ANGULAR LIMITS OF LOCALLY FINITELY VALENT HOLOMORPHIC FUNCTIONS

David C. Haddad

Abstract

A function f defined in a domain D is n-valent in D if $f(z)-w_{0}$ has at most n zeros in D for each complex number w_{0}. The purpose of this paper is to show that a sufficient condition for a holomorphic function f in $|z|<1$ to have angular limits almost everywhere on $|z|=1$ is that there exist a positive integer n and a positive number r_{0} such that f is n-valent in each component of the set $\left\{z:|f(z)|>r_{0}\right\}$.

We have previously shown that the same conditions on f imply that f is a quasi-normal function of order at most $n-1[3$, Theorem 2], and f has angular limits at a dense subset of $|z|=1$ [3, Corollary 1]. Note that the bound n on the valence of f is the same for each component of $\left\{z:|f(z)|>r_{0}\right\}$. This uniformity on n is essential to the conclusion that f has angular limits almost everywhere on $|z|=1$; for we have shown in the example in [2] that if the uniformity is dropped, then f need not even have asymptotic values at a dense subset of $|z|=1$.

If $w=f(z)$ is a nonconstant, holomorphic function in $|z|<1$, we denote by F the Riemann surface of f^{-1} (as a covering surface over the w-plane). If S is a subset of $|z|=1$, then $m(S)$ denotes the Lebesgue measure of S.

A Jordan arc $T=\{z=h(t): 0<t<1\}$ lying in a domain D is a crosscut of D if $h(t) \rightarrow z_{0} \in \partial D$ as $t \downarrow 0, h(t) \rightarrow z_{1} \in \partial D$ as $t \uparrow 1$, and $z_{0} \neq z_{1}$. If $z_{0}=z_{1}$, then T is a loopcut of D.

If a holomorphic function f in $|z|<1$ is n-valent in a component $D(r)$ of the set $\{z:|f(z)|>r\}$ then the connectivity of $D(r)$ is as most $n+1$ [3, Lemma 3]. We denote by $D^{*}(r)$ the simply connected domain obtained by adding to $D(r)$ those (at most n) components of $\{z:|f(z)| \leqq r\}$ that punch holes in $D(r)$.

Lemma 1. Let f be a nonconstant, holomorphic function in $|z|<1$ that is n-valent in each component of the set $\left\{z:|f(z)|>r_{0}\right\}$. For each $r>r_{0}$, let $\left\{D_{k}(r)\right\}$ denote the at most countable collection of components of $\{z:|f(z)|>r\}$. Then there exists a countable subset E of $\left(r_{0}, \infty\right)$ such that $\partial D_{k}^{*}(r)$ is a Jordan curve for all k and all $r \in\left(r_{0}, \infty\right)-E$.

Proof. Define a set $R=\left\{r: r>r_{0}\right.$, and F has no branch points lying over the circle $|w|=r\}$. Then the set $\left(r_{0}, \infty\right)-R$ is at most countable. If $r \in R$, then for each $k, \partial D_{k}^{*}(r) \cap\{|z|<1\}$ consists of at
most countably many crosscuts and loopcuts T_{j}^{k} of $|z|<1$ by [2, Corollary 1].

We show that if for a fixed k there are infinitely many curves T_{j}^{k}, then their diameters tend to zero as $j \rightarrow \infty$. If the diameters did not tend to zero, then the sequence $\left\{T_{j}^{k}\right\}$ would have an accumulation continuum in $|z| \leqq 1$. Since f is a nonconstant, holomorphic function, $\left\{T_{j}^{k}\right\}$ cannot have an accumulation continuum in $|z|<1$. By [2, Theorem 3], f has asymptotic values at a dense subset of $|z|=1$, and hence, by a theorem of MacLane [4, Theorem 1], the sequence $\left\{T_{j}^{k}\right\}$ of level curves cannot have an arc of $|\boldsymbol{z}|=1$ for an accumulation continuum. Hence, the diameters of the curves T_{j}^{k} tend to zero as $j \rightarrow \infty$.

