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METRIC CHARACTERIZATIONS OF
EUCLIDEAN SPACES

G. BERG

In a metric space an arc which is isometric to a real
interval is called a segment. In this paper it is shown that,
for 1 ^ n ^ 3, %-dimensional Euclidean space (En) is topologi-
cally characterized, among locally compact, ^-dimensional
spaces, by admitting a metric with the following properties:
(1) every two points of the space are endpoints of a unique
segment, (2) if two segments have an endpoint and one other
point in common then one is contained in the other and (3)
every segment can be extended, at either end, to a larger
segment. This follows from the more general result that,
for 1 ^ n ^ 3, a locally compact, ^-dimensional space which
admits a metric with properties (1) and (2) is homeomorphic
to an ^-manifold lying between the closed n-ball and its
interior.

Property (1) suffices to characterize E*9 for n = 1 or 2,
among locally compact, locally homogeneous, ^-dimensional
spaces. For n > 3, properties (1), (2), and (3) characterize En

among locally compact, ^-dimensional spaces that contain a
homeomorph of an n-ball.

l Introduction* A metric space (X, d) is said to be convex
provided that every pair of points of X has a midpoint—m is a
midpoint of x and y if d(x, m) = d{y, m) = l/2d(x, y). (X, d) is strongly
convex if every pair of points has a unique midpoint and is without
ramifications provided that no midpoint of x and y is a midpoint of
z and y unless z = x. Convex subsets of Euclidean spaces with
their inherited metrics are examples of metric spaces with these pro-
perties. Lelek and Nitka [8] and Rolfsen [11] have (topologically)
characterized the 2-cell and 3-cell, respectively, among compact 2 and
3 dimensional metric spaces by the last two properties. White [12]
has shown that a 2-complex is collapsible if and only if it can be
given a metric which is strongly convex. Numerous other results
have been obtained for metric spaces with the above properties when
the underlying space is compact or when the metric is also complete.

In the present paper a number of these results are shown to hold
when the underlying space is locally compact. Principally, it is shown
that having a strongly convex metric without ramifications (topologi-
cally) characterizes ^-manifolds that lie between the ti-cell and its
interior among locally compact, ^-dimensional spaces for n ^ 3. This
reduces to Lelek and Nitka's or Rolfsen's result when the space is
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compact and yields a characterization of En under various homogeneity
conditions.

2* Existence of segments* In a metric space (X, d) a set S is
said to be a segment for the points x and y of X if a? and 2/ are
elements of S and S is isometric with the real interval [0, d(x, y)].
It is well known that in a convex, complete metric space every pair
of points has a segment between them. It is shown now that for
locally compact spaces the requirement of completeness can be relaxed.

THEOREM 2.1. Let (X, d) be a locally compact, convex metric space.
If, for each pair of points of X, the set of midpoints of the pair is
compact, then each pair of points is joined by a segment.

Proof. Let p, q be two points of X and let AQ = {p, q}. Order
Ao by distance from p. In general, if An has been defined and ordered
by distance from p, then for each x e (An — {q}) let mx be a midpoint
for x and the next point of An. Define An+ι = An U [m/- xe An — {q}}.
Let A = U~=o An, a = d(p, q) and / = d(p, —)\A. Clearly / maps A
isometrically onto the set of real numbers of the form r a where r
is a dyadic rational in [0,1], and so / maps A isometrically into the
interval [0, α]. To show that A is a segment from p to q it is sufficient
to show that f[A] — [0, a].

Since the dyadic rationale are dense in [0,1], the image of A is
dense in [0, α]. Also, the image of A is open in (0, a). To verify this
observe that if x e (A — {p, q}) and D is a compact distance neighbor-
hood of x then D Π A is compact and thus f[A Π D] is closed. Since
f[A Γl D] is dense in an interval containing f(x) in its interior, f{x)
is an interior point of f[A\. For the final step let t be any point
of (0, a), and let T be a subinterval of (0, a), symmetric about t.
T Π f[A\ and U, the reflection of T Π f[A] in t, are both open and
dense in T and hence their intersection is dense in T. Let {tn}Z=ι be
an increasing sequence of points of T Π f[A] Π U that converges to t,
so if, for each n, t'n = 2t — tn, then t'n e f[A] and t is midway between
tn and C Let xn = f~\tn), x'n = f-\Q and Mn = {yeX:y is midpoint
for xn and x'n}. If yeMn+1, then y is between xn and α£ and also
d(x«, y) = <Z(&n, a?n+i) + d(»n+i, 1/) = d(i/, x'n+1) + d(a?;+1, a?;) = d(y, O so
7/ G Mn. Since each ΛfΛ is compact there is a point x in Π~=i Λίn Now
d(xn,_x) = l/2d(xn, x'n) = 1/21 ίΛ - ft| and so J i m ^ d(a?n, α?) - 0. Thus
a e A and clearly /(α;) = t. Evidently f[A] — [0, a] and so I is a
segment from p to #.

COROLLARY 2.2. If (X, d) is a locally compact, strongly convex
metric space, then the segment between two points is unique and contains
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all the points between them.

