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THE TYPE OF SOME C* AND TF*-ALGEBRAS
ASSOCIATED WITH TRANSFORMATION

GROUPS

ELLIOT C. GOOTMAN

Let (G, Z) be a second countable locally compact topological
transformation group, ^ ( G , Z) the associated C*-algebra and
L a certain naturally constructed representation of ^ ( G , Z)
on L\G x Z,dg x da), dg being left Haar measure on G and
a a quasi-invariant ergodic probability measure on Z. Repre-
sentations of flf(G, Z) constructed from positive-definite meas-
ures on G X Z are used to prove that ^ ( G , Z) is type I if and
only if all the isotropy subgroups are type I and Z/G is Γo, and,
under the assumption of a common central isotropy subgroup,
that L has no type / component if a is nontransitive. By
means of quasi-unitary algebras, necessary and sufficient con-
ditions are derived for L to be semi-finite under the weaker
assumption of a common type / unimodular isotropy subgroup.

After establishing notation and discussing preliminary material
in §2, we prove in §3 that ^ ( G , Z) is type I if and only if Z/G is
To and all isotropy subgroups are type I. This result, proven by
Glimm [9, Theorem 2.2] for the special case in which isotropy subgroups
can be chosen "continuously", is not surprising in light of Mackey's
Imprimitivity Theorem and the correspondence between representations
of ^(G,Z) and systems of imprimitivity based on (G, Z) (see §2).
Our general proof, based on the fact that isotropy subgroups can
always be chosen "measurably" [1, Proposition 2.3], follows by con-
struction of a direct integral of certain representations which, by
being defined in terms of positive-definite measures, are easily specified
and shown to form an integrable family.

In §§4 and 5 we consider the type of a W*-algebra s%f constructed
via an ergodic quasi-invariant probability measure a on Z (see § 4 for the
construction). This algebra was studied by Murray and von Neumann
in [14], [15], and [16] for the case of G discrete (see also [4, pp. 127-
137]), by Dixmier in [3, §§10-12] for the case of G acting freely on
Z and by Kallman in [10] for the case in which a is transitive. In
§4 we first show that Jzf is the von Neumann algebra generated by
the representation of ^ (G, Z) determined by the positive-definite
measure de x da on G x Z. Then assuming that almost all (da) points
in Z have the same isotropy subgroup H, we use a direct integral
decomposition of sf arising naturally from a consideration of the
measure δe x da to prove that if a is nontransitive and if H is in
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addition central in G then s/ has no type I component* In §5 we
use different methods, namely the theory of quasi-unitary algebras,
to derive necessary and sufficient conditions that Jzf be semi-finite,
under the weaker assumption that almost all (da) points in Z have
the same isotropy subgroup H and that H is type I and unimodular.

The results of §3 are contained in the author's Doctoral Disser-
tation written at the Massachusetts Institute of Technology under the
direction of Professor Roe W. Goodman.

2* Notation and preliminaries• If X. is a second countable
locally compact Hausdorff space, we denote by J3Γ{X) the continuous
functions on X of compact support, with the inductive limit topology,
and by M{X) the dual space of Radon measures on X with the weak
*-topology. For x e X, δx e M(X) is the probability measure on X
concentrated at x. For a locally compact group G, dGg, or simply dg,
denotes left Haar measure on G and ΔG the corresponding modular
function. We assume throughout this paper that both G and Z are
second countable locally compact Hausdorff spaces, that all Hubert
spaces are separable and that all representations of algebras are
nondegenerate.

Although we refer to [6], primarily §§1, 3, and 4, for the construc-
tion of and basic results concerning ^ ( G , Z), we list for convenience
some facts, and establish more notation. 3ίΓ{G x Z) is a topological
*-algebra and is dense in ^ ( G , Z) [6, pp. 32-35]. The correspondence
L = {V, My between representations L of ^ ( G , Z) on a Hubert space
έ%f and systems of imprimitivity < V, M> based on (G, Z) and acting
on 3ίf is completely determined [6, pp. 34-37] by

, y
(2.1) f

= <Mf(g, -)V(g)x, yydg, f e SΓ(G x Z), x, y e
JG

If there is no possibility of confusion, we shall use the same symbol
M for the representation of 5ίΓ(Z), its extension to the algebra L°°{Z)
of bounded Borel functions on Z, the corresponding projection-valued
measure, and the generated TΓ*-algebra in £?{J%f). We denote by
D(G x Z) the set of positive-definite measures on G x Z, that is,
{p G M(G x Z): p(f**f) ^OV/e JT(G x Z)}. p e D(G x Z) determines
a representation Lp of ^ ( G , Z) on £έfv, and there is a canonical con-
tinuous map of 3ίΓ(G x Z) onto a dense subspace of £έfv [6, §4].

