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ON ADDITIVE FUNCTIONS WHOSE LIMITING
DISTRIBUTIONS POSSESS A FINITE

MEAN AND VARIANCE

P. D. T. A. ELLIOTT

In this paper two characterizations are given of those
additive arithmetic functions which possess a limiting distribu-
tion with a finite mean and variance. It turns out that the
study of such functions fits naturally within the framework
of the theory of Lambert series.

1* An arithmetic function f(n) is said to be additive if for every
pair of coprime positive integers a and 6 the relation

f(ab) - f(a) + f(b)

is satisfied. If in addition the relations

hold for each prime power then we say that f(ri) is strongly additive.
For clarity of exposition only we shall confine ourselves to the study
of strongly additive functions in this paper.

For each real number x ^ 1 we define the frequency function

v.(n; f(n) <^) = r 1 Σ l .
n£x

f{n)<z

If as x —• °o these frequencies converge to a limiting distribution in
the usual probabilistic sense then we say that f(n) has a limiting
distribution.

2* THEOREM. For any (real valued) additive function f(n) the
following three propositions are equivalent:

( i ) f(n) has a limiting distribution with finite mean and
variance.

(ii) The series

both converge.

(iii)

lim sup x"1 Σ f2W <

and
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lim ar1 Σ /(«)
x—>oo n^x

exist.

REMARK. The equivalence of Propositions (i) and (ii) is exactly
what one should expect from the interpretation of f(n) as the sum
of independent random variables which take (respective) values f(p)
with probability p"1 and zero with probability 1 — p"1. More surprising,
perhaps, is the fact that the hypothesis that f(n) be additive improves
the otherwise weak conditions (iii) to equivalence with (i). We shall
(perhaps surprisingly) appeal to a result concerning Lambert series.

It will be clear that a form of theorem involving complex-valued
additive functions could be proved if we confine our attention to the
equivalence of Propositions (ii) and (iii).

3* Proof that (i) implies (ii).
We define the function

r ( p ) = \ ί f

(l otherwise .

Then the Erdos-Wintner criterion (see for example Kubilius [3] Theorem
4.5 pp. 74-85) asserts that f{n) possesses a limiting frequency (unre-
stricted) if and only if both of the series

Σ / ' ^ P " 1 and Σ ( / W r i

converge. Let F(z) denote the limiting frequency guaranteed by (i).
Then for any positive real number B such that ± B are continuity
points of F(z) we see that

x"1 Σ f\n) Λ z2dF(z), (x >oo).

Next, for any real e > 0 there is a number A such that

lim inf vx(n; \ f{n) \ ̂  A) > 1 - ε .

From the Erdos-Wintner criterion we see that those primes qd for
which I f(qi) \ ̂  1 are such that the series

converges. Let us denote the set of these primes by Q.
A straightforward application of the sieve of Eratosthenes shows

that those integers which are prime to every qά have a natural density.
In fact we obtain
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Π ( l - —) , (x
i=Λ q.J

Set a for this product, and let A be chosen so that the second of our
two assertions above holds with e — a/2. Let the integers n< run
through all those integers n which satisfy both

\f(n)\ ^A and qr

From what we have so far said it is clear that

lim inf vx(n; n = nt ^ x) ^ a/2 ,

and in particular we have

u , O ; % = Ui ̂  a?) ^

for all x ̂  α;0, say.
Consider the sum

where ' denotes that the side condition 2A < | f{q5) \ ̂  B — A is to be
satisfied.

From these restrictions a typical summand satisfies

f\niq3)^{\f{q5)\- Af^^-

4

so that

ώ* ^ -T 2-JJ (Qs) Σι_*-

^ -Γ Σ f (Qs)-τa—

and therefore

lim sup Σ ^ lim sup a?""1

*-»«»
^ ( z2dF(z) ^ Γ

Since these inequalities hold for any sequence of suitable continuity
points ± B which tend (in absolute value) to infinity, we deduce that
for any B > 0, x ̂  0

where
2A<\f{q3)\<LB-A
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so that letting B —> co and then x yields

Σ ίlkά < co.
1 qq

Moreover,

and

Σ
l/(p)l<

so that altogether the series

converges. The convergence of the second series in (ii) follows imme-
diately.

Proof that (ii) implies (iii) and (i).
We begin with the remark that for any additive function, complex

valued or otherwise, the Turan-Kubilius inequality (see for example
Kubilius [3] pp. 31-35) asserts that for a suitable positive constant c

Σ I f{n) - Σ f(p)P~112 ^ e Σ I Γ(v) I p - 1 , ( s ^ i ) .

In our present circumstances the sums

Σ f(p)p~1 and Σ ΠPΪP-1

are uniformly bounded for all real values of x, so that

Σ Γ(n) ^ 2 Σ (/fa) - Σ f(p)p-1)

- O(x) ,

and

lim sup x~ι Σ /2fa) = D < °° .
ίC->oo W^ίC

From the Erdos-Wintner criterion /fa) possesses a limiting distri-
bution F(z), say. For each real number B such that ± B are con-
tinuity points of this limiting distribution, an application of Fatou's
lemma yields

( z2dF(z) ^ lim inf or1 Σ»*« Γ(n) ^ D .
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Since B is otherwise arbitrary F{z) has a finite second moment, and
hence a finite mean and variance.