The proof for the case where (X, d) is also complete carries over
without change in light of 2.1.

When segments are unique the segment between p and q is denoted
pq.

3* Strongly convex metrics*

DEFINITION 3.1. A topological space Y is said to be contractίble
if there exists a mapping / : Y x /—> Y such that /(—, 1) is the identity-
map and /(—, 0) is constant. Y is locally contractible if every neigh-
borhood, U, of any point contains a neighborhood, V, of the point and
a map f:Vx I —*U such that / (—, 1) is the identity map and /(—,
0) is constant.

Throughout this section let (X, d) be a locally compact strongly
convex metric space. We aim first at showing that X is contractible
and locally contractible.

Fix pe X and define the map Q I x ί - > I a s follows: for te I,
Q(P, t) — V for t e I, x e X — {p}y Q{x, t) is the point z in ~px such that
d(p,z) = t*d(p,x).

Q is the contracting homotopy and in showing Q is continuous
the fact that the limit of a sequence of segments is again a segment
is used. This fact is the content of 3.3.

NOTATION 3.2. Throughout the paper D(p, r) denotes the set
{x e X: d(p, x) ^ r} and S(p, r) denotes the set {x e X: d{p, x) < r} where
pe X and r is a positive real number.

PROPOSITION 3.3. Let xQ, xl9 x2, be points of X such that
lim^^ Xι — xQ Φ p. Then if

( 1 ) yte pxi, i = 0, 1, 2, and
(2) l i m ^ d(p, yj = dip, yQ) then
( 3 ) l i m ^ yi = y0.

Proof. Let A — {yo€pxo- conditions (1) and (2) imply (3)}. Clearly
xoe A because if lim^^ d(p, yt) = d{py x0), then lim^^ d(xi9 y>) = 0 since
d(x{, y^ = d(p, Xi) — d(p, yt). Let A' be the component of A con-
taining x0 and assume that q is a boundary point of A' relative
to ~pxύ. Choose r > 0 so that D(q, 5r) is compact. Let y09 yl9 y2f

be a sequence that satisfies conditions (1) and (2) but not (3) and chosen
such that d(y0, q) < r. Let q0 e A Π D(q, r) . For each i = 1, 2, let
ii = min {d{p, α?<), d(p, qQ)} and let q{ be a point of pxt such that d(p, q{) =
th i = 1, 2, . Since lim^^ tt — d{p, q0) it follows that l i m ^ ĝ  = g0.
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Since both of yi9 and g* belong to pxi9 i = 0,1, 2, we have
1/i) = \d(p, qt) - d(p, yi) I and so l i m ^ dfo, ψ) = <%0, ̂ /0) ^ 2r. Now
cϊ(g, j/<) ̂  d(q, q0) + c£(#0, ?<) + d(q{, y{) and so is eventually less than 5r.
Thus the sequence {y^i is eventually in the compact set D(q, 5r).
If z is a limit point of the sequence {y^T=u then it follows from the
continuity of the distance function d that d(p, z) + d(z, x0) — d(p, x0)
and so z 6 ̂ 50 Since ^ is the same distance from p as y0 it follows
that z — y0. Thus lim^^ yi — y0 and this contradicts our choice of y0,
Vu 2/2, It follows that A! has no boundary point relative to px0

so must be all of px0.

PROPOSITION 3.4. Q: X x /—> X is continuous.

Proof. Follows from Proposition 3.3 and continuity of distance
function.

In contracting X to the point p the map, Q, moves every point
closer to p so any distance neighborhood of p is contracted in itself.
The point p was chosen without restriction so X is also locally
contractible.

It follows trivially that X is also connected and locally connected
and these conditions for a locally compact metric space imply separa-
bility [1].

THEOREM 3.5. A locally compact, strongly convex metric space
is contractible, locally contractible, connected, locally connected and
separable.

THEOREM 3.6. An n-dimensional, locally compact, strongly convex
metric space is an n-manifold if it is locally homogeneous and contains
an n-ball.

Proof. Since a locally compact space is second category this
follows immediately from a theorem of Bing and Borsuk [3]

THEOREM 3.7. For n = 1 or 2, an n-dimensional, locally homo-
geneous, locally compact metrizable space can be given a strongly convex
metric if and only if it is homeomorphic to En.

Proof. The usual metric for En is strongly convex.
It follows from another theorem of Bing and Borsuk [3] that

such a space is an ^-manifold. Since it is contractible as well it must
be E*, n being 1 or 2.
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4* Strongly convex metrics without ramifications* Prelimi-
naries, Throughout this section (X, d) will be a locally compact metric
space with d a strongly convex metric without ramifications, briefly
an SC-WR metric.

DEFINITION 4.1. For p and q two points of X the set {x e X: x e
pq or qe px} is called the ray from p through q and is denoted pq).

PROPOSITION 4.2. If ye (px) — {p}), then py) = px).

Proof. Clearly x e py) so it suffices to show that if z e px) then
zepy). We consider four cases:

(1) y e px and z e px. In this case it follows immediately from
the uniqueness of segments that either yepz or zepy so zepy).

(2) ye'px and xe pz. The convexity of the metric yields ye
pz and so zepy).