Blattner's results on induced positive-definite measures and their
connection with induced representations [2, Theorem 1] can be extended
from the group to the transformation group context. Let H be a
closed subgroup of G and L — <F, Λf> a representation of ^ (H, Z).
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As a special case of [18, §3], one can construct an induced system of
imprimitivity <ind (F), ind (M)) based on (G, Z) and thus by (2-1) an
induced representation ind (L) of f?(G,Z). Ind(F) is the usual
representation of G induced from the representation V of H. If p e
D(H x Z) define p e M(G x Z) by

(2.2) p(f) = p{fATΛ-H^\HXZ), f e3ίΓ{G x Z) .

LEMMA 2.3. If p in D(H x Z) determines a representation L of
^{H, Z), then p e D(G x Z) and determines a representation of ̂ ( G ,
Z) unitarίly equivalent to ind (L).

Proof. The proof of Theorem 1 of [2] can be repeated, with
obvious modifications, and we omit the details.

LEMMA 2.4. If x-+ Lx is an integrable family of representations

of %f(H, Z), then x —• ind (L*) is an integrable family of representa-

tions of <&{G,Z) and I ind (Lx) is unitarίly equivalent to ind

Proof. We sketch the argument. Let L* = <F*, ΛP> on
By using the approximate identity in 3ίί{H x Z) and the two formulas
in [6, Lemma 3.26] one sees that x-+Vx(s) and x—>Mx(h) are meas-
urable operator fields for seH,heSΓ(Z). By Theorem 10.1 of [12],
x —• ind (Vx) is a measurable field of representations of G on the

S r
ind (Vx) on I ind (£ίfx) is unitarily

equivalent to ind Π Vxj on ind (\£έ?*\ A similar argument verifies

that x—>(ind (Λfβ))(λ) is measurable for heS?~(Z) and that the unitary
operator implementing the above equivalence for the representations

of G transforms ((ind (M*))(h) into And(̂ ikfΛV/&). From the fact a?-*

ind (Vx) and x —> ind (M35) are measurable it follows that x —• ind (Lx) is
measurable. To see this, note that any u e ^ ( G , Z) can be approxi-
mated in norm by finite sums of the form X fi®h, f% e 3tΓ(G) and ft< e
J3Γ(Z), and then apply (2.1). To finish the proof we note that from
the 2 formulas in [6, Lemma 3.26] again, it is clear that for any
measurable field of representations x —• Lx = < Vx, Mx} the system of

imprimitivity corresponding to \LX is (\ Vx, \MX\ Thus the repre-

sentations iindίl/35) and indΠL^j are unitarily equivalent because

their respective systems of imprimitivity Mind (Vx), I ind (Mx)\ and

'άβvήdttM^ are.
For v 6 D{H) the measure 5, defined by (2.2) with Z ignored, lies
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in D(G). If H is the isotropy subgroup of ψ e Z then vxδφ e D(H x
Z) and the induced measure on G x ^ i s exactly v x δφ. If L = <F,
M} is the representation of ^(H, Z) determined by v x δφ, V is
unitarily equivalent to the representation of H determined by v, M(k) =
k(φ)I for k e J%^(Z), ind (M) is concentrated on the orbit Gφ, and the
commutants of ind(L) and V are algebraically isomorphic (see [6,
§4] for details).

3. The type of ^ ( G , £)• For φ e Z let Hφ denote the isotropy
subgroup of φ, dJIφ a left Haar measure on Hφ and vΨ the induced
measure d

Hφ.

LEMMA 3.1. There is a choice of left Haar measures on the
isotropy subgroups of G so that for each f ej%r~(G x Z), the function
Θ:Z—+C defined by θ{φ) = (vφxδ(p)(f) is bounded and Borel.

