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SHAPE GROUPS AND PRODUCTS

THOMAS J. SANDERS

In recent papers S. Mardesic and J. Segal have used
ANR-systems to obtain an alternate approach to Borsuk's
shape theory. At the same time, they have extended the
theory to include all compact Hausdorff spaces. In this paper
some of the results of Mardesic and Segal are used to obtain
Borsuk's fundamental groups, and to extend some of Borsuk's
results that relate shapes and products to arbitrary products.
A result relating (direct) products and shape groups is also
obtained.

The reader is referred to Chapter 1 of [11] for all categorical
definitions; e.g., inverse system, terminal object, inverse limit.

If X = {Xa, paa,, A} and Y = {Yb, qWy B) are inverse systems in a
category jy, a morphism of inverse systems f:X—*Y consists of an
increasing function f:B—>A and a collection of j^-morphisms fb: X/(δ) —*
Yb such that if b ̂  b' then fhpfwf(hf) - qwfv If -X« = HmX and
Yn — lim Y" exist and / : X—>Y_ is a morphism of inverse systems then
for each beB the composition fbpfib): X^—*Yb satisfies if b ̂  bf then

fbPf(b) — fbP/(b)f(b>)Pf(b') — Qbb'fbΦfib')

By the universal mapping property of Y^ there is a unique jy-morphism
f^.X^—>ΓOO such that if beB then qbfoo = fbPf(b)- The jy-morphism
/«, is said to be induced by / .

Under the usual definitions of composition and identities, there is
a category, denoted inv (J^), whose objects are inverse systems in
j y and whose morphisms are morphisms of inverse systems. The
reader will note that this category is not the category used by Mardesic
and Segal [6]. It is not difficult to show that if f:X—+Y and
g}Y-*Z are morphisms of inverse systems and if X^, Y^ and Z^ —
lim ^ exist then (gf)^ = g^f^.

An ANRsystem is an inverse system X = {(Xa, xa)9 Pαα,, A} in the
category of pointed topological spaces where A is closure-finite (i.e.,
for every a e A, the set of predecessors of a is finite) and each Xa is
a compact ANR for normal spaces. This definition differs from that
usually given in that the authors in [6] required each Xa to be compact
ANR for metric spaces. This condition is easily relaxed; as was done
in [5]. As in [5], we use notions and results from [6] in this setting
without specific citations.
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If X is a compact Hausdorfϊ space, xoeXa M, an inclusion ANR-
system in M associated with (X, x0) is an ANR-system X = {(Xα, x0),
iaa,, A} associated with (X, x0) where

( 1 ) each Xa is a neighborhood of X in M

(2) X=Γi*.AXa
( 3) if a <Z a' then iaa,: {Xa,9 x0) —> (Xα, α?0) is an inclusion map.

If A = N (the set of natural numbers) then X is said to be an inclusion
ANRsequence and is denoted X = {(Xk9 #<>), ikk>}. If X is contained
in a parallelotope JP = Πwe* Iω, ZB = Λ then [5] (X, α?0) has an associated
inclusion ANR-system (sequence if Ω is countable).

Another useful category is the category of ANR-systems, developed
by Mardesic and Segal in [6]. The objects of this category are ANR-
systems X = {(Xα, xa)9 Paa,, A} (recall our definition differs somewhat
from that used in [6]). A morphism in this category f: X-+Y =
{(Yb, Vb), Qbb', B}> called a map of systems, consists of an increasing
function / : B—* A and a collection of maps (i.e., continuous functions)
/ δ : X / ( δ ) - + Γ δ such that if b ^ V then fhPnh)fw)=ιqwfb>) i.e., the
diagram

Λ'

commutes up to homotopy.

2. The shape groups* In [6], Mardesic and Segal define the con-
cept of homotopy between two maps of systems. To be more precise,
two maps of systems / , g: X-+Y are said to be homotopic, w r i t t e n / = g,
provided that for every beB there is an α e A , α ^ /(&), g(b), such
that fbPf{b)a = 9bP9(b)a' Noting the similarities between the category
inv ( j y ) and the category of ANR-systems one can define a similar
relation in inv ( J ^ ) .