(3) xepy and ze~px. Same as (2).
(4) xepy and xepz. Unless pyapz or pzcpy there would

be a ramification point in pz Π py. Thus ze py).

PROPOSITION 4 3. px) is isometric to a real interval of one of
the following forms: [0, oo)? [0, α), or [0, α]

Proof. This is evident from the previous proposition and the fact
that rays are arc connected.

If px) is isometric to the closed interval [0, α], then we say px)
is a ray with endpoint or a compact ray and the point of px) a distance
a from p is the endpoint.

DEFINITION 4.4. A metric space (Y, p) is said to be externally
convex if given p and q in Y there is a point y e Y such that p(p, y) ==

P(p, Q) + P(Q> y)-

Note that {X, d) is externally convex if and only if no ray has an
endpoint.

For rays a result analogous to Proposition 3.3 holds and the proof
carries over as well.

PROPOSITION 4.5. Let p, x0, xl9 x2, be points of X such that
^ Xi = x0 Φ p. Then if

(1) % e pxi), i = 0,1, 2, and
(2) l i m ^ d(p, y%) =
( 3 ) l i m ^ yi = y0.
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We now define a map which moves points along rays similar to
Q in §3. Fix p in X and let

}{x} x [0, oo) if ~pχ) is isometric to [0, oo)

{x} x 0, — - — ) if px) is isometric to [0, a)
L d(p9 xy

{x} x 0, — - — if px} is isometric to [0, a] .
L d(p9 x)Λ

Now let D — \Jxeχ-.{p}Dx be the domain of P and define P: D —> X
by the following rule:

P(p9 t) = p

P(x^ t) = the point z of ~px) such that d(p9 z) = t d(p9 x) for x Φ p.

PROPOSITION 4.6. P is continuous.

Proof. Follows from 4.5 and continuity of distance function.

REMARK 4.7. Since the function P depends on the choice of the
basepoint p, P will be denoted Pp any time confusion might arise.
Likewise D is denoted Dp.

Our next goal is to show that every open subset of X contains a
homeomorphic copy of X. The first step is to show that if a sequence
of rays converges to a ray with endpoint, then all but finitely many
of the sequence of rays have endpoints.

LEMMA 4.8. Let p, x09 x1} x2y be points of X such that px0} =
pxQ and lim^^ xt = x0. Then, for i sufficiently large there is a point
Zi € ~pXi} such that ~pz{ = ~px^} and lim^^ zt = xQ.

Proof. Clearly l i m ^ diam (px{)) ^ d(p, xQ). On the other hand, if

lϊm diam (pS*» = d(p, x0) + δ > d(p, x0)

then there is an infinite set of integers, M, such that for i e M there
is a %6 pxi) such that d(p, yt) = d(p, x0) + min {δ, r) where r > 0 is
chosen to make D(x0, 2r) compact. The set {y^ ie M) has a limit point,
y, in D(x0, 2r). Since y satisfies d(p, y) = d(p, x0) + d(x0, y) we have
ye'pxo} = px0. This is a contradiction because d(p9 y) > d(p, x0). Thus

ôo diam (p5<» = d(p, x0).
Now choose n0 to be an integer such that x{ e D(x0, r) and

I diam px^ — d(p, xo)\ ^ r
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whenever i ^ n0. Then the set ((p£4> — pXi) U {%*}) is in D(p, 2r) when
i >̂ n09 and since each of the sets is closed it must be compact. Each
of the rays ~px,i with i ^ n0 is then compact and letting z{ be the
endpoint the lemma is proved.

THEOREM 4.9. Let p be a point of X and f be a map from X —
{p} into (0, 1]. Then the function G: X-+X, defined by the formula

g{p) = p

g(x) = Pp(x, f(x)) for xΦ p

is a homeomorphism if it is one-to-one.

Proof. On X — {p}, g is the composition of continuous functions
so is continuous. It is continuous at p as well because

d(p, P,(x, fix)) = f(x)> d{p, x) ^ dip, x) .

Assume that g is one-to-one. It remains only to show that g~ι

is continuous. Note that g~ι is continuous at p because if D(p, r) is a
compact neighborhood of p and a = inf {f(z): % e D(p, r)}, then g[D(p, r)]
contains D(p, α r) which is a neighborhood of p.

The map g restricted to any segment px is a homeomorphism of
px into itself with p remaining fixed so if points are ordered by
distance from p, g preserves that order. Let x0, xl9 x2, be points
of g[X] such that l i m ^ xi = x0. Let yt = g"ιix^) for i = 0,1, 2, .
Consider first the case where dip, y ) ^ dip, yQ) + δ for some δ > 0,
and all i = 1, 2, 3, . In view of Lemma 4.8, y0 cannot be the
endpoint of py0} so we may choose a point w0 in (py0} — PVo) &n(i
within δ/2 of yQ. Let wt be a point of px^ such that dip, w{) = dip, w0)
for i = 1, 2, 3, , and note that l i m ^ wt = w0. Since w0 is farther
than y0 from p, giw0) is farther than giy0) — x0 from p. On the other
hand, for i = 1, 2, 3, , Wi is closer than yt to p and so giwt) is closer
than Xi = βr(^). From the continuity of #, g(w0) is at least as close
to p as a?0. This case is ruled out and if no sequence can belong
to this case, no infinite subsequence of a sequence can either,
so the remaining possibility is that dip, y{) ^ dip, yQ) for all i ^ nOf

for some integer n0. But then (JΓ=o PΪJi is compact and g"1 is continuous
on g[\JT=oPVi] = \JT=oPXi and so lim^^^r- 1^) = g^ix0).

