<ly then GqczGs, and Tq and
Ts end at the same point of \z\ — 1. By [2, Corollary 1], Tq and Ts

determine at least two (since q Φ s) asymptotic tracts ending at one
point contradicting [2, Theorem 2]. Thus, there must exist a countable
subset E of (r, oo) such that dDl{τ) is a Jordan curve for all k and
all r 6 (r0, oo) — E.

LEMMA 2. Let f be a nonconstant, holomorphic function in \z\ < 1

that is n-valent in each component of {z: \f(z)\ > r0}. If rι> τQ and

D(rj) is a component of {z:\f(z)\ > r j , then f has angular limits

almost everywhere on E(rλ) — D{r^) Π {\z\ — 1}.

Proof. We assume m(E(r^)) > 0, for, otherwise, there is nothing
to prove. For r < r19 we denote by D{r) the component of {z: \ f(z) | >
r] containing D{r^ and we write E(r) — D(r) Π {\z\ — 1}. We first
show that there exists s e (r0, n) such that dD*(s) is a rectifiable
Jordan curve.

By Lemma 1, the set R = {r e (r0, r j such that î 7 has no branch
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points over \w\ — r and dD*(r) is a Jordan curve} is the whole interval
(r0, rx) minus possibly a set of measure zero. Let C(r) = 3D(r) Π (M <
1}, and let Γ be the family {C(r): r e iϋ}. By passing to the Riemann
surface F, it is not hard to show that the extremal length of the
family Γ is bounded by 2nπ log rjro, and this implies dD(r) is rectiίiable
for infinitely many values reR (for example, see [2, Theorem 1]).
Thus, we can choose s e (r0, r j such that 3D*(s) is a rectiίiable Jordan
curve.

By the Riemann mapping theorem and Caratheodory's theorem on
boundary correspondence there exists a homeomorphism g of D*(s) onto
| ζ | ^ 1 that is a conformal mapping of D*(s) onto | ζ | < 1. Since the
connectivity of D(s) is finite, | / ( ^ ( Q ) | > s in some annulus t < | ζ | < 1.
Hence, / o ^ " 1 has angular limits almost everywhere on | ζ | = 1 by a
simple extension of theorems of Fatou [1, p. 19] and F and M. Riesz
[1, p. 22] on angular limits. Since dD*(s) is a rectifiable Jordan curve,
g~ι maps a set of measure zero on | ζ | = 1 onto a set of measure zero
on 3D*(s) by a theorem of F. and M. Riesz [1, p. 50]. Thus / has
asymptotic values almost everywhere on E(s) and hence angular limits
almost everywhere on E(s) by [3, Theorem 3]. This completes the
proof of the lemma since E(s) Z) E(r^).

LEMMA 3. Let {I3) be a sequence of mutually disjoint open arcs
on \z\ = 1, and let C— \J3I3. Let f be a continuous function on
{\z\ < 1} U C that is holomorphic in \z\ < 1. Let \f(z)\ = r0 for ze
C, i/(0)| > r0, and the set D — {z: \z\ < 1, \f(z)\ > r0} be a connected
set whose boundary contains the circle \z\ = 1. If f is n-valent in
D, then | / (0) | ^ r o exp [2π4n/m(C)2].

Proof. Let 7(r) be the level set {z: \ f(z) \ = r}. The proof consists
of finding bounds on the extremal length X(Γ) of the family Γ —
{τ(r): r0 < r < | /(0) | , and F has no branch points lying over \w\ — r}.
By passing to the Riemann surface F, it can be shown that X(Γ) ^
2ττ^/log I/(0) |/r0 (for example, see [2, Theorem 1]).

By our hypotheses on / , each arc I3 must be separated from
the point z — 0 by a level curve of {z:\ f(z) | = r} for each r in the
interval (r0, |/(0) |) . None of these curves can be relatively compact
curves encircling the point z — 0 by the maximum principle. Thus,
the Euclidean length of a level curve separating I3 from z — 0 is
bounded below by min (2, (2jπ)m(I3)). Hence, the Euclidean length of
each 7(r)eΓ is bounded below by (l/π)rn(C). By considering the
linear density p(z) defined to be 1 on D and 0 elsewhere, we can
easily obtain the inequality X(Γ) ̂  (l/π3)m(C)2. Combining the two
bounds on λ(Γ) we have |/(0)( < r o exp [2π4n/m(C)2], which completes
the proof of the lemma.
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A point eid is a Plessner point for a function / defined in \z\ <
1 if for every Stolz angle S at eiΘ, the cluster set of / at eiθ with
respect to the domain S is total.

THEOREM. A sufficient condition for a holomorphic function f
in I z I < 1 to have finite angular limits almost everywhere on \ z \ = 1
is that there exist a positive number r0 and a positive integer n such
that f is n-valent in each component of the set {z: \f(z)\ > r0}.