Let Szf be a category. Two morphisms f,g:X—+Y of inverse

systems in j^f are ~-related (f ~ g) if for each beB there is an

index a e A, a ^ /(&), g(b) such that fbpf{b)a = gbp9(b)a-

THEOREM 2.1. The relation ~ is an equivalence relation.

Proof. The proof is as in Theorem 2 of [6].

THEOREM 2.2. Let / , / ' : X-> Y and g, g'\Y-+ Z. If f ~ f and
g ~ g' then gf - g'f.
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Proof. See Theorem 3 of [6].

A morphism f:X—*Y is a —equivalence provided there is a

morphism g:Y —>X (called the ~-inverse of f) such that gf ~ lχ

and fg ~ lγ. In this case, X and Y are said to be ~-equivalent

THEOREM 2.3. The relation ~ is an equivalence relation of inverse
systems in

Proof. See Theorem 4 of [6].

THEOREM 2.4. If / , g: X—+Y are ~-related morphisms and X^

and Y^ both exist then foa = goa.

Proof. By definition, /«,: X^ —>Ŷ  is the unique j^-morphism satis-
fying for all b e B, qj^ = fbpf{b). Similarily, gj: X^-^Y^ is the unique
j^-morphism satisfying for all b e B, q.g^ — gbpgib). Choose a >̂ /(&),
g(b) such t h a t fbpf{h)a = gbpg{b)a> Now pf{b) = pf{b]apa and pg{b] = pg{b]apa

so that

= gbPg(b)aPa = fbPf(b)aPa =

By the uniqueness, / ^ = c/̂ .

COROLLARY 2.5. If X ~ Y and I M , 7M 6oίA ea isί
are ^/-equivalent objects.

Proof. If f:X->Y and ^ :X— X are such that gf ~ 1* and

fg ~lγ then ^^/^ - (^Z)^ = lX c β and / ^ ^ - (/^^ = lFoo.

If X = {(Xa, xa), paaΊ A] is an ANR-system, let πn(X) = {(πn(Xα, ίcα),

ioαα,, A} denote the inverse system of groups where 7rn(Xa, xa) is the πth
homotopy group of (Xα, xa) and if a <̂  α' then /θαβ/: 7rw(Xα,, a;α,)—•τrΛ(Xα, eτα)
is the homomorphism induced by paar, i.e., if [ξ] e πn(Xa,, xa) then

If /: X—^X is a map of systems, / induces a morphism of inverse

systems f*:πn(X)-+πn(Y) where f* = f:B-+A and (fb)*:πn(Xfib),
®f[b))—*Kn(Yb, Vb) is the homomorphism induced by fb. This gives a

covariant functor πn between the category of ANR-systems and the

category of inverse systems of groups.

THEOREM 2.6. Iff, g- X—+Y a^e homotopic maps of systems (f ~

g) then the induced morphisms f*,g*'.πn(X)—+πn(Y) &re ^-related
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Proof. For each b e B , choose aeA such t h a t a ̂  /(&), g(b) and

Then if [f] e πn(Xa, χa),

(fb)*Pf(b)a[ξ] =

COROLLARY 2.7. 7/ X ~ Z then πn(X)

Mardesic and Segal have shown in [6] that if X and Y are ANR-
systems associated with (X, xQ) and (Y,y0), respectively, then a map
/ : (X, x0) —> (Y, y0) has an associated map of systems _/: X—^Y. If X
and X ' are ANR-systems associated with (X, x0) then any map of systems
i: X—»X' associated with the identity lXfXQ: (X, x0) —• (X, a?0) is a homo-
topy equivalence. By Corollary 2.7 and Corollary 2.5, C 1™ ^ ( X ) -*

lim πn(Xf) is an isomorphism. Suppose / : (Jf, a?0)-*(F, 2/0) is a map,

X, X' are ANR-systems associated with (X, a?0) and Y, Y' are ANR-

systems associated with (Y, y0). Let i: X-+X' and jiY—>Y' be homo-

topy equivalences associated with lXtXQ and 1F)3,O, respectively. Let

f:X-+Y and f'.X'-*Y_f be maps of systems associated with / .