Note that if fix) is a nondecreasing function of dip, x), then g
is a homeomorphism.

COROLLARY 4.10. Le£ p be a point of X and U a neighborhood
of p. Then there is a homeomorphism, g, of X into U leaving p fixed
and for xe X, g(x) e px.



18 G. BERG

Proof. Let 0 < r < 1 be chosen so that S(p, r) c U, and define
the map h: (0, ©o) —»(0, r) by the formula &(£) = 2r/π tan~~ιt. Observe
that h is one-to-one and h(t) ^ £. Define / : X — {p} —> (0, 1] by the
rule f(x) = h(d(p, x))/d(p, x). Let g be defined as in Theorem 4.9 in
terms of / and Pp. The map g could fail to be one-to-one only by
mapping two points of some ray, px}, to the same point. But d(p,
g(y)) — d(p, y) f(y) = h(d(p, y)), so this cannot happen. Moreover, the
last expression must be less than r so g[X] c S(p, r) c U.

5* Endpoints of rays are sparse* Next we develop some con-
tractibility conditions for X and certain subsets, then show that in
an SC-WR metric space of finite dimension the endpoints of rays are
contained in a nowhere dense set.

Throughout this section let (X, d) be an SC-WR metric space.

PROPOSITION 5.1. Let p be a point of X and r be a positive real.
Then there is a map h: X x [0, 1] —> X with the following properties:

(1) h(—, 0) is the identity on X;
(2) h(-,ΐ)[X]czD(p,r);
(3) for te [0, 1] h(—91) \D(p, r) is the identity on D(p, r) and
(4) for (x, t) e (X - D(p, r)) x [0, 1] h(x, t) i S(p, r).

Proof. Difine the function ra:X—•[(), 1] by the formulas

I I if x = p

, —
d(p, x)

\ mx Φp

and g: X x [0,1] -> [0, 1] by g(x, ί) = (1 - ί) + t m(x). Let P be the
function defined in § 4 with p as its base point. Define h: X x [0,1] —>
X by h(x, t) — P(xy g(x, t)) and it is routine to verify h satisfies con-
ditions (1) through (4).

REMARK 5.2. By virtue of h satisfying conditions (1), (2), and (3),
D(p, r) is said to be a strong deformation retract of X. A subset A
of X is a retract if there is a map from X —• A which is the identity
on A.

PROPOSITION 5.3. Let p e X and r a positive real. Then for y e
S{p, r), X — {y} is contractible (in itself) if and only if (D(p, r) — {y})
is contractible (in itself).

Proof. Let y e S(p, r) be given and take h to be the deformation
map defined in the previous proposition relative to D(p, r). From
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properties (3) and (4) of h it is clear that h[(X - {y}) x [0, l ] ] c l -
{y}. Thus h retracts X — {y} onto {D{p, r) — {y}). A retract of a
contractible space is contractible [4, p. 26], so D{p, r) — {y} is con-
tractible if X-(y) is. The converse is obvious.

PROPOSITION 5.4. Let pe X and r > 0. Then D(p, r) is contrac-
tible and locally contractible.

Proof. In § 3 it was shown that D(p, r) is contractible.
Fix yeD== D(p, r) and δ > 0. Letting h be the deformation

map from 5.1 and setting / = h(—, 1) gives us that / is a retraction
of X onto D. Define the map g: D x I—>D by the formula g(x, t) =
f(Py(x, 1 — £)). Clearly, # is continuous, g(—, 0) is the identity and
#(—, 1) is constantly y. Choose r > 0 so that D(τ/, r) is compact and
it follows that Cn ^ D f] D(y, r/n) is compact for each n — 1, 2, 3,
The nested sequence of sets Cn x I converge to {y} x / and since g
is continuous there exists n0 such that g[Cno x J] c S(̂ /, <5) Π D. It
follows that g\CnQ x I contracts CΛo to # inside S(i/, <5) and thus D is
locally contractible.

DEFINITION 5.5. For a set A in a topological space Y the space
A x //A x {0}, i.e., the upper-semi-continuous decomposition of A x /
whose only nondegenerate element is A x {0}, is called the cone over A.

PROPOSITION 5.6. Let (X,d) be a locally compact SC-WR metric
space. If Ad X is compact and pe (X — A) such that, for x6 A,
px Π A = {x}, then the set B = \JxeA'px is homeomorphic to the cone
over A.

Proof. The proof of this proposition appears in [8, 6.2] for X
compact. The proof carries over for X locally compact in light of the
properties shown in the preceding propositions.