We still must show that there exists a countable subset E of $\left(r_{0}, \infty\right)$ such that $\partial D_{k}^{*}(r)$ has no double points for all k and all $r \in$ $\left(r_{0}, \infty\right)-E$. Suppose to the contrary that S is an uncountable subset of R and that for each $r \in S$ there exists a component $D(r)$ of the set $\left\{z:|f(z)|>r_{0}\right\}$ such that $\partial D^{*}(r)$ has double points. This implies that for each $r \in S, \partial D^{*}(r)$ contains a loopcut T_{r}, since the curves comprising $D^{*}(r) \cap\{|z|<1\}$ are Jordan arcs for all $r \in R$. The domain $D^{*}(r)$ cannot be interior to a loopcut; for if it were, f would be unbounded in $D^{*}(r)$ by the extended maximum principle, and, consequently, the loopcut would determine two distinct asymptotic tracts ending at one point contradicting [2, Theorem 2]. (See [4] or [2] for the definition of an asymptotic tract.) Let G_{r} denote the domain interior to the loopcut T_{r}. The uncountable collection of open sets G_{r} must contain a pair that intersect, say G_{q} and G_{s} where $q<s$. Since the loopcuts T_{q} and T_{s} cannot intersect inside $|z|<1$, then $G_{q} \subset G_{s}$, and T_{q} and T_{s} end at the same point of $|z|=1$. By [2, Corollary 1], T_{q} and T_{s} determine at least two (since $q \neq s$) asymptotic tracts ending at one point contradicting [2, Theorem 2]. Thus, there must exist a countable subset E of (r, ∞) such that $\partial D_{k}^{*}(r)$ is a Jordan curve for all k and all $r \in\left(r_{0}, \infty\right)-E$.

Lemma 2. Let f be a nonconstant, holomorphic function in $|z|<1$ that is n-valent in each component of $\left\{z:|f(z)|>r_{0}\right\}$. If $r_{1}>r_{0}$ and $D\left(r_{1}\right)$ is a component of $\left\{z:|f(z)|>r_{1}\right\}$, then f has angular limits almost everywhere on $E\left(r_{1}\right)=\overline{D\left(r_{1}\right)} \cap\{|z|=1\}$.

Proof. We assume $m\left(E\left(r_{1}\right)\right)>0$, for, otherwise, there is nothing to prove. For $r<r_{1}$, we denote by $D(r)$ the component of $\{z:|f(z)|>$ $r\}$ containing $D\left(r_{1}\right)$, and we write $E(r)=\overline{D(r)} \cap\{|z|=1\}$. We first show that there exists $s \in\left(r_{0}, r_{1}\right)$ such that $\partial D^{*}(s)$ is a rectifiable Jordan curve.

By Lemma 1, the set $R=\left\{r \in\left(r_{0}, r_{1}\right)\right.$ such that F has no branch
points over $|w|=r$ and $\partial D^{*}(r)$ is a Jordan curve\} is the whole interval $\left(r_{0}, r_{1}\right)$ minus possibly a set of measure zero. Let $C(r)=\partial D(r) \cap\{|z|<$ $1\}$, and let Γ be the family $\{C(r): r \in R\}$. By passing to the Riemann surface F, it is not hard to show that the extremal length of the family Γ is bounded by $2 n \pi \log r_{1} / r_{0}$, and this implies $\partial D(r)$ is rectifiable for infinitely many values $r \in R$ (for example, see [2, Theorem 1]). Thus, we can choose $s \in\left(r_{0}, r_{1}\right)$ such that $\partial D^{*}(s)$ is a rectifiable Jordan curve.

By the Riemann mapping theorem and Carathéodory's theorem on boundary correspondence there exists a homeomorphism g of $\overline{D^{*}(s)}$ onto $|\zeta| \leqq 1$ that is a conformal mapping of $D^{*}(s)$ onto $|\zeta|<1$. Since the connectivity of $D(s)$ is finite, $\left|f\left(g^{-1}(\zeta)\right)\right|>s$ in some annulus $t<|\zeta|<1$. Hence, $f \circ g^{-1}$ has angular limits almost everywhere on $|\zeta|=1$ by a simple extension of theorems of Fatou [1, p. 19] and F. and M. Riesz [1, p. 22] on angular limits. Since $\partial D^{*}(s)$ is a rectifiable Jordan curve, g^{-1} maps a set of measure zero on $|\zeta|=1$ onto a set of measure zero on $\partial D^{*}(s)$ by a theorem of F. and M. Riesz [1, p. 50]. Thus f has asymptotic values almost everywhere on $E(s)$ and hence angular limits almost everywhere on $E(s)$ by [3, Theorem 3]. This completes the proof of the lemma since $E(s) \supset E\left(r_{1}\right)$.

Lemma 3. Let $\left\{I_{j}\right\}$ be a sequence of mutually disjoint open arcs on $|\boldsymbol{z}|=1$, and let $C=\bigcup_{j} I_{j}$. Let f be a continuous function on $\{|z|<1\} \cup C$ that is holomorphic in $|z|<1$. Let $|f(z)|=r_{0}$ for $z \in$ $C,|f(0)|>r_{0}$, and the set $D=\left\{z:|z|<1,|f(z)|>r_{0}\right\}$ be a connected set whose boundary contains the circle $|z|=1$. If f is n-valent in D, then $|f(0)| \leqq r_{0} \exp \left[2 \pi^{4} n / m(C)^{2}\right]$.