It follows [5] that of = f'i\X-+T. By Corollary 2.7 and Corollary

2.5, one has that £»/«, = /LC lim7r%(X) ~>limπ %(y')

If (X, a?0) is a pointed compact HausdorίE space and X is any
ANR-system associated with (X, xQ) then the ^ίΛ shape group1 of
(X, α?o) is given by πn(X, x0) = lim πΛ(X). If / : (X, x0) —> (Y, y0) then
the homomorphism /«,: 7rΛ(X, a?0) -• 5»( y, 2/o) is said to be induced by
/ . I t is easy to show that ( l x , ^ = l£n(z,β0) and (/#),*, = /^g^. Corol-
lary 2.7 also shows that the nth shape group is a shape invariant.
I t is shown in §3 that this definition of πn extends that given by
Borsuk in [1].

THEOREM 2.8. There is a homomorphism p: πn(X, x0) —»πn(X9

 χo)
such that for all a e A, (pa)* = ρap where (pa)*: πn{X, %o) -* πΛ(Xβ, xa) is
the homomorphism induced by pa: (X, x0) —> (Xα, a?β).

Proof. The collection of maps pa: (X, aj0) —> (Xα, xa) induces homo-
morphisms (pa)*: πn(X, xQ) -> ττu(Xα, a?β) such that if a ̂  α' then (^J^ =
/°αα'(̂ αθ* By the universal mapping property of πn(X, x0) there is a
unique homomorphism p: τrn(X, x0) —>πw(X, ^0) such that for all α e i ,

THEOREM 2.9. 1/ X e AiVi? tΛen ττw(X, x0) ^ πn{X, x0).

Proof. Since X e ANR, there is a special ANR-system X =

1 Note the nth shape group is actually an isomorphism class of groups.
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{(X, x0), lXyZo} associated with (X, x0). Then πn(X) = {πn(X, xQ), lXnU>iBo)}

has as inverse limit the group πn(X, x0).

THEOREM 2.10. If X is a compact Hausdorff space, xoe X and
Xo is the component of X containing x0 then πn(X, xQ) — πn(X0, x0).

Proof. Assume XaF and X = {(Xa, x0), iaa,, A} is an inclusion
ANR-system associated with (X, xQ). For each aeA let Xα0 denote
the component of Xa containing x0. Since a compact ANR is locally
contractible, it is locally path connected. It follows that each Xa0

is a compact path connected ANR.

Claim. Xo = {(Xα0, #o), iα' Uα'o, 4̂.} is an inclusion ANR-system
associated with (Xo, x0). I t suffices to show that Xo = ΠaeA Xao Cer-
tainly X o c Παe^Xαo since Xo a compact connected subset of F implies that
if N is any neighborhood of Xo there is a path connected neighborhood
Uof Xo such that UaN. Let x e Γ\aeA X^ - -XΌ Then x e X - Xo so
let Xi denote the component of X to which x belongs. Then there are
disjoint open sets Uθ9 Z7i such that J7< Π X — X* (i — 0, 1). Since JP is
normal, there are open sets Fo, Vx such that X; c Vt c F 4 c ϋi (i = 0,1).
Since F = Fo U Fx U [P - (Vo U FJ] is a neighborhood of X in F there
is an α e i such that Xα c F. Now X α 0 c F o and xe Vx a contradiction
since F o Π ̂  = 0 . Thus Xo = f)aeA Xao and the claim is proven. By
a well-known theorem, πn(Xa, x0) — πn(XaQ, xQ) so that πn(X) = τrw(X0).
It follows then that πn(X9 x0) — πn(X0, x0).

If α?o, «i 6 X and α>: 1-^ X is a path in X connecting £0 and a?! then
for each aeA,ω induces an isomorphism ωa: πn(Xa, x0) —>πn(Xa, x^.
If a ^ a* then iaar(ϋa, — ωa and it is not hard to show that πn(X, x0) ρ&
τr%(X, xx). Thus we have the following theorem.