This completes the proof of (i).
Furthermore,

s-1 Σ f(n) > [ zdF(z) , <

whilst

lim sup x"1 Σ I fin) I ̂  B~x lim sup x~ι

from which it follows trivially that asa ^ o o

converges to the mean of F(z).
This completes the proof of (iii).

Proof that (iii) implies (ii) (which will complete the proof of the
theorem).

As one would expect this part of the proof takes a little more
effort since we have to start, so to speak, from scratch. We recall that
an additive function f(n) is said to be finitely distributed if and only
if there are two positive real numbers cx and c2 so that for an unbound
sequence of real numbers x ^ 1 we can find at least k ^ c2x integers
1 ^ aι < α2 < < ak ^ x so that

holds for every pair (ah aό), 1 ^ i, j ^ k. This concept was introduced
by Erdos [1] who proved

LEMMA 1. A function f(n) is finitely distributed if and only if
there is a constant cz and an additive function g(n) so that

f(n) = c3 log n + g(n) ,

where

-1 < - .

There is an alternative proof, on somewhat different lines, given by
Ryavec [4].

In our present circumstances we have
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for all x ^ 2 (say). Thus for any positive real number A > Eiβ,

vx(n; \f(n) \^A)£ EA"2 < 1 , (x ^ 2) .

It follows from Lemma 1 that f{n) is finitely distributed, and has the
form

c3 log n + g(n) .

Let 7Γ denote the set of primes qό on which | g(qd) | > A. Let w< run
through those squarefree integers which are prime to each qά. Since

qeπ

converges, a straightforward application of the sieve of Eratosthenes
shows that

v.(n; n = ni^x) > Π ( l - — ~ ) - β > 0 , (a > <*>) ,

say. For each integer n let y(w) denote the number of distinct prime
divisors of n. We next assume that c3 Φ 0 and obtain a contradiction.

Let c4 be sufficiently large that the inequality Av{n) 5* c4 log n
holds for all integers n ^ 2. Then for every real number α? ̂  2 we
have

Ex ^ ^Σ f\nt) ^ ^Σ fe log n, -

= c\ Σ log^i + θ(loga; Σ υ(«))

For all sufficiently large values of x the first of these two terms is

: log2a;

whilst the second is at most O(α logα loglogα ). This clearly yields a
contradiction. Hence c3 = 0 and the additive function f(n) satisfies

Σ (ΠPWP-1 < - .
V

We now argue exactly as in the proof that the existence of a limiting
distribution for f(n) which has a finite variance implies that the series

converges, and deduce the same result.
It remains to secure the convergence of the series
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(We do not as yet know that a limiting distribution for f(n) exists,
although if we set an = Σ P ^ f(p)p"1 then we do know that f(n) — an

has a limiting distribution. See, for example, Kubilius [3] Theorem
4.4 pp. 72-74.)

Consider the generating function

If N is any positive integer and z is any complex number then by
the Cauchy-Schwarz inequality

Σ f(n)zr ϊS Σ /*(») Σ 1*1
n£2N N<n^2N

<EN2\z\2N .

It is easily seen that G(z) is defined by an absolutely convergent
series if z satisfies \z\ < 1. By means of the representation

2>|n

we invert the order of summation to obtain:

Since

a"1 Σ / W • -4, (» • °°) > say ,

it is readily established that for real values of z

G{z) ^ — a s z > 1 - .
1 — z

We now appeal to a Tauberian theorem concerning Lambert series.

LEMMA 2. "Let an n = 1, 2, δβ α series of real numbers, and
define

for positive real values of y. Let H{y) —>Aasy—>0+. Let the sum
of the an be a slowly decreasing function in the sense of Hardy [2]
§6.2 pp. 124-125, that is if x <y are real numbers, so that as x —> oo
and y-^ oo in such a manner that y/x —• 1, then



54 P. D. T. A. ELLIOTT

lim inf Σ an ^ 0 .

Then

REMARK. If the an are allowed to be complex then provided that
we replace the condition of slowly decreasing by a condition of slow
oscillation viz:

lim X αΛ = 0 ,

the same conclusion may be drawn. A proof of this lemma can be
found in Hardy [2], Theorem 261, pp. 373-374.

In our present circumstances we set

\f(p)p"1 if n = p ,

(0 otherwise

and have established that

H(y) = yG(e~*)—+A , (y > 0 + ) .

Moreover,

2A \an\J = 2L^ J \P)P 2LJ P >

so that since the series Σ f\p)P~1 converges and

Σ -1 = log (M^) + O((lθg X)-1) ^ C4 < oo ,

we see that the condition of slow decreasing required for an application
of Lemma 2 is satisfied.

We deduce that

X-^oa p<Lχ ft X-*oo
= A = limx-'Σ f(n) .

Moreover, by (ii) a limiting distribution exists for f(n), which has the
finite mean of value A.

This completes the proof of the theorem.

REMARK. The use of the Tauberian theorem in Lemma 2 is very
convenient for the study of additive functions. If f(p) assumes complex
values the side condition f(p) — O(log p) will suffice in order for Lemma
2 to be applicable. This is a condition which is satisfied in nearly
every case of number theoretical interest.
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