The following theorem generalizes a result of D. Rolfsen [11] which
was for compact spaces. The proof is identical except that it relies
on earlier propositions in this paper for properties of locally compact
spaces with SC-WR metrics.

THEOREM 5.7. Let (X, d) be a locally compact SC- WR metric space
with dim X = n and 0 < n < °o. Then the set U = {x: X — {x} fails
to be contractible in itself} contains a dense, open subset of X.

COROLLARY 5.8. If (X, d) and U are as in Theorem 5.7, then no
point of U is the endpoint of a ray.
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Proof. Let xe X and p Φ x such that px) = px. The map P3

Xx I-+X defined earlier when restricted to (X — {x}) x I clearly
contracts X — {x} to p missing x so X — {#} is contractible (in itself).
By Theorem 5.7 x£U.

6. Retract properties*

DEFINITION 6.1. Let Y be a topological space and A a subset of
Y. A is said to be a neighborhood retract of F provided there exists
an open set, 0, of Y such that A c 0 and A is a retract of 0.

DEFINITION 6.2. A metric space Yis said to be an absolute retract
for metrizable spaces, or an AR (M)-space, if for any metric space Z
and a closed subset A of Z with A homeomorphic to Y, A is a retract
of Z. Y" is said to be an absolute neighborhood retract for metrizable
spaces, or an ANR (M)-space, if for any metric space Z and closed
subset A of Z, with A homeomorphic to Y9 A is a neighborhood retract
of Z.

DEFINITION 6.3. A metric space Y is said to be an absolute retract
or AR-space if Y is an AR (Λf)-space and Y is compact, Y is said to be
an absolute neighborhood retract, or ANR-space, if Y is an ANR (M)-
space and Y is compact.

PROPOSITION 6.4. Let (X, d) be a locally compact SC-WR metric
space of finite dimension. If D(p9 r) c X is compact, then it is an
absolute retract and if no ray from p ends inside D(p, r), then the set
Sh (p, r) — {xe X: d(x, p) = r} is an absolute neighborhood retract.

Proof. As is evident from Proposition 5.4, D(p, r) is contractible
in itself and locally contractible and since it is compact and finite
dimensional it is an absolute retract [4, 10.5, p. 122].

To show that Sh (p9 r) is an ANR it is sufficient to show that it
is a neighborhood retract of the absolute retract D{p, r) [4, 2.4, p. 101].
Since no rays end inside D(p, r) we can retract D(p, r) — {p} onto
Sh (p, r) by pushing outward along rays from p.

THEOREM 6.5. If (X, d) is a locally compact SC-WR metric space
of finite dimension, then Xe AR (M).

Proof. For a point p of X there is a positive number rp so that
D(p, rp) is compact and by Proposition 6.3, D(p, rp) e AR (M). As
noted in Theorem 3.5, X is separable and since each point of X has
a neighborhood which is an ANR (M)-space, XeANR(M) [4, 10.4,
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p. 99]. However, since X is contractible, Xe AR(M) [4, 9.1, p. 96].

7* Existence of cells in low dimension spaces*

LEMMA 7.1. Let (X, d) be a locally compact, SC-WR metric space.
Then if p, x, and y are three non-colίnear points of X, then \Jze^pz
is a 2-cell and \Jze^pz} is 2-dimensional and closed.

Proof. Let A = \Jzeτy pz and A = \Jz^

In light of Proposition 5.6 Lelek and Nitka's proof [8] that A is
a 2-cell carries over from compact to locally compact spaces.

To establish the second part of the lemma, let r = inf {d(p, z): ze
xy}. Clearly, r > 0, and by Corollary 4.10 there is a homeomorphism
of X into S(p, r) that moves points along rays. Under this map, A
is carried into A and so is 2-dimensional. Moreover, if q is a point
of the closure of A, then the image of q is in the compact set A, so
~pq) meets xy at a point z0. It follows that pq) = ψz0) c A and qe A.

THEOREM 7.2. Let (X, d) be a locally compact SC-WR metric space
of dimension n with 1 ̂  n ^ 3. Then there is a dense, open set V
of X. such that points of V have closed distance neighborhoods homeo-
morphic to In.

Proof. For the case n — \ the theorem follows directly from the
lemma. Since dimension X = 1, X has two points p and q. Since X
cannot contain 3 noncolinear points (lemma), X = pq) U qΐ>) Letting
V = X - {endpoints of 'pq) and qp), if any} the proof is complete.

The case n = 2 or n = 3. The argument that Rolfsen [11] gives
for a similar theorem with X compact and dim X — 3 carries over to
locally compact spaces and, with a small addition, works for dim X =
2 as well. That argument is outlined below with references to results
of this paper needed to carry through various of the steps.

Let U — {x e X: X — {x} fails to be contractible in itself} and let
V = intU. Fix pe V and choose ε > 0 so that N = D(p, e) is compact
and contained in V. Let S = {xe X: d(p, x) = ε}.