Proof. Suppose to the contrary that the set of points of \z\ — 1
at which / does not have finite angular limits has positive measure.
Then, by a theorem of Plessner [1, p. 147] and a theorem of Priwalow
[1, p. 146], / must be a nonconstant function whose set of Plessner
points P has positive measure.

For each r > 0, let {D3 (r)} denote the at most countable collection
of components of the set {z: \f(z)\ > r}. By Lemma 1, there exists
rx > r0 such that dDfir^ is a Jordan curve for each j and F has no
branch points over the circle \w\ — rx. Thus, dD*(r^) ΓΊ {|z| < 1} con-
sists of at most countably many level curves which are crosscuts of
\z\ < 1 . Write Dj = Dj(r1),Ej=ΉJf){\z\ = 1}, and E) = {\z\ = 1 } -

Ej. Since by Lemma 2, / has angular limits almost everywhere on
\JjEj, we can assume Pa f)3 Ej. Let cΰj be the harmonic measure
in D* of the set 3D* ΓΊ {\z\ < 1}. We need the following lemma whose
proof we postpone.

LEMMA 4. There exists a harmonic function v in \ z | < 1 having
angular limit 0 almost everywhere on Πi E]> and ωj(z) sέ 1 — v(z) for
zeDf(j = 1,2, . . . ) •

Thus, there exists a point zQ e P at which v has angular limit 0.
Then, by the definition of P, there exists a sequence {zk} of points
lying inside a Stolz angle at z0 and converging to z0 such that | f{zk) \ >
r1 for each k and f(zk) -^ooasί ;~>oo, At most finitely many zk can
lie in the same component Dό since zQePa Πi-E'i Hence, we can
assume (by taking subsequences if necessary) that z5 e Dά (j — 1, 2, •)
and Dj Π Dk = φ for j Φ k. By Lemma 4, o)ά(zQ) —> 1 as j —• co.

By the Riemann mapping theorem and Caratheodory's theorem on
boundary correspondence, there exists a homeomorphism gό of Df onto
I ζ I < 1 that is a holomorphic map of Df onto | ζ | < 1 sending Zj into
0. Applying Lemma 3 to the function hά — fog'1 and the set Cj =
gj(dDf D \z\ < 1) we have \hj(O)\ ^ n e x p [2τr4^/^(Ci)2] On the one
hand, hό(ϋ) = / f e ) —> oo as i - ^ ω , On the other hand, m(C3)—
2πωj(gj1(0)) = 2πωj(zj) -+2π as i —• oo, and this implies ^(0) -̂ >oo as
i —> co. Thus to complete the proof of the theorem, we need only
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prove Lemma 4.
Let uβ be the harmonic measure in | z \ < 1 of the set E'j9 and let

vk(z) = Σ*=i (1 ~ ^i(2)) Clearly, {%} is an increasing sequence of
nonnegative harmonic functions, and vk has angular limit 0 at each
point of the set ΠjU E'5. Since the set Df Π D* can contain at most
two points for j Φ q, each point eiθ lies in at most one of the sets
El9 E2, *- ,Ek for all but finitely many values of θ in the interval
[0, 2π). Hence, Tϊϊnβ_>βί* vk(z) ^ 1 (k = 1, 2, •) for all but finitely many
values θ e [0, 2ττ) It follows from the extended maximum principle
that vk(z) ^ 1 for | s | <£ l(fc = 1, 2, •••)• By Harnack's theorem, the
sequence {̂ } converges in \z\ < 1 to a bounded harmonic function
v(«). Let I = {θ: 0 ^ θ < 2π, eίθε Πi E'5, and v, ^ , v2, have angular
limits at eiθ). Then, writing v(eiθ) for the angular limit of v at eiθ>
we have

f v{eiθ)dθ = \ v(eiθ) - vk(eid)dθ

^ \2'ιv(eiθ) - vk{eiθ)dθ

Jo

- v(0) - vk(0) .

Thus, v has angular limit 0 at eiθ for almost all θ e I, since v(0) —
^A(O) —>0 as k-+oo. Since the set Π i ^ — {ew: 5 e i] has measure
zero by Fatou's theorem, v has angular limit 0 almost everywhere on
ΓiiE'j Clearly, v(z) ^ vά{z) ^ 1 - ufa) for all j and |«| < 1, and by
Carleman's principle of domain extension, ωό(z) ^ uά(z) for z e Df (j =
1,2, •••). This completes the proof of Lemma 4 and hence of the
theorem.

REMARK. The conclusion of the theorem raises the following
question. Are all functions that satisfy the hypotheses of the theorem
of bounded characteristic? This seems to be a difficult question to
answer. The best we can presently show is that T(r) = o(l/l — r),
where T is the Nevanlinna characteristic of / .
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