Proof. Let $\gamma(r)$ be the level set $\{z:|f(z)|=r\}$. The proof consists of finding bounds on the extremal length $\lambda(\Gamma)$ of the family $\Gamma=$ $\left\{\gamma(r): r_{0}<r<|f(0)|\right.$, and F has no branch points lying over $\left.|w|=r\right\}$. By passing to the Riemann surface F, it can be shown that $\lambda\left(\Gamma^{\prime}\right) \leqq$ $2 \pi n / \log |f(0)| / r_{0}$ (for example, see [2, Theorem 1]).

By our hypotheses on f, each arc I_{j} must be separated from the point $z=0$ by a level curve of $\{z:|f(z)|=r\}$ for each r in the interval $\left(r_{0},|f(0)|\right)$. None of these curves can be relatively compact curves encircling the point $z=0$ by the maximum principle. Thus, the Euclidean length of a level curve separating I_{j} from $z=0$ is bounded below by $\min \left(2,(2 / \pi) m\left(I_{j}\right)\right)$. Hence, the Euclidean length of each $\gamma(r) \in \Gamma$ is bounded below by $(1 / \pi) m(C)$. By considering the linear density $\rho(\boldsymbol{z})$ defined to be 1 on D and 0 elsewhere, we can easily obtain the inequality $\lambda(\Gamma) \geqq\left(1 / \pi^{3}\right) m(C)^{2}$. Combining the two bounds on $\lambda(\Gamma)$ we have $|f(0)|<r_{0} \exp \left[2 \pi^{4} n / m(C)^{2}\right]$, which completes the proof of the lemma.

A point $e^{i \theta}$ is a Plessner point for a function f defined in $|z|<$ 1 if for every Stolz angle S at $e^{i \theta}$, the cluster set of f at $e^{i \theta}$ with respect to the domain S is total.

Theorem. A sufficient condition for a holomorphic function f in $|z|<1$ to have finite angular limits almost everywhere on $|z|=1$ is that there exist a positive number r_{0} and a positive integer n such that f is n-valent in each component of the set $\left\{z:|f(z)|>r_{0}\right\}$.

Proof. Suppose to the contrary that the set of points of $|z|=1$ at which f does not have finite angular limits has positive measure. Then, by a theorem of Plessner [1, p. 147] and a theorem of Priwalow [1, p. 146], f must be a nonconstant function whose set of Plessner points P has positive measure.

For each $r>0$, let $\left\{D_{j}(r)\right\}$ denote the at most countable collection of components of the set $\{z:|f(z)|>r\}$. By Lemma 1, there exists $r_{1}>r_{0}$ such that $\partial D_{j}^{*}\left(r_{1}\right)$ is a Jordan curve for each j and F has no branch points over the circle $|w|=r_{1}$. Thus, $\partial D_{j}^{*}\left(r_{1}\right) \cap\{|z|<1\}$ consists of at most countably many level curves which are crosscuts of $|z|<1$. Write $D_{j}=D_{j}\left(r_{1}\right), E_{j}=\overline{D_{j}^{*}} \cap\{|z|=1\}$, and $E_{j}^{\prime}=\{|z|=1\}-$ E_{j}. Since by Lemma 2, f has angular limits almost everywhere on $\bigcup_{j} E_{j}$, we can assume $P \subset \bigcap_{j} E_{j}^{\prime}$. Let ω_{j} be the harmonic measure in D_{j}^{*} of the set $\partial D_{j}^{*} \cap\{|z|<1\}$. We need the following lemma whose proof we postpone.

Lemma 4. There exists a harmonic function v in $|z|<1$ having angular limit 0 almost everywhere on $\bigcap_{j} E_{j}^{\prime}$, and $\omega_{j}(z) \geqq 1-v(z)$ for $z \in D_{j}^{*}(j=1,2, \cdots)$.

Thus, there exists a point $z_{0} \in P$ at which v has angular limit 0 . Then, by the definition of P, there exists a sequence $\left\{z_{k}\right\}$ of points lying inside a Stolz angle at z_{0} and converging to z_{0} such that $\left|f\left(z_{k}\right)\right|>$ r_{1} for each k and $f\left(z_{k}\right) \rightarrow \infty$ as $k \rightarrow \infty$. At most finitely many z_{k} can lie in the same component D_{j} since $z_{0} \in P \subset \bigcap_{j} E_{j}^{\prime}$. Hence, we can assume (by taking subsequences if necessary) that $z_{j} \in D_{j}(j=1,2, \cdots)$ and $D_{j} \cap D_{k}=\phi$ for $\mathrm{j} \neq k$. By Lemma $4, \omega_{j}\left(z_{j}\right) \rightarrow 1$ as $j \rightarrow \infty$.