(1) V is open and dense in X (Proposition 5.7).
(2) S is compact, (n — 1)-dimensional and N is homeomorphic

to the (abstract) cone over S [11, (4), p. 218], (Proposition 6.4).
(3) S is an ANR-space [11, (6), p. 218], (Corollary 4.10).
(4) $ does not have the fixed point property [11, (8), p. 218].
(5) For seS, S - {s} is contractible in itself [11, (7), p. 218].
(6) S is connected and if n = 3, then no finite set separates S

[11, (9), p. 218], (Lemma 7.1).
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(7) If n = 3, then S is a 2-sphere [11, (10), p. 219].
(8) If n = 2, then S is a 1-sphere.
Since S does not have the fixed point property, it follows from a

theorem of Lefschetz [5] that for some k ^ 0 the (reduced) singular
homology group (integral coefficients), Hk(S) is nontrivial. S is con-
nected so H0(S) = 0 and dim (S) = 1 so Hk(S) = 0 for & ̂  2, hence
H^S) Φ 0. Because of (5), Hk(S - {$}) = 0 for all k ^ 0. It follows
from a theorem of McCord's [9] that S is a 1-sphere.

Part (2) along with (7) and (8) yield that N is homeomorphic to I*.

8. Topological characterizations*

DEFINITION 8.1. A point y in a topological space Yhas a Euclidean
neighborhood if for some neighborhood V oΐy and some natural number,
n, V is homeomorphic to En.

Throughout this section let (X, d) be a locally compact SC-WR
metric space.

PROPOSITION 8.2. If some point of X has a Euclidean neighbor-
hood, then the set, M = {xe X:x is the endpoint of some ray}, is closed
in X and every point of (X — M) has a Euclidean neighborhood.

Proof. Let p be a point of X with a Euclidean neighborhood V,
V homeomorphic to En. There is a homeomorphism of X into V so
we may consider X, as a topological space, to be imbedded in E*.
Let int X and Bd X denote the interior and boundary of X as a subset
of En.

For any subset, Y, of En if y e int F, then Γ — [y] is not con-
tractible (in itself). It follows from proof of Corollary 5.8 that for
xeM, X— {x} is contractible (in itself), so ΛfcBdX.

Consider a point, x e (X — M). Since x is not the endpoint of the
ray px} there is a point q in ~px} — ~px. Set £ = d(p, x)/d(p, q) and
since 0 < t < 1, the map Pff(—, t) is a homeomorphism of Xinto itself
(Theorem 4.9) that carries p to x. By the invariance of domain the
image of V under this map is open in En, hence x e int X. It follows
that ikfc(XΠBdX).

Now M — (X Π Bd X) and so M is closed in X, and since (X — M) —
int X every point of (X — M) has a Euclidean neighborhood.

REMARK 8.3. Note that the set, Mp == {xe X: px = pϊ>}, where
#> is a point with Euclidean neighborhood, is contained in M. However,
in the last part of the above proof it was shown that, in fact, (XΠ
Bd X) c Mp so Mp = M.
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PROPOSITION 8.4. Let peX with Mp closed. The function rp: X —
{p} —> Eι U {+ °°}, defined by rp{x) = diam px), is lower-semi-continuous.

Proof. Let xQ9 xl9 x2y be points of X — {p} with l im^^ xn = xQ

and let ί be a number less than rp(x0). We may as well assume
lim^^ rp(xn) exists, and call it s. To complete the proof it remains
only to rule out the possibility that s < t.

If 8 < t, then there is a point z0 e px0) such that d(p, z0) = s. We
can also assume rp(xn) < °o for n > 0, so if we choose #w e p^xn} such
that d(2>, zn) ^ (diam piw> — 1/ri) then, by Proposition 4.5, lim zn — z0.
Let D(z0, r) be a compact neighborhood of z0 and, clearly, Tn c JD(«0, r)
for n sufficiently large where Tn = pxn) — pzn. Thus Tn, and conse-
quently, pSw> are compact for n large. Let yn be the endpoint of the
compact ~pxn} and observe that lim yn = 20. Since /̂Λ e Λfp and Mp is
closed 2?0 G ikfp, hence^αj0) = p 0̂> contradicting the choice of z0.

THEOREM 8.5. Let p e (X — M) have a Euclidean neighborhood.
If r > 0 and D(p, 4r) is compact and contained in (X — M), then
there is a subset T of D(p, r) such that S(p, r) c T and T is homeo-
morphic to X.

Proof. The method of the proof will be to use a sequence of
continuous functions approximating rp to partition X into countably
many subsets. These subsets will be mapped homeomorphically onto
S(p, r/2) and countably many annuli between S(p, r/2) and S(p, r) along
with a subset of D(p, r) — S(p, r).

The map rp is lower-semi-continuous and has range contained in
[4r, + oo] since no ray ends in D(p, 4r) Let S = {xe X: D(p, x) = r]
and rp\S is lower-semi-continuous. A lower-semi-continuous function
on a separable, finite dimensional metric space which is bounded below
can be pointwise approximated by a (strictly) increasing sequence of
continuous functions [2]. Let fu f2, /3, be such a sequence approxi-
mating rp\S and we can assume range of fn, all n, is contained in
[2r, oo). Extend each fn to all of X - {p} by letting fn(x) = fn(y)
where y is the unique point of S in the ray px). Clearly the extended
functions are continuous on X— {p}.