Proof. Let S^{G) denote the family of all closed subgroups of
G, endowed with the compact HausdorfF topology described by Fell in
[7]. The map φ-+Hφ of Z into S^(G) is Borel [1, Proposition 2.3] and
left Haar measures dπ can be chosen on the subgroups H of G so that
the map H—*dH of S^(G) into M(G) is continuous (this follows from [9,
appendix] and the proof of Theorem 4.2 of [8]). Thus for g e 3ίΓ{G)
the composite map φ —* vφ(g) is Borel. To show that θ is bounded
and Borel, we need the following estimate (see [9, Lemma 1.1]). Let
K be a compact subset of G and •e_%""(G) with ^ ^ 0 and / Ξ I on
K. Since H-+dH{/) is a continuous function on the compact set S^{G),
it is bounded by a positive constant a. For any k e JsίΓ{G x Z) with
supp kQ K x Z, and for any HeS^{G), φeZ, we have

(*) Id* x δφ(k)\ = \dH(k(-,φ))\ S\\k\UdH{/)\ ^ α | | f c | L .

Thus θ is bounded. Let A and B be compact subsets of G and Z
contained, respectively, in relatively compact open sets £7 and V. life
3ίΓ(G x Z) with supp/ g A x B, f can be uniformly approximated
by finite sums of the form Y,gi®hi,gie^iT'{G),s\x^gi^U,hie
SΓ{Z), supp/^ϋF. The estimate (*), applied to the compact set
K = U, implies that θ is the uniform limit on Z of the Borel functions
φ —• (i>φ x <^)(Σ Qi ® h) = X v<?{gi)hi{φ), and is thus Borel.

Fix a "measurable" choice of left Haar measures on the isotropy
subgroups as allowed by Lemma 3.1 and for φ^Z let L9 denote
the representation of %f(G, Z) on the Hubert space ^^ψ determined by
Vψ X δφ.

LEMMA 3.2. For every positive Radon measure a on Z the direct
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integral representation L = \ Lψda(φ) exists.
Jz

Proof. For f eSΓ(GxZ) let f'(φ) denote the canonical image
of / in £(fψ. The map /—•/'(?>) is continuous with respect to the
inductive limit topology on SΓ{G x Z) and the norm topology on
έ%fψ (this follows from [6, Lemma 3.7]). Since G and Z are second
countable, j?t~(G x Z) contains a countable dense set {/J [6, proof
of Corollary 4.12], and by the preceding remarks and Lemma 3.1, it
follows that the f\{φ) are a fundamental sequence of measurable vector
fields and thus the direct integral £ίf = \ £έfφda{φ) exists [4, Chapter

)z

II, §1, n° 4]. Each ue^(G, Z) is the limit in norm of a sequence
hne3T(G x Z) and thus <2>(u)/<(<P), f'j(φ)> = l i m ^ x δφ){fhK*fi)
is a measurable function on Z, again by Lemma 3.1, and the direct
integral L — \ Lφda(φ) exists.

Jz

It follows from [9, Theorem 2.1] and [6, Theorem 4.29 and Lemma
4.30] that each Lψ is an irreducible representation of ^/(G, Z) and
that Lψ = L'η if and only if φ and η lie in the same G-orbit.

THEOREM 3.3. ^ ( G , Z) is type I if and only if the orbit space
Z/G is To and all the isotropy subgroups are type I.

Proof. If Z/G is not To, there exists an ergodic positive Borel
measure a on Z which is not concentrated on any orbit [5, Theorem

2.6]. By Lemma 3.2 and [5, Lemma 4.2], L = \ Lφda{φ) is a factor
)zm

representation of ^ ( G , Z) not of type I. Also, since a factor repre-
sentation W of an isotropy subgroup induces a factor representation
L of ^<(G, Z) of the same type, the commutants of L and W being
algebraically isomorphic, ^ ( G , Z) is not type I if there is a nontype
I isotropy subgroup. Conversely if Z/G is TQ every factor represen-
tation L = < V, M) is induced from an isotropy subgroup by the
Imprimitivity Theorem, since the projection-valued measure Mis ergodic
and thus concentrated on an orbit. If in addition all the isotropy
subgroups are type J, so therefore is ^ ( G , Z).