THEOREM 2.11. If x0 and x1 are in the same path component of
X then τrα(X, x0) p& πn(X, xj.

Question. Is Theorem 2.11 valid if one replaces path component
with component? Using Theorem 4.1 of [4], one can easily show the
following is true.

THEOREM 2.12. If X is a movable compact metric space and if

x0 and x1 are in the same component of X then ττTO(X, x0) ^ ZE»(-3Γ, #i)

3* Equivalence of the inverse limit and Borsuk's definition of
πn. Let X be a compact metric space and xQeX. Assume that X
is embedded in Q (Hubert cube). Let (S, a) denote the pointed n-
dimensional sphere. An approximative map of (S, a) toward (X, x0),
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I = {ίfc, (S, a) —> (X, x0)} is a sequence of maps ξk: (S, a) —> (Q, a?0) such
that for every neighborhood (F, x0) of (X, 050) in Q there is an index
k0 such that if k ^> kQ then £fc ^ £Λ+1 in (F, x0). Two approximative
maps I and η = {%, (S>, a) —• (X, #0)} are said to be homotopic, f = η,
if for each neighborhood (V, x0) of (X, a?0) i n Q there is an index k{

such that if k ^ &0 then £fc ~ ηk in (F, a?0). The homotopy class of an
approximative map f is denoted by [f].

If f, 77: (S, α) —> (Q, a?0) are maps, their join, ς*5?: (S, a) —> (Q, «0)
is defined as follows. Let P and P' be ti-dimensional balls on S such
t h a t a e S - P,aeS - P' anάP'aS - P. Let a, β: (S, a) x I->(S, α)
be homotopies such that a(x, 0) = β(x, 0) = x for all x e S and <*(£> —
P, 1) = α = /S(S - P', 1). Define

1) if xeS - P

Note: if [£], M e π Λ X , ^ ) where (X, α;0) c (Q, x0) then [f]*[iy] - [ξ*η]
is the group operation in πn(X, x0). Let π$(X, x0) denote the group
of fundamental classes of approximative maps of (S, α) toward (X, a?0)
with operation * defined as follows. If [ί], [rj\ eπ%(X, xQ) then

[ξ\*\S) = «&*%, (S, α) > (X, »«)}] .

Then [3] π%X, x0) is the nth fundamental group defined by Borsuk
in [1].

THEOREM 3.1. If X — {(Xk, x0), ikk] is an inclusion ANR-sequence

in Q associated with (X, x0) c (Q, x0) then τfin{X, x0) ^ lim πn (X) =

£%(X, a?0). ^ ~

Proof. Let Xk: τt%(X, x0) —> πw(Xfc, α?0) be given as follows. If [ζ] e
πi(Xf x0) then since (Xfc, a?0) is a neighborhood of (X, #0) in Q there is
an index mk such that if m^ mk then £Λ = ίmfc in (Xk, x0). Define
λfc[f] = [fmj e π%(Xfc, a?0). If [f] = [)?] then there is an mQ such that
if m ^ m0 then ςm = ηm in (X^, α?0) so that λ* is a well-defined function.
I f [|], M eπ^(X, x0) and m0 is "large enough" then

λ,[{ίm^m, (S, α) > ( X , Xo)}]

Thus each Xk is a group homomorphism.

Note. If λΛ[|] = λfc[5] for all fc, then [|] = [27]. Let (F, a?0) be a
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neighborhood of (X, x0) in Q. Choose k so that (Xk, x0) c (V, xo) Then
λ,jfc[£] = Xk[V\ implies there is an m0 such that if m 7> m0 then £w = )?m

in (Xk, xo)cz(V, x0).