Define

An = {xeX- {p}: /.(a?) ^ d(p, x) ^ /B+1(a?)} for 0 < n < <χ>

A«, s {x e X - {p}: f.(x) < d(p, x) all %} .

The desired homeomorphism h: X-+D(p, r) is defined by the formulas
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h(p) = p

h(x) — Pp(x, m(x)) for x Φ p

where m: X — {p} —> (0,1] is defined as follows:

r f * — ± \ j£

m(x) —
/ 1/2

V 2 W - 1
-, if xeAn,

0 < tt <

-, if x 6 .

If a G i ^ n An+1 for 0 g ^ < oo, then m(α?) has two definitions but
since d(p, x) — fn+ι(x) in that case it is routinerto verify that

m(x) =
2n+1 —

from both definitions. It is also evident that m is continuous on each
An, 0 ^ ^ ^ oo and on Û <co AΛ as well.

Observe that for x e An, 0 < n < oo, then

which yields

d(p, x) - fn(x)
fn+1(x) - fn(x)

< m(x) <

Thus if xl9 x2, xz,

XOGA^, then

) m(x)
d(p, x)\ 2n J ~ w ~ d(p, x)

is a sequence of points in \}n<oaAn with limit

lim w(a?Λ) =
, Xθ)

Thus m is continuous on X and the above bounds on m shows that
m has range [1/4, 1/2] c (0,1].

In order to show that h is a homeomorphism it only remains to
show that h is one-to-one, and because h moves points along rays from
p, it is sufficient to consider one such ray. Fix xoe X — {p} and let
&i, K K ^ points of p o > chosen so d(p, bn) = fn(xQ) = fn(bn). Let
an = /2,(6J and note

, αΛ) = — r
2n -
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The function m is constant on pbL — {p} so h is one-to-one on 'pbι.
In general, hj>n+1 = An Π px0}, so on bj>n+1

2
n -I

m(x) = ~» + # n where
d(p, x)

2n .,

Thus d(p, h{x)) = an + βnd(p, x) and since βn > 0, h is one-to-one on
&Λ+i> carrying 6Λ6Λ+1 onto αΛαΛ+1. A^ Π jpά?0) consists of at most one
point whose image lies a distance r from p. It follows that h is one-
to-one on pxQ} and also that the image of pxQ} under h contains (pxoy Γ)
S(p, r)).

Let T — h[X] and the theorem is proved.

COROLLARY 8.6. For 1 i^ n tS 3 an n-dimensional, locally compact
metrizable space, X, admits an SC-WR metric if and only if X is an
n-manifold (with boundary) and is homeomorphic to a subset of closed
unit n-ball and which contains the interior of the n-ball.

Proof. The necessity is obvious because the usual metric for E*
restricted to such a subset is SC-WR.

To show the sufficiency let d be an SC-WR metric for X. By
Theorem 7.2 there exists a point p of X and a positive number t such
that D(p91) is homeomorphic to I*. X is homeomorphic to a set T
with S(p, r ) c T c D{p, r) where r = t/4. D(p, r) is homeomorphic to
I* and thus to B, the unit ball in En. Let T'aB be the image of
T under the last homeomorphism. Since Γ D S(p, r), T'ziintB and
T' being locally compact yields that Tf contains a relatively open subset
of Bd B. T is a ^-manifold and consequently X is as well.

PROPOSITION 8.7. Let (X, d) be a locally compact SC-WR space.
If X is of finite dimension, the following are equivalent:

(a) (Xy d) is externally convex
(b) no ray has an endpoint
(c) X is homogeneous
(d) X is locally homogeneous.

Proof. The pattern of the proof is (a)«-»(b) —• (c) —> (d) —• (b).
(a) «-> (b). This equivalence was noted in §4.
(b) —> (c). Assume (b) holds. We first establish that if D(p, r)

is compact and qeS(p,r), then for wepq — {p} there is a homeo-
morphism of X onto itself that carries q to w.

Let a = d(p, q) and b = d(p, w). Define Ax = D{p, a) — {p}, Az =
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D(p, r) — S(p, a) and Az = X — S(p, r) and define the map f:X —
{p} —• (0,1] by the formula:

- i f s e Λ
α

α \ a/ r — a
1 if α? G A3 .

Since / is continuous on each of the three closed sets Alf AS9 and Az

and uniquely defined on their intersections, it is continuous. Let
h(x) — Pp(x, f{x)) for x Φ p and f(p) — p. Pp moves points along rays
and since f(x) is a nondecreasing function of d(p, x), h is one-to-one
and therefore a homeomorphism (4.9). Note also that d(p, h{q)) =
d{p, q) f{q) — a b/a — b — d(p, w)9 so h(q) = w.

On A3 U {p}9 h is the identity and if xe X — (A3\J {p})9 then the
ray ~px) is not contained in D(p, r) so there is a point y in px} a
distance r from p. The segment py maps into itself under h and
both y and p are fixed so x is the image under h of some point.
Thus h[X] = X.

Moreover, there is a homeomorphism carrying q to p because there
is a point pf in qp) — ~qp and close to p which has a compact distance
neighborhood contained in D(p, r) and containing q in its interior.

