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VALUE DISTRIBUTION OF LINEAR COMBINATIONS
OF AXISYMMETRIC HARMONIC POLYNOMIALS
AND THEIR DERIVATIVES

PeTER A. McCoy

In this paper the geometry of the value distribution of
linear combinations of axisymmetric harmonic polynomials
(AHP) and their derivatives is studied using the Bergman
integral operator method and methods from the analytic theory
of polynomials. For a given AHP, zero free cones in E° can
be determined which are stationary for specified classes of
these linear combinations in the sense that the given AHP
describes cones which have an empty intersection with the
level sets of all linear combinations from each class.

In addition to these results, an AHP analog to the classical
theorem of Lucas’ is obtained. The above results are extended to
generalized axisymmetric harmonic polynomials by an operator due
to R. P. Gilbert.

The study of the value distribution of AHP by the Bergman
method was initiated by Morris Marden [4]. In that paper, the
Bergman method [1] was used to transform polynomials of one complex
variable into AHP. Methods from the analytic theory of polynomials
were used with operator to obtain theorems on the location of sets
in E® where an AHP omits a given complex value. These results
were specified in terms of a pair of cones in E* which were functions
of the convex hull of the zero set of a polynomial of one complex
variable associated with the AHP by the Bergman operator.

Let (x, v, 2) be rectangular coordinates and (z, 0, ¢) be cylindrical
coordinates with

=y +2,y=pcos¢,z=psing.

A function is said to be axisymmetric if it is independent of 4.

Every AHP can be represented by the Bergman method as the
integral transform of a polynomial of one complex variable (see [4])
which shall be referred to as the associate of the AHP. That is, if
H(zx, o) is an AHP then there is a unique polynomial A() of the complex
variable { such that

1

Sth(x + tpcos t)dt .
0

In addition, each AHP can be represented in the form (see [3])

441



442 PETER A. McCOY

H(z, o) = kﬁ, a,r*P, (cos 6)

where P,(v) is the Legendre polynomial of degree %k in » and (r, 4, ¢)
are the spherical coordinates

©=rsinfd and 2 =rcosfd.

Let C denote the complex plane, K a compact subset of C, K the
reflection of K in the xz-axis and S#°[K] the convex hull of K. The
points on the z-axis to the right and left of S#[K U K] for which
27 |K U K] subtends a given angle 26,0 < 6 < 7/2, are denoted by
o, = ay(K) and a, = a,(K) respectively. The sectors defined by

jr—60<arg(—a)< 0+, 0571

are denoted by Sp(K,6) and S (K, 6) respectively and the sectors

opposite these, SY(K, 6) and S%(K, 6), are determined by a rotation

of S, (K, 6) and Sz(K, 6) about their vertices thru an angle of =.
Let 0 < 7,8 < /2 and Cr(K, ) represent the cone

(1) 0=p< (x— a)tanyy

and C. (K, 0) the cone

(2) 0Zp<(a,—x)tand.

For x real and 0 < B =< 7, let S,(8) denote the sector
E—pB<argl{< B+ k.

The points at which a polynomial of one complex variable assumes
the complex value a shall be referred to as the a points of the
polynomial. We shall deal with AHP having degree at least 2.

THEOREM 1. Let acC, H be an AHP of degree n and K denote

the convex hull of the & points of the associate of H. Then for each
A=y, v, N} C©SUK, T/20) N Si(m/2n) with 1 < p < n the AHP

G,,()n)H:(l—xlaigc)---(l—xz-%) ---(1—)»,,—;;)}[

omits « in Cyx(K, w/2n). For each pt = {p, -+, tt,} C Sp(K, 7/2n) N
Si(w/2n), the AHP

G H = (1= e )(1 = prm) oo (L= i JH

omits a in C. (K, n/2n).
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Proof. Let the associate of H be & and
{Ay, oo, N} © Su(K, w/2m) N S(m/2m) .
Consider the AHP,

G, H = (1 - x%) e (1= x-(%)H

which may be written in terms of its associate as
(3) G,0H = L S"g(x + ir cos t)dt
2 Jo
with
(122 (1 -2
9(z) = (1 Ny dz) (1 Mo )h(z) .