4. On the type of J^% Let a be an ergodic quasi-invariant
probability measure on Z, g a the measure defined by g a(A) = a(g~ιA),
geG,A Borel £ Z , and λ,( ) the Radon-Nikodym derivative d(g a)/da.
Let < W, P> be the system of imprimitivity based on (G, Z) and acting
on L2(Z, da) by

(W(g)f)(φ) = \β{φ)*f(jΓι<P) f (P(h)f)(ψ) = h(φ)f(φ) ,
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geG,φeZ,he L°°{Z) and / e L2(Z, da). Denoting by U the left regular
representation of G on L2(G), we consider the type of the W*-algebra
J^f on L\G) (x) L2(Z, da) generated by the opeίators U(g) (x) W(g) and
I (x) P(h), geG,he L°°(Z). Our definition of j& is the same as Kallman's
[10] except for modifications due to our preference for left rather than
right action of G on Z.

LEMMA 4.1. J ^ is spatially isomorphic to the W*-algebra generated
by the representation La of %f(G, Z) determined by δe x da in D(GxZ).

Proof. The natural map of the algebraic tensor product 3ίΓ(G) ®
J?Γ(Z) onto a dense subspace of J3Γ(G x Z) clearly extends to an
isometry of L\G) (x) L2(Z, da) onto L2(G x Z,dg x da). By the proof
of Theorem 5.3 of [13], λ can be chosen to be jointly measurable on
G x Z and it is then clear that under the above isometry the system
of imprimitivity <Ϊ7® W, /(x) P) is transformed into the system <F',
Mf) given by

(V'(g)f)(t, φ) = X9(φ

and

(M'(h)f)(t, Ψ) = Hφ)f(t9 φ) ,

g,teG,φeZ,he L°°{Z) and / e L\G x Z, dg x da). For / e JT(G x
Z) define (Rf)(g, φ) = fig, <P)^g{<pyι\ Rf is measurable on G x Z.
Since

\f(g,<P)\2\(Φ)da(φ)dg= \ \ \f(g,gφ)\2da(φ)dg

and k(g, φ) —f{g, gφ) lies in j%~{G x Z), Rf is square-integrable. Rou-
tine calculations verify that R extends from ^Γ(G x Z) to an isometry
of έ%fa, the Hubert space of La, onto L2(G x Z, dg x da) which
transforms the system of imprimitivity given by

{V(g)f){t, φ) = f{g-% g-ιΨ) and (M(h)f)(t, Ψ) - h(φ)f(t, φ) ,

t, g e G, φ e Z, h e L~(Z) and / e ST(G x Z) into <F ;, Λf >. To check
that V transforms into V requires use of the identity

\.t(<P) = \(<P)Ms~~1(P) a.e. (da)

for each s,teG. As < V, M) is precisely the system of imprimitivity
on £ίfa determined by δe x da (see formulas 4.4 and 4.6 of [6]) and
as < V, M) generates exactly the same W*-algebra as the corresponding
representation La of %S(G, Z), we are done.

Now let j^f denote the ΫF*-algebra generated by the representation
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La. Henceforth, we assume that oc is concentrated on a G-invariant
Borel set in Z all of whose points have the same isotropy group H,
which is a priori normal in G. The more general case in which it is
assumed merely that all isotropy subgroups are conjugate can be
reduced to the above case [1, Chapter II, §2]. If π is a representation
of H, we denote by g π the representation {g π){h) — π(g~xhg). We
shall obtain a direct integral decomposition of j y and then use the
following lemma to prove that, under additional hypotheses on H,
has no type I component if a is nontransitive. We denote by [^,
the ΫF*-algebra generated by operator algebras & and ^ , by
the commutant of & and by 3f& the center & n &' of &.