By the Riemann mapping theorem and Carathéodory's theorem on boundary correspondence, there exists a homeomorphism g_{j} of $\overline{D_{j}^{*}}$ onto $|\zeta|<1$ that is a holomorphic map of D_{j}^{*} onto $|\zeta|<1$ sending z_{j} into 0. Applying Lemma 3 to the function $h_{j}=f \circ g^{-1}$ and the set $C_{j}=$ $g_{j}\left(\partial D_{j}^{*} \cap|z|<1\right)$ we have $\left|h_{j}(0)\right| \leqq r_{1} \exp \left[2 \pi^{4} n / m\left(C_{j}\right)^{2}\right]$. On the one hand, $h_{j}(0)=f\left(z_{j}\right) \rightarrow \infty$ as $j \rightarrow \infty$. On the other hand, $m\left(C_{j}\right)=$ $2 \pi \omega_{j}\left(g_{j}^{-1}(0)\right)=2 \pi \omega_{j}\left(z_{j}\right) \rightarrow 2 \pi$ as $j \rightarrow \infty$, and this implies $h_{j}(0) \rightarrow \infty$ as $j \rightarrow \infty$. Thus to complete the proof of the theorem, we need only
prove Lemma 4.
Let u_{j} be the harmonic measure in $|z|<1$ of the set $E_{j}^{\prime \prime}$, and let $v_{k}(z)=\sum_{j=1}^{k}\left(1-u_{j}(z)\right)$. Clearly, $\left\{v_{k}\right\}$ is an increasing sequence of nonnegative harmonic functions, and v_{k} has angular limit 0 at each point of the set $\bigcap_{j=1}^{k} E_{j}^{\prime}$. Since the set $\overline{D_{j}^{*}} \cap \overline{D_{q}^{*}}$ can contain at most two points for $j \neq q$, each point $e^{i \theta}$ lies in at most one of the sets $E_{1}, E_{2}, \cdots, E_{k}$ for all but finitely many values of θ in the interval $[0,2 \pi)$. Hence, $\varlimsup_{z \rightarrow e^{i \theta}} v_{k}(z) \leqq 1(k=1,2, \cdots)$ for all but finitely many values $\theta \in[0,2 \pi)$. It follows from the extended maximum principle that $v_{k}(z) \leqq 1$ for $|z| \leqq 1(k=1,2, \cdots)$. By Harnack's theorem, the sequence $\left\{v_{k}\right\}$ converges in $|\boldsymbol{z}|<1$ to a bounded harmonic function $v(z)$. Let $I=\left\{\theta: 0 \leqq \theta<2 \pi, e^{i \theta} \varepsilon \bigcap_{j} E_{j}^{\prime}\right.$, and v, v_{1}, v_{2}, \cdots have angular limits at $\left.e^{i \theta}\right\}$. Then, writing $v\left(e^{i \theta}\right)$ for the angular limit of v at $e^{i \theta}$, we have

$$
\begin{aligned}
\int_{I} v\left(e^{i \theta}\right) d \theta & =\int_{I} v\left(e^{i \theta}\right)-v_{k}\left(e^{i \theta}\right) d \theta \\
& \leqq \int_{0}^{2 \pi} v\left(e^{i \theta}\right)-v_{k}\left(e^{i \theta}\right) d \theta \\
& =v(0)-v_{k}(0)
\end{aligned}
$$

Thus, v has angular limit 0 at $e^{i \theta}$ for almost all $\theta \in I$, since $v(0)-$ $v_{k}(0) \rightarrow 0$ as $k \rightarrow \infty$. Since the set $\bigcap_{j} E_{j}^{\prime}-\left\{e^{i \theta}: \theta \in I\right\}$ has measure zero by Fatou's theorem, v has angular limit 0 almost everywhere on $\bigcap_{j} E_{j}^{\prime}$. Clearly, $v(z) \geqq v_{j}(z) \geqq 1-u_{j}(z)$ for all j and $|z|<1$, and by Carleman's principle of domain extension, $\omega_{j}(z) \geqq u_{j}(z)$ for $z \in D_{j}^{*}(j=$ $1,2, \cdots)$. This completes the proof of Lemma 4 and hence of the theorem.

Remark. The conclusion of the theorem raises the following question. Are all functions that satisfy the hypotheses of the theorem of bounded characteristic? This seems to be a difficult question to answer. The best we can presently show is that $T(r)=o(1 / 1-r)$, where T is the Nevanlinna characteristic of f.

References

1. E. F. Collingwood and A. J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, 1966.
2. D. C. Haddad, Asymptotic values of finitely valent functions, Duke Math. J., 39 (1972), 391-367.
3. -, Boundary behavior and quasi-normality of finitely valent holomorphic functions, to appear, Canad. J. Math., (1973).
4. G. R. MacLane, Asymptotic Values of Holomorphic Functions, Rice University Studies, 49 No. 1 (1963).

Received June 22, 1972. The author is indebted to the late Professor G. R. MacLane for his considerable assistance.