By a theorem of Takagi [5, p. 83], the zero set of g(z) — a lies
in the convex hull of the region A swept out by translating the zero
set of h(z) — «, K, by amounts n\,, n\,, -+ and nx,. But {nx,, n\,, - -,
nn,} C Si(K, w/2n) N S.(7/2n) which implies that A < Sy(K, 7/2n).

We factor g(z) — @ as

0(2) — @ = A,0) I (= — &)

and choose # = 2, and 0 = 0, as the equations of a circle in Cr(K, 7/2n).
Then the vector z = 2z(f) = x, + 10, cos t terminates in Sp(X, 7/2n) for
0st<2rm. As

{&:0), - o0y EaM} < SR(K, T/20)
we find that for 0<¢<2r and 1 <5 < n,
— 7w/2n < arg (2(t) — &;(\) < w/2n
which implies that
arg A,(\) — /2 < arg (9(z(t)) — a) < arg A,(\) +7/2 for 0Zt<2m.

The integrand of (3) considered as the limit of a sum of vectors
terminating in an open half plane with boundary through the origin
cannot vanish, thus G,(\)H # «a in C,(K, n/2n) as was to be proved.
The remaining case is shown in a similar manner.

COROLLARY 1.1. Let a¢eC,H be an AHP of degree n and K
denote the convex hull of the a points of its associate. Let 1 <k <
n and
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GOIH = 3 e(k, 3)(— 12 ) H, elk, ) = kYl - !

Then for each ne S, (K, m/2n) N S.(7/2n),
GnHH+a,1<k=n

in Cr(K, w/2n) and for each vy e Sp(K, /2n) N Sy(w/2n),
Gy #+a,l1=k=n

wn Cy(K, w/2n).
Proof. We observe that Theorem 1.1 may be applied to
(11— 99\ —
GVH — a = (1 77%) (H — a)
With )\’ = {77y ) 77}'

COROLLARY 1.2. Let aeC, H be an AHP of degree n and K be
the convex hull of the o points of its associate. Let

G H = (1 — v%) (1 v%)(%)kli

withl<p+k=nandy = {v, v, +++,v.}. Then for eachn = {\,, ---,
M) € Su(K, 7/2n) 0 S(7/2n),

GMNH—-a)#0,1<p+k=n
i Cyp(K, /2n) and for each p = {1, «+-, tt,} C Sa(K, ©/2n) N Sy(7/2n)
Gu(H — @) #0
wn C(K, m/2n).

Proof. We observe that as K is the convex hull of the a points of
the associate of H, h, Lucas’ theorem [5, p. 22] implies that K contains
the zeros of (h — a)® for 1<k < n— 1. The result follows by
applying Theorem 1 to the AHP (9/0x)*(H — «).

Let AcC and veC. The translate of A by the vector v shall
be denoted by A(7).

LEMMA 1. Let acC, f be a polynomial of degree n and K denote
the comvex hull of the a points of f. Let

Liwf=f—wf" 0=j=<k
where k is the largest integer such that 28 < n and ye Sy(K, n/2n) N
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Som/(@n)?). Then for any solution v, to the equation
arg (v — v,) = arg (v) ,
the zero set of L;(v.)f — « ts contained in
SH(U K(jny), 7/2n) .
=0
Proof. Let v, be a solution of arg (v — y,) = arg (v) and ¢(z) =

f(z) — «. By a theorem of Takagi [5, p. 83], the zero set of ¢ — v.¢’
is contained in K, = 2Z[U}- K(jnv,)]. Let us consider

L(v.,)g = (9 — v.9) +vo(g — vog) .

As L,(v.,)g is a linear combination of a polynomial of degree n
and its first derivative, Takagi’s theorem implies that its zero set
lies in K, = &#[U}-0 Ki(— jnv.)]. But K,c S% (K, 7/2n). Let us
assume that the zero set of L;(v.)g lies in K;,, = SZ[Uk-0o Ki(— mny,)]
and that K., cC S%(K,, #/2n). Consider

Ljno)g = (g — vig®") + v¥(g — g™ .

The operator L,.,(v,)g is a linear combination of an nth degree poly-
nomial and its 2/th derivative. By assumption the zero set of g —
g is in SY(K,, w/2n). Applying this assumption to L;,,(v.)h with
h=g—vYg®", we find that the zero set of L;,,(v,)g is in S4(K,, 7/2n)
as was to be proved. The following observation completes the proof

Su(K,, 7/2m) = SH(U K(jiny), 7/2n) .
3=0
We shall now consider the following application of this lemma.