LEMMA 4.2. Let & be a W*-algebra on a Hubert space £ίf and
^ a commutative subalgebra of &?'. If £3 has a type I component
then so does &> =

Proof. We use the notation of [4, Chapter I, §2, n°l] for induced
and reduced algebras. & has a type I component if and only if there
is a nonzero projection F in %έ%? and an abelian projection Έ in <3£F

whose central support is the identity (relative to έ%?F on the Hubert
space FS(f) [4, Chapter II, §8, n°l, Corollary 1 and n°2, Theorem 1].
We shall show that the projections F and E satisfy the same pro-
perties for & a s they do for ^ . Since % & = & Π ( ^ Π ^f) S
2$ ΓΊ O^7' ΓΊ &') = ̂ ^ , F e %*&. ^F is clearly a commutative algebra
commuting with ^F and by [4> Chapter I, §2 n°l. Proposition 1], &F

is generated by ^F and ^F, and {^F)E is generated by elements of the
form EBCE, B e &F and C e ^S This is because products of the
form BC, B e &F, C e ^F, form a generating subset of &rF closed under
involution and multiplication. That (£2fF)E is abelian follows easily
now from the hypothesis that {^F)E is abelian and from the fact that
E lies in &F and thus commutes with <ĝ  Since E e &F S ^ > , E
clearly has central support equal to the identity with respect to the
larger algebra £&F, and we are done.

THEOREM 4.3. Let a be a nontransitive ergodic quasi-invariant
probability measure on Z, and assume that almost all (da) points of
Z have the same isotropy subgroup H. If the left regular representation

T of H can be decomposed as a direct integral T — 1 TrdΎ of irre-

ducibles Tr on S^r, so that a.e. (d7),g Tr is unitarily equivalent to
Tr for all g eG, then j y has no type I component.

Proof. We note first that the hypotheses on T are certainly
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satisfied if H is central in G. In any case, since H is normal in G,
ΔG \H = dH and δβ x dae D(G x Z) is induced from the measure δe x da e
D(H x Z) (see formula (2.2)). Thus La is induced from the representa-
tion Ra of ^{H, Z) determined by δe x da in D(H x Z). By applying
Lemma 4.1 to Ra one obtains a unitary equivalence between Ra and πa —
<T(g)7,/(g)Q> on L2(H)(g)L2(Z,da), where Q is the natural projec-
tion-valued measure from Z to L2(Z, da). As i ϊ leaves almost all (da)
points of Z fixed, each <Γr ® 7, Z(g) Q> is a system of imprimitivity,
based on (H, Z) and acting on £$fτ ® L2(Z, eta). Denoting by σr the
corresponding representation of ^ ( i ί , Z) and by ind σr the induced
representation of ^ ( G , Z), we have by Lemma 2.4 and its proof a

unitary equivalence Lα = I ind σrdΎ. If sf had a type / component so

would [J^, L°°(Γ, dΊ)\ by Lemma 4.2, and therefore [4, Chapter II, §3,
Exercise 1] so would the representations ind σr for 7 in a set of
positive measure on Γ. We shall use Lemma 4.2 of [5] to verify that
in fact ind σr is a.e. (dΎ) a nontype I factor representation, and the
theorem will be proven. Q has a natural direct integral decomposition

Q(h) = [ Qφ(h)da(φ), where Qψ(h) is multiplication by h(φ) on C, he

L°°(Z). Fix 7GΓ. The system of imprimitivity (Tr (x) I, I ® Q*>> o r

simply <Tr, ζ^>, on £tfy (g) C = ^ ^ r determines a representation τ*7 of

^(H.Z) and again by Lemma 2.4, indσ5' ^ I indr^^(^). It follows
JZ

from Theorem 2.1 of [9] and the discussion preceding that theorem
that each ind zψ is an irreducible representation of ^ ( G , Z), since Tr

is an irreducible representation of H, and furthemore that ind τφ is
unitarily equivalent to indr? if and only if φ = g η and Tr ^ g Tr

for some geG. lΐ g Tr ^ Tr for all g e G, ind τ^ s ind τ? if and only
if 9 and 27 lie in the same G-orbit. a is thus ergodic with respect
to the relation of unitary equivalence among the components ind τφ

of ind σr, and by Lemma 4.2 of [5] ind σr is a nontype / factor
representation. By hypothesis, this is true a.e. (c£τ) and we are done.