We will now show that (π$(X, α?0), {λt}) is a terminal object in the
category inv (πn(X)) [9], from which it will follow by uniqueness of
inverse limit that πi(X, x0) ^ π»(X, xo) To show (π$(X, a?0), {Xk}) is in
the category inv (πn(X)), one must show that if k ^ k' then Xk = /0AJfe,λfc,
where ft*,: TΓ^X^,, #0) —• τrn(Xk, x0) is the homomorphism induced by ikk,:
(Xk,, xQ)~> (Xk, Xo). Choose m0 ^ mfe, mfc, Then λjf] = [fmj = ft^λjf].

It remains to show (τt%(X, x0), {Xk}) is a terminal object; i.e., if G
is any group and σk: G —> τrn(Xk9 x0) are group homomorphisms such
that if k S kr then σk — ρkk,σk,, then there is a unique group homo-
morphism σ: G —> πj(JΓ, #0) such that σfc = Xkσ for all fc. The uniqueness
follows immediately from the above note.

Existence. Let g e G. Define σ(g) = [{ξk, (S, a) —> (X, x0)}] where
ίfc: (S, α) — (Q, a?0) satisfies ί& e σk(g) e πΛ(Xfc, a?0) First, {£*, (S, α) ->
(X, x0)} is an approximative map of (S, a) toward (X9x0). If (U,x0)
is any neighborhood of (X, xQ) in Q choose k0 such that k ^ k0 implies
that (Xk, Xo)c:(Uy x0). Then σk(g) = pkk+1σk+1(g) so that ξk ~ ξk+1 in
(Xk, x0) c (U, xQ). Next, (J is a well-defined function for if f = {ζk, (S, a) —>
(X, xQ)} and | ' = {ζk, (S, a) —> (X, x0)} are such that fft, ξk e σk(g) for each
k, then if (ί7, x0) is any neighborhood of (X, x0) in Q choose k0 such
that iί k^ k0 then (Xfc, a?0) c (Ϊ7, a?0) Then ζk ~ ft in (U, xQ) and hence
[|] = [£']. Also, σ is a group homomorphism. Each σfc is a homomorphism
so that σ^g^) = σk(g^σk{g2). Thus if ft e ^ ( ^ ) , % e σA(^2) then ft*% e

**(fcβr«) That is, 6r( l̂βr2) = [{ί&*)7fc, (S, α)->(X, α?0)H. But
[{ft*%, (S, α) —> (X, α?o)}] so that σ is group homomorphism.

Finally, σk — Xkσ for each k. Since λ^σ^) = [ξmk] e πn(Xk, xQ), it
suffices to show ξmk ~ ξk in (X .̂, a?0). It k^ mk then by the definition
of mk, ξk = ίWfc in (Xkf x0). It mk^k then σk(g) = pkmkσm]c(g) so that
fmA s ft in (Xfc, α?o).

This completes the proof of the theorem.

4* The product of a family of inverse systems* Let Ω be an
index set. For each ωeΩ, let Xω = {X ,̂ p;β,, Aω} be an inverse system
of topological spaces (a similar construction can be made for groups,
ϋϊ-modules, etc.). Let Γ = {(F, σ): F is a finite nonempty subset of
i2 and σ: F—> Uωe*? -Aω is a function such that σ(ω) e Aω for all ω e F}.
Order Γ by (F, <J) ^ (JF7', cr') iff F c F and σ(ω) ^ α'(α>) for all ω e F .
For (F, σ)eΓ let X(^,σ) = UΦ9FXΐlω). If (F, σ) ^ (F', σ') then let
Ί>[F,σ){F>,o>)'- X{FΌ') —* %{F,O) be ^ e composition of the natural projection
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and the product map Π PΪWW ILeF-X?'<«> -*ILe*X%). It is not
difficult to show that X — {X{F,O), P(F,σ)(F',σ>)> Γ) is an inverse system.
The inverse system X is called the product of the family {Xω: ωeΩ}
and is denoted X— ϊ[ωeΩXω It can be shown that Πωe^ ω is the
categorical product of the family {Xω: ω e Ω}.