THEOREM 2. Let acC, H be an AHP of degree n and K the
convex hull of the a points of its associate. Let

FWH = H — vzf(b%)zjﬂ, 0<j<k
where k is the largest integer such that 2* < n and
ve Sx(K, m/2n) N Sy(m/(2n)?) .
Then for any solution y, to the equation arg (v — v,) = arg (v),

L. )H + «
i Cr(Uj=0 K(inv), w/2n) for 0 <s < k.

Proof. Let h be the associate of H and g = h — a«. Then
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—_ 1 27[ 28 (28)
FH — a = = ["lg) — vgm@)at
2w Jo

with u = 2 + 90 cost. Let I(z) = g(z) — v29*"(2) and factor I(z),

1) = A,0%) T1 (e — Ca5)) -
By Lemma 1,

(€} U Sk (U K(Gmy), 7/2m) -

If ¥ = 2, and p = p, are the equations of a circle in Cr({J%-, K(mny),
w/2n), then for 0 < ¢t < 2r the vector

() = @, + ip, cost € S, (U K(n), 7/2m) .

By considering

1 2T
o S L, (t)) dt

as the limit of a sum of vectors terminating in an open half plane
with boundary through the origin, as in Theorem 1, we find that
the integral cannot vanish, and thus

LW )H#a,0=s =k,

in Cp (Un=o XK(mny), 7/2n) as was to be proved.
We remark that a similar result holds for left zero free cones.

COROLLARY 2.1. Under the hypothesis of Theorem 2, for each
solution v, of arg (v — v,) = arg (v),

————6k(H_a)¢O, 1<s=w
ox*

Zvo)
in Cyr (Uh=o K(mny), w/2n) where k < n — 1 and w is the largest integer
such that 2° < n — k.

Proof. We need only observe that the zeros of the associate of
0*(H — «)/ox* are in the convex hull of the zeros of the associate of
H — «a and apply Theorem 2. We shall consider the following applica-
tion of Lemma 1.

LEMMA 2. Let acC, f be a polynomial of degree n and K the
convex hull of the a points of f. Let
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G, f = f —vf® 4+ P f® — cov 4 (= 1)¥Hyrpe-n

for 1 =5 =k where k is the largest integer such that 2* < n and y e
Sz(K, 7/2n) N Sy(z/(2n)?). Then for every solution vy, of the equation
arg (v — v, = arg (v), the zero set of G,(v.) f — « lies in S% (U}-o K(mny),
w/2n) for 1 < s < k.

Proof. If s =1, the result holds by Takagi’s theorem cited in
Lemma 1. For s =2 with A = f — «

Go(Wo)f — @ =h — p bV 4 p2@ — Yo p®
= (h — Y. h®) + V2 (h — v hW)® .

We set ¢ = h — v, k'Y and apply Lemma 1 to find that the zero set
of Go(v.)f — ais in S5, (Uj=0 K(Gny), w/2n). Assume that the zero set of
g9, = G,_,(vo)f — a is contained in S} (Uj-, K(jny), 7/2n). The proof
is completed by noting that by assumption the zero set of

9i(2) = (@) — v hV(R) + « o0 + (= DI (,)* TR T (g)
is in S} (U=, K(jnw), ©/2n) and applying Lemma 1 with

Givo)f — @ =gy + V3 (g,.)% )

to find that the zero set of G,(v)f — « is in

S?“(-Qo K(ny), n/2n) .

The following theorem can be formulated in terms of left zero free
cones. This formulation is left to the reader.

THEOREM 3. Let aeC, H be an AHP of degree n and K denote
the convex hull of the set of points for which its associate assumes the
value . Let

o0H , 0°H

. . ML
7 W H = H— y=— — e 1)y 0
i) v V= + (e

)

for 1 <j <k where k is the largest integer such that 2* < n and
ve Sp(K, w/2n) N Sy(xw/(2n)?). Then for each solution v, if the equation
arg (v — v,) =arg () and for L <35 <k,

Tivo)H # a
i Cr (L= K(mny), /2n).

Proof. The proof of this theorem uses Lemma 2 in a manner
analogous to that of the use of Lemma 1 in Theorem 2.
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COROLLARY 3.1. Under the hypothesis of Theorem 8, for each
solution v, of arg (v — v,) = arg (v),

O H-a)=0 with 1<ss+k=<n

NZR VR
=z )693

in Cr(Uj-o K(njv), 7/2n).