5* On the type of Sf (continued). We derive necessary and
sufficient conditions for Szf to be semi-finite, under the assumption of
a common isotropy group H which is type I and unimodular. Our
proof is modelled on Dixmier's in [3, §§10-12], where the case of free
action is considered. As there, we assume that the Radon-Nikodym de-
rivative d(g a)/da = Xg( ), considered as a function on G x Z, is conti-
nuous and strictly positive. With no loss of generality, we also assume
that support a — Z. We start with the realization of s$f as the PΓ*-
algebra on U(G x Z, dg x da) generated by {V(g)9 M(h):geG, he
L~{Z)}, where
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(5 1) <yto)fVt, 9) = \.(<P)ιtιf(iΓ% 1ΓI<P) and

(M(h)f)(t, Ψ) = Hφ)f(t, φ), fe L\G xZ,dgx da) .

(See the proof of Lemma 4.1, where V and M are denoted by V and
M.)

For fe3T{G x Z), define

(5 2) / ( ^ ? Ψ) = ^rXiψyfig, P) and

Also, let < TΓ, iV> be the system of imprimitivity on U{G x Z, dg x
da) given by

(5 3) (WWX*, Ψ) = Wfitg, Ψ) and

(N(h)f)(t, 9) - h(t~W(t, φ) .

Our definitions differ from Dixmier's due essentially to our preference
for left action of G on Z. Denote by L and R the representations
of ^ ( G , Z) corresponding, respectively, to {V, M) and (W, N).

LEMMA 5.4. SΓ(G x Z), with fj and fs as in (5.2), convolution
as multiplication and inner product as in If(G x Z,dg x da), is a
quasi-unitary algebra with underlying Hilbert space L2(G x Z,dg x
da). Its left algebra &ι is J^ and its right algebra &r — (&ι)r

is the algebra generated by (W, N).

Proof. That the conditions on [3, p. 277] are satisfied can be
verified as in [3, Proposition 9] and we omit the computations. For
/ 6 3Γiβ x Z), denote by πι(f) and π r(/), respectively, the bounded
operators on L2(G x Zydg x da) of left and right convolution by / .
&ι and &r are, respectively, the W^-algebras generated by all πι(f),
π r(/), fe<5Γ(G x Z) (see [3, p. 278]). The remainder of the lemma
follows by use of (2.1) to verify that L(f) = π'(/ λ1/2) and R(f) =
πr(/8.λ"1/2) for all fe 3T(G x Z).

We denote by J the positive self-adjoint extension of / —• fj, by
S the isometric extension of /-~*/ 8 [3, p. 278], by P\Pr) the set of
operators in &ι{&r) commuting with J, and by Qι(Qr) the operators
in &\&r) commuting with all of P\Pr). Theorem 2 of [3] and
Theorem 1 of [17] yield the following: &ι is semi-finite if and only
if there exist (unbounded) positive invertible self-adjoint operators
A and A! belonging to &ι and ̂ P , respectively, so that Af = SAS
and J is the minimal closed extension of A{A')~ι, and if this is the
case, then A and A' belong to Qι and Qr, respectively, and Qι g Pι,
Qr S P r . As in [3], we derive necessary and sufficient conditions for
A< A! as above to exist in terms of the action of G on some measure
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space (B, db) by investigating how A and A! correspond to the operators
of multiplication by certain elements of L°°(B, db). In the case of
a nontrivial isotropy subgroup H, this necessitates an examination of
various direct integral decompositions. We assume familiarity with
the notation and results of [4, Chapter II, §§l-3] If π is a represen-
tation of a group K, we denote by π(K) the T^Γ*-algebra generated by
{π(k):keK}.

L2(G x Z,dg x da) is naturally isometric with the direct integral
over (Z, da) of the constant field of Hubert spaces φ —> Sif(φ) = L\G),
with the algebra M corresponding naturally to the algebra of diago-
nalizable operators. Denote by ^f the algebra on L2(G x Z,dg x da)
generated by multiplication by bounded Borel functions on G x Z and
by Sfx the subalgebra generated by the bounded Borel functions
on G/H x Z, considered as functions on G x Z. Let V and W
denote, Respectively, the left and right regular representations of G on
U(G)((W(g)f)(t) = Δ(g)^f(tg)), and M(G)(M(G/H)) the algebra on U(G)
generated by multiplication by bounded Borel functions on G(G/H).
Then clearly (see (5.1) and (5.3)) the TF*-algebras Sf, j ^ , \£f, V(H)\,
[£f, % V(H)] and [M, % V(H)] are all the direct integrals, respectively,
of the constant fields of IP-algebras φ -> M(G), M(G/H), [M(G), V(H)\,
[M(G),arV(H)] and %?V(H) on U(G). Also, each operator W(g)
decomposes as I W{g)da{φ).