EXAMPLE. If each Aω is a singleton, each Xl — Iω = I is the unit
interval and Xω — {Jω, lω} where lω: Iω —> Iω is the identity map then
the above construction gives the usual representation of 1° = Πωea I»
as the inverse limit of {Ia, paa,9 F(Ω)} where F(Ω) is the set of all
nonempty finite subsets of Ω ordered by inclusion and paoc,: Ia' — ΓLeα'
Iω —> Ia, is the natural projection (see [6]).

THEOREM 4.1. lim ΐ[ωeΩ Xω = ILe^ lim Xω.

Proof. Let Xω = limXω. We show ΐ[ωeΩXω is a terminal object

in the category inv (ILL Xω). For (F,σ)eΓ, let P(Λ*> Π βfl-X?"~>
X(jP,σ) be the composition of the natural projection η: ΐ[ωeΩ Xω —> ΐ[ωeF X

ω,
and the product map Π K w ^ Π α . e ί - I ' ^ Π ^ ί ' ^ ) . It is not hard
to show that if (F, σ) ̂  (F\ σ') then v^oUF^oViF',*') = Pί̂ αj Thus
(Π.ei?ίω,{feff)}) is in the category inv(Π^ ω )

It remains to show that J\ωBΩ Xω is a terminal object. That is,
if Y is any space and f{F>σ):Y—>X{F,σ) is a family of maps such that
if (F, σ) ^ (F', σr) then piF,o)iF>,a')f{F',o>) = f(F,σ)> then there is a unique

map /:Γ~+IL,eβ-Xω such that for all (F, σ)eΓ, p{F,a)f = f(F>σ). If
ωeΩ and aeAω let σα: {ω} —• Aω be the function σα(ω) = α. Then
({ω}, σa)eΓ and /^ = /({<ϋ},σα): F-^Xα is a family of maps such that
if a ̂  α' then ({ω}, <jβ) ^ ({ω}, σβ,), so that ffia,ft, = /?. By the uni-
versal mapping property of Xω, there is a unique fω: Y—> Xω such that
plf<» = f*a for all ae Aω. Let f:Y-+ΐlωeΩXωbe the unique map thus
defined. Then / satisfies p{F,σ)f = /(jp,σ). Furthermore, if g:Y~+
ΐ[ωeΩXω is any map that satisfies piF,σ)g = /(jP,σ) then p{{ω}>aa)g = /({«},σβ) =
/ : . It follows then that / = #.

COROLLARY 4.2. If Xω = {X%, pω

aa,, A
ω}, ωeΩ, is a family of ANR-

systems where Xω is associated with Xω, then Πωe^X^ is an ANR-
system associated with I L e β ^

Proof. It suffices to note that if each Aω is closure-finite then
so is Γ and that the product of a finite number of ANR's is an ANR.

Suppose X ω = {X:, pta,, A
ω}, ω e Ω; Yx = {Yλ

b, q\b,, B
λ}, XeΛ, are

inverse systems (or ANR-systems) and θ: A —> Ω is a one-to-one function
such that for each XeΛ there is a map fλ: Xθ{λ) —*YX. Recall, a map
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fi: χ*w —>Yλ consists of an increasing function fλ: Bλ —• Aθa) together
with a family of maps fλ

b: Xμfb) ~^Yλ

b,be B\ such that if 6 ^ V then
ql>fl> = fi (in the ANR-system case, q\b,f\, s fl). Define / : Γγ-+Γz

by f(F, σ) = (Θ(F), fσ) where /.: Θ(F) ^ \JωeΩ A" is given by /.(0(λ)) -
/ W e 4 ί ( 2 ) . Then Xf{F,σ) = nwe0{F) Xω

fσicϋ) = Π«β ί-X/^» so define
/( jP)σ): Xf{Ftσ)->Y[F,σ) as the product map Π fiar Π^jP -3Γ/i(^))-^Π^pϊriαj.
One then checks that if (F, σ) ^ (F', σ') then /(F, σ) ^ /(F', σ') and
?<F,σ)(F',σ')/<ί ',σ') = /(F,α) (iΠ thβ ANR-SyStβm CaSe, g(i,,σ)(^,σθ/(^,αθ = /(F,σ)).

Thus there is a map / : Π. e f l J
ω — Π.β.Z".