For x and y two points of X there is a finite, simple chain of
open distance neighborhoods with the first centered at x and the last
at y. The above homeomorphisms and their inverses allow us to push
x into the second distance neighborhood and then into center of it.
Continuing this process a finite number of sets pushes x to y.

(c) —> (d). Obvious.
(d) —>(b). Assume that (d) holds and there is a point qeXsuch

that q is the endpoint of a ray. Since X has finite dimension, there
is a point peX such that X— {p} is not contractible (5.7). Let
U and V be neighborhoods of q and p9 respectively, and h be a
homeomorphism of £7 onto F carrying q to p. The point q has
arbitrarily small deleted distance neighborhoods that are contractible,
so let D be one contained in U. F[D] is a neighborhood of p, so there
exists an r such that D{p, r) c /[JD], and D(p, r) compact. D(p9 r) —
{p} is a retract of X — {p}9 so is a retract of f[D] — {p} — /[Z> — {q}].
Since /[D — {q}] is contractible and since a retract of a contractible
space is contractible [4, p. 26, 13.2], it follows that D(p, r) — {p} is
contractible. This is a contradiction because X — {p} is then contrac-
tible (5.3).

THEOREM 8.8. Let (X, d) be a locolly compact SC-WR metric space
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of dimension n and let M ΞΞ {xe X:x is the endpoint of a ray}. Then
if 1 ̂  n ^ 3 or some point of X has an En-like neighborhood, then
(X — M) is homeomorphic to En.

Proof. If n ^ 3, then some points of X have an En-lϊke neighbor-
hood, so we may, in any case, choose peXwith an JS -̂like neighbor-
hood. There exist r > 0 and a set T such that S(p, r) c T c D(p, r)
and T homeomorphic to X. Under this homeomorphism, if x is not
the endpoint of the px}, then x maps into S(p, r), and if x is the
endpoint, it maps into D{p, r) — S(p, r). Thus (X — M) is homeomorphic
to S(p, r). By Proposition 5.6, D(p, r) is the cone over S = {xe X: d(p,
x) = r}. M. Brown has shown [5] that if the cone over a set A is
En~\i)ae at the vertex, then the (cone over A) — A is homeomorphic
to En. Thus, S(p, r) = D(p, r) — S is homeomorphic to E* and the
theorem follows.

COROLLARY 8.9. Let (X, d) be a locally compact SC-WR metric
space of dimension n. X is homeomorphic to En if and only if
(1) any condition of Proposition 8.7 holds, and (2) 1 <; n f£ 3 or some
point of X has an En-like neighborhood.

Note that if any condition of 8.7 holds, then X is locally homo-
geneous and by Theorem 3.6, X is an ^-manifold if it contains an
n-ball We can change 8.9 slightly as follows:

COROLLARY 8.10. A locally compact space of dimension n is
homeomorphic to En if and only if it admits an SC-WR, externally
convex metric and, for n ^ 4, contains an n-ball.

9* Compact spaces* Rolfsen [10] proved that a compact ̂ -mani-
fold (with boundary) which admits an SC-WR metric is homeomorphic
to In when n ^ 6 In this section it is shown that the result holds
for n — 4 or 5 whenever there is a terminal point in the space.

DEFINITION 9.1. In a metric space (X, d), a point p is said to be
a terminal point if for x,yeX, d(x, y) = d(x, p) + d(p, y) implies p =
x or p — y.

THEOREM 9.2. Let (X, d) be a compact SC-WR metric space. If
X is an n-manifold and has a terminal point, then X is homeomorphic
to I \

Proof. Let p be a point of (X — dX) (dX is the boundary of
X), and let M = {xeXipx} = px}. As is evident from the proof of
Proposition 8.2, M is the boundary of X in an embedding of X in
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En, so 1 = dX. First, note that if x e M then the segment, px,
meets M only at x.

Take q to be a terminal point of X and since qe M, q has a
neighborhood, F, relative to M which is homeomorphic to En~\ Let
Piy Pi* V* > be a sequence of points of pq — {q} which converges to
q. For each i = 1, 2, 3, define the function ftt: M-+M by the rule:
/̂ (α;) is the endpoint of the ray.5p<>. If 2/ = ^i(#), then xeypt} and
by our earlier observation, Λ<(2/) = α?. Thus hi is one-to-one and onto
for each i, and the continuity of /^ is easily established, so ht is a
homeomorphism of ikf onto itself.

Suppose that for each integer, i, there is a point α^eikf — (F(J
A4F]). ilf is compact, so there is a point xoeM which is a limit of
some subsequence of xlf x2, . We may assume that l im,^ α̂  = x0.
Let 2 be a limit point of {&<(#*): i = 1, 2, •••} and note 2 ί F hence
z Φ q. But since lim p{ = q, d(xQ, z) — d(xQ, q) + d(q, z) contradicting
the choice of q. For some i then, M = V\J h[V].

The compact Hausdorff space M being the union of two open
(n — l)-cells is an (n — l)-sphere The set \JxeM P% is homeomorphic
to In and is all of X, so the theorem is proved.
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