LEMMA 5.5. If H is unimodular, then Qι g [M, %V(H)\.

Proof. It follows from (5.1) and (5.2) that M£ Pι and that V(H) £
Pι for H unimodular. If A e Qι £ &ι = {&r)'> then A e [ W(G), NY
by Lemma 5.4, and A e [M, V{H)\ by the preceding remark. By
modifying the proof of [3, Lemme 26] so that instead of dealing with
compact subsets K9 K' of G one deals with subsets of the form KH,
KΉ, K and K' compact, it follows that [M, N] - &> n V(H)' = £f[.
As (^ n V{H)ry = [jgf', V(H)] = [£f, V(H)] we have A e [M, NY =

[ ^ V(H)]. Thus A - \ A(φ)da(φ), A(φ) e [M(G), V(H)] a.e. (da), and
we must show A(φ) e %* V(H) a.e. (da). From the fact that A e VW)'
it follows that A(?>) e V(H)r a.e. (dα), and from the fact that A e
(W(G)Y n J^ϊ' it follows that A(φ) e (W(G))' n (M(G/H))' a.e. (cto). By
a commutation theorem of Takesaki [19, Theorem 3] the latter algebra
is exactly V(H) (note that the left and right coset spaces G/H, H\G
are identical) and we are done.

We now decompose L\G) explicitly with respect to the abelian
TF*-algebra STV(H). Choose left Haar measure dh and dg on H and

G/H, respectively, so that [ f(g)dg = \ [ f(gh)dhdg, for all / e
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Let σ denote a Borel cross-section from G/H to G with
a(e) = e, and let η(g) = σig^g, so that every g e G may be written
uniquely g = σ(g)τ](g), η(g) e H. Define <%) by

, fe^Γ(H) ,

and denote by £7̂  the isometry of L2(H) into itself given by (Ugf)(h) —
θ(g)hZf(g~'1hg). Let V be the left regular representation of H on L2(iϊ)

and \n(i)Rrdy its canonical central decomposition. (G, iϊ) is a Borel
in

transformation group [18, Theorem 2.4].

LEMMA 5.6. L2(G) is isometric with the direct integral over (G/H,
dg) of the constant field of Hilbert spaces g—>L2(H). The operator
Uimplementing the isometry is (Uf)(g, h) = f(o(g)h), f eL2(G). For
/ 6 L2{GIH, dg, L2(H)), (U"V)(g) = /{g, η(g)). Furthermore,

-ι = \ (σ(g) V)(h)dg

and {o{g) V){h) = U^li)V{h)Uσ{g)y so that 3?V(H) is transformed by
U into

UGlH

% V(H) is invariant under A —> U~lg-}A Uσ{g}, and if Ae % V(H) corres-
ponds to f e L°°(H, dy), U^AUa^ corresponds to the function g~ι f,
given by (g~ι-f){Ί) =

Proof. All of the statements except the last are either standard
results or can be verified easily by direct computation. We note that
/ e L2(G/H, dg, L2(H)) can indeed be considered as a jointly measurable
function on (G/H x H, dg x dh) by [11, Lemma 3.1]. For the last
statement of the lemma see, for example, [1, Introduction, Proposition
10.2].