If ZΓ = {̂ J, r̂ cr, C
Γ}, τ e T, is another family of inverse systems

and 0: Ω —> T is a one-to-one function such that for all a) e Ω there is
a ^ω: ^ ( ω ) —> Xω then there is a "natural composition" given by φθ: Λ —>
Γ and/V U ) : Z^ ( ί ) -^Z ; . It is left to the reader to verify that the map
determined by the composition is the same as the composition of the
respective determined maps.

There is a "natural identity", θ: Ω —> Ω the identity function and
each lω: X° —> Xω the identity map. It is left to the reader to verify
that the identity l:Y[ωeΩ Xω ~-+Y[ωeΩXω is determined by the natural
identity.

We now restrict our attention to the ANR-system case when Ω =
A and θ is the identity.

THEOREM 4.3. If fω, gω: Xω —+Yω are families of maps of systems

such that fω = gω for all ω e Ω then f ~ g: ΐ[ωeΩ Xω -> ΐ[ωeΩYω.

Proof. For each b e Bω there is an ab e Aω, ab ^ fω(b), gω{b) such
t h a t ftP/^b)ab = QbPω

g<»(b)ab- Let τω: Bω —> Aω be an increasing function

such that τω{b) ^ ab for all b e Bω. If (F, σ) e Γγ, consider (F, τ) e Γx

where τ: F-+\JωeΩAω is given by τ(ω) = τω(σ(ω)). First, (ί7, τ) :>
, σ), flfίF, σ). Since ί is the identity, f(F, σ) = (F, fG) where fσ{ω) -

). Then (F, τ) ^ (ί7, fa) since

- fo(ω) .

Similarly, (F, cr) :> g(F, σ). Furthermore,

J σ(ω)Pfω(σ(ω))τω(σ(ω)) == ^σ'ω)Pgω(.σ(ω))tω(a(ω))

implies

f(F,σ)Pf(F,σ)(F,z) = P'(F,σ)Pg(F,σ)(F,τ)

Thus / s g .

COROLLARY 4.4. // ,S/ι(Xω) = SA(Γ") /or α« αiεfl then
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Corollary 4.4 allows one to define the product of shapes as follows:

μ
In [5] Mardesic gives the notion of a shape retraction. For our

purposes we use the following definition: if j : X—+Y is an embedding
then a map of systems r: Y—+X is a shape retraction iff rj_ ~ lx where
j : X—>Y is a map of systems associated with j . It is routine to verify
this definition is equivalent to the one given by Mardesic. If there is
an embedding j : X—>Y and a shape retraction r:Y—+ Xthen X is said
to be a shape retract of Y.

COROLLARY 4.5. If rω:Yω—>Xω is a shape retraction for all ω
then r: ]JωeΩ Yω -+ Y[ωBΩ Xω is also a shape retraction.

Proof. Let Yω, Xω be associated with Yω, Xω, respectively, and
jω. Xω __^γω t h e r e q u i r e ( i embeddings. Let j : ]JωeΩ Xω —• J[ωeΩ Yω be the
embedding determined by the family {jω: ωeΩ}. It is routine to verify
that the map determined by the family {jω: Xω —>Yω} is associated with
j . We have that rωjω ~ lω where lω: Xω —> Xω is the map associated
with the identity. By the above theorem, r£ = lπωeβχω

5. Products of ASR and ANSR-sets* In [5] Mardesic gives
definitions for absolute shape retract (ASR) and absolute neighborhood
shape retracts (ANSR). These correspond to Borsuk's FAR and FANR-
sets, respectively, in the metric case. We will use the following
characterizations: A compact Hausdorff space X is an ASR (respec-
tively, ANSR) if there is a compact AR (respectively, ANR) Y and
an embedding j : X—>Y such that X is a shape retract of Y (see [10]
and [5]).

THEOREM 5.1. If X = Π ^ I ω then XeASR iff XωeASR for
all ωeΩ.