Proof. This result is proved in the same way as Corollary 2.1.

We shall now consider an AHP analog to the theorem of Lucas
[4, p. 22]. One can easily show that if H is an AHP and K is the
convex hull of the zero set of its associate, then the cones C,(K, 7/2n)
and C. (K, 7/2n) are zero free cones for ¢’H/ox’ with1l < j < n. This
provides an analog of the classical Lucas theorem which states that
the convex hull of the zero set of a polynomial contains the zeros of
its derivatives.

A sharper analog to the Lucas theorem will be drawn through
the following observation. If I, denotes the convex hull of the zero
set of an nth degree polynomial of one complex variable and I,
denotes the convex hull of the zero set of its kth derivative, Lucas
theorem implies that I, 27,2 +-+ 2 I",. Let I", denote the comple-
ment of 7I°,, then 'y < I, --- & I', and the kth derivative of the
polynomial omits zero in r.

Given a AHP of degree n, we shall construct a sequence of cones
{C.}r_y such that C, 2 C,_, 2 -++ 2 C, and such that the jth derivative
of the AHP with respect to « has no zeros in C;.

THEOREM 4. Let

H(z, p) = k; 0,7+ P (cos 6)

and
oH _ & k! —;
PR Ty a,r* P, _;(cos 0) .
0sj=n-1.

Let

(n — 9)]
Kj:{z€C|z|<l+max %M
isksn—1la, nl(k — 7)!

}’Oéjé’n_l'

Then if © = x, and p = 0, are the equations of a circle in C(K;, n) =
CL(Kj’ 7[/277/) N CR(KJ" 7?/27?4),
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4 .
%f;(xo,po)io, 0<jsn—1

and
C(KJ') n) S C(Kj+1, n) ) 0= ‘7 =n — 1.

Proof. A theorem due to Marden [4, p. 140], implies that H(z,
0) =0 in C(K,, m). Applying this result to 0’H/ox/, we find that
0'H/ox’ # 0 in C(K;, n) as was to be proved. Note that

ap B (n—j = 1!

max &_]ﬂﬁﬁ:_f_)_'_> maXx 2
a, n! (k—j—1!

jsksn—l @, n! (b — H| " ivisksa—

with striet inequality holding if a, % 0 for some k = j.

This implies that K; 2 K;,, and thus C(Kj;, n) & C(K;.,, ») as was
to be proved.

We shall now consider extensions to generalized axisymmetric
harmonic polynomials (GAHP). Let (x,, ---, #,) be a point in E" and
(x, o) be generalized cylindrical coordinates with 0* = a% 4+ +-- + a2.
R. P. Gilbert shows [2, p. 168] that GAHP U(x, p) may be generated

by the operator
U(xy 40) = A# S"u(x + 2‘0 COo8 t)(Sln t)2y——1dt
[4]

with, 2 =n — 2, A, = I'(e — 1/2)/(z'*I" (1)) and % ({) a polynomial of
degree n,{ e C. Let the cones described by equations (1) and (2) be
interpreted with 0 =} + -+« + 22. As (sint)** >0 for 0 < ¢t < ,
the proofs of Theorems 1 through 3 are basically unchanged. We cite
the following result as a typical generalization.

THEOREM 5. Let aecC,G be a GAHP having a polynomial of
degree n as its associate. Let K denote the convex hull of the a points
of the associtate. Then for each

Ny, coo, N CSUK, 20) N Si(w/2n) with 1< p < n,

the GAHP

(12 (2o

omits aA,B, in Cp(K, w/2n). For each {1, ---, pt,} C Sz (K, ©/2n) N
Sy(z/2n), the GAHP

(1= 1) (1= 2o



450 PETER A. McCOY
omits ad,B, in C,K, n/2n) with B, = S”(sin £dt,
0

It is clear that Theorem 4 has its corresponding extension to
GAHP with Gilbert’s operator. We note that the linear combinations
of AHP and GAHP considered in this paper are themselves harmonic.
If corresponding results are considered for the linear combinations of
AHP and GAHP with respect to the radial derivatives, the resulting
linear combinations are no longer harmonic. Also, we point out that
most of the preceding theorems will cover AHP of degree one by
suitable modifications in the angles described.
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