REMARK 1. The automorphisms A —> U~lf}A Uσlg) of % V(H) into
itself define an action of G/H on 3TV(H), for if heH, Uh is the
product of a left and a right translation by elements of H and thus
commutes with ^V(H) [3, Theoreme 1]. Thus G/H is an auto-
morphism group on (H, dΎ), as indeed it is on (Z, da), but we shall
continue to regard G as the group acting on these spaces. Since H
acts trivially and is unimodular, however, the following equalities,
which we shall use shortly, hold: σ(g)φ = gφ, Δ(σ(g)) = Δ(g), Xa-g) = λ̂
and θ(σ(g)) = θ(g), geG,φeZ.
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REMARK 2. We shall use Lemma 3.1 of [11], without further
explicit mention, to identify L2(X, dx, L2(Y, dy)) with L2(X x Y, dx x
dy) and the space of essentially bounded measurable functions from
(X, dx) to L~(Γ, dy) with L°°(X xY,dx x dy), where (X, dx) and (Γ,
%) are each one of the spaces (Z, da)y (G/H, dg) or (H, dy).

By Lemma 5.6 and the discussion preceding Lemma 5.5, an operator
A e [M, % V(H)] corresponds, after direct integral decomposition of
L2(G x Z,dg x da) over (Z, da) and (G/H, dg), to

UσiJ)dgda(<P) , A(Ψ) e

But after decomposition over (H, dy), A(φ) corresponds to multiplication
by fφ 6 L°°(H, dy) and U~l^A(φ) Uσ{^ corresponds to multiplication by
g~ι-f9. Regarding f(ψ, y) = fψ(y) as an element of L~(Z x H,da x
CZT), which may involve changing values of / on a (da x CZT) null set,
we have A corresponding to multiplication by m(φ, g, y) = f(φ, g i)
We now examine what SAS and J correspond to, and we shall obtain
our final result.

LEMMA 5.7. Let A and f be as above. After decomposing over
Z, G/H and H, SAS corresponds to multiplication by k(φ, g, 7) —
f(g~ιΦ, y) and J corresponds to multiplication by

S(φ, g, y) = Δ(g)-ιfi\g(φy» .

Proof. The result for J follows directly from (5.2). Let ϋΊ be
the isometry implementing the decomposition over Z and G/H. For
r e L\Z x G, da x dg), (Ujr)(φ, g, h) = r{φ, σ(g)h), and for r e U(Z x
G/H, da x dg, L2(H)), (Uτιr)(φ, g) - r(φ, g, V(g)). U.AUT1 is given by
(*). We shall compute UβUϊ1 and then

(**) U^SASWr1 = (U^UT^iU^UT'XU.SUT1) .

Although the computation of ϋΊSϋf1 and other operators by pointwise
evaluation yields (pointwise) formulas valid only a.e., these formulas
still uniquely determine the element of L°°(Z x G/H x H, da x dg x
dy) to which SAS corresponds. Thus we may for simplicity ignore
a.e. considerations. For reL2(Zx G/H, da x dg, L2(H)), it can be
verified directly that

, g, h) = A(gΓ^Xg(φγ>2Ψ{g^φ, g

Now

g~\



THE TYPE OF SOME C* AND T7*-ALGEBRAS 105

Defining Φ(g) = aQgΓ^aig)"1 and an operator S on L\H) by (Sa)(h) =
1), one can compute directly from the above formulae that

as elements of L2(H), and again by direct computation and (**) it
follows that

(UιSASϋτ1r)(<P, g)

% 9 , g)) .

It is clear that SS = I on L2(H)9 and therefore the operator on L*(JBΓ)
given by the right-hand side of the above equation equals the product
T,T2TZ9 where

T2 = SAig-tyS and

Now A{g-ιφ)e%rV{H) and thus SA{g~ιφ)S = A*(£Γ» 6 ^ F ( i ί ) by
[3, Corollaire, p. 283]. By a tedious but straightforward computation,
one checks that 2\ = FίΦ^""1)) and thus

But TiΓs equals the identity (again a straightforward computation)
and we have finally that

, g) - A*(rι9)(r(<p, g)) .

Thus SAS corresponds to k(<ρ, g, 7) = f{g~ιΨ, 7) and we are done.

THEOREM 5.8. Ssf is semi-finite if and only if there exists a
positive measurable function ψ on (Z x H, da x di) such that

= Δ((Γ1)\(φ) a.e. (dgxdaxdy) on G x Zx H.

Proof. See [3, Theoreme 7 and Proposition 12] for the proof.
Also see [3, Remarque 1, p. 318] for a slight strengthening of the
theorem and [3, Remarque 2, p. 319] for the measure-theoretic signif-
icance of the hypothesis on ψ.
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