Proof. If Xe ASR there is a Ye AR, an embedding j : X->Γ and
a shape retraction r:Y--»X. Since each natural projection pω:X—•
Xω is a retraction, the associated maps of systems pω: X-+ Xω are shape
retractions. It follows [5] that pωr:Y-+ Xω is a shape retraction.
Thus, each Xω is an ASR

Conversely, if Xω e ASR for all ωeΩ, then for each ωeΩ there
is an AR-set Yω such that Xω is a shape retract of Yω. Since the
product of any family of AR-sets is an AR-set, we have by Corollary
4.5 that XeASR.
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THEOREM 5.2. If X=ΪLω9ΩXω then XeANSR iff XωeANSR
for all o) and Xω e ASR for all but a finite number of ω.

Proof. If Xω e ANSR for all ω and Xω e ASR for all but finitely
many ω, say ωl9 a)2, , ωn9 then for all ω there is an ANR-set Yω

and a shape retraction rω: Yω -»Xω such that Yω e AR if ω Φ ωk (k =
1, 2, •••,%). Then Πωeflϊ^eANR and there is a shape retraction
r:Iί«>eεXω-» Uvec J ω so that Π.β^ Xω e ANSR.

Conversely, if J e ANSR then as in the proof of Theorem 5.1, each
Xω e ANSR. We may assume without loss that Xω c IΛω = ΐ[XeΛω P
and Xd IΛ = J{ωzQ IΛω. By Theorem IV. 2.10 of [10], there is a closed
neighborhood W of X in F and a shape retraction r:W—» X. There
is a finite subset of Ω, {ωu ω2, , ωn} and neighborhoods Z7< of Xω*
in I^ωί (i = 1, 2, , n) such that

x = π ̂ ω c π ĉ i x Π J"ω c TΓ .

Let i: X—>T7, iω^ Xω ~+IΛω denote the inclusion maps and let pω: X—»
Xω be the natural projections. Choose inclusion maps j ' ω : IΛ<o—>W for
a) Φ o)i (ί = 1, 2, , n) and iω: Xω-+X such that iLiω = iiω and pωiω =
l Z ω . Then r ί = lχ so that for ω ̂  (ύ{ (i = 1, 2, , ̂ ) ,

Hence pωrfω:IAω —* Xω is a shape retraction for ω ̂  ω< (i = 1, 2, , ̂ ) .

Thus Xω, ω ̂  ^ (i = 1, 2, , w), is an ASR-set.

6* Products and shape groups* An inspection of Theorem 4.1
shows that the proof does not involve the fact that each Xω is a
topological space. I t remains valid, for example, whenever the objects
are groups. This fact together with the fact that the (usual) homotopy
group of a product is the direct product of the (usual) homotopy
groups of its factors, [11] Exercise B.5, p. 419, gives the following
theorem.

THEOREM 6.1. // (X, x0) = ΐ[ωeΩ (Xω, x») then πn(X, x0) =

Proof. For each ω let Xω = {(X?, xω

a), p(:a,, Aω) be an ANR-system
associated with (Xω, x"). Then

πn(X, xQ) = 7Γ%(Π (Xω, Xo))

(Π X*)
ωeΩ
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= l im πn{X{Ftσ), p { F , o H F . t O , ) 9 Γ)

-=• l i m {7ΓW(11 (Jίa(,ω)f %σ(ω)), P(F,σ) (F'*σ') > •* }
< tϋ€ F

= lim {Π π.(XΐM, a*,.,), Π P«*wωV, Γ]
< ωeF ωeF

= Hm Πfl{7Γκ(X», at;), fa,, A"}

= J I l im {τϋn(X%9 Xa), pta'y Aω}
ωeΩ <

= Π z.(X*, <)
ωeΩ

Note. In recent correspondence M. Moszyήska indicated that she
has defined the concept of "limit homotopy groups" which correspond
to our definition of the shape groups. Her approach, to appear in [8]
and [9], is more categorical than ours. For completeness we have
included our definition and proof that the shape are isomorphic to
Borsuk's fundamental groups. The approach to the latter (Theorem
3.1) is somewhat different than the approach she used (see [9]).
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