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THE PICARD THEOREM FOR MULTIANALYTIC
FUNCTIONS

P. KRAJKIEWICZ

The class of multianalytic functions are defined. For this
class the notions of essential and nonessential isolated sin-
gularities and of exceptional values are introduced. It is
then shown that a multianalytic function has at most one
exceptional value at an essential isolated singularity.

Suppose that G is an arbitrary nonempty region of the finite
complex plane Γ and that n ^ 0 is a nonnegative integer. A function
f:G—+Γ is said to be (n + l)-analytic on G or simply polyanalytic on
G if and only if there exist (n + 1) ̂  1 functions fk analytic on G for
k = 0, 1, , n such that

(1) f(z) =
k=0

for all z in G, where z denotes the complex conjugate of z. A function
/ is said to be (n + l)-entire or simply polyentire if and only if this
function / is (n + 1)-analytic on Γ. A function / is said to be
bianalytic on G if and only if this function / is (n + l)-analytic on
G with n = 1. Also a function / is termed bientire if and only if
this function / is bianalytic on Γ.

Now let f\G—>Γ be a function which is polyanalytic on G and
suppose that the function / is represented on G by equation (1). It
is not hard to be persuaded that the functions fk in equation (1) are
uniquely determined on G by the function / . With this observation
in mind the following definitions are not ambiguous. Let z0 be an
arbitrary complex number, finite or infinite. Then the point z0 is said
to be an isolated singularity of / if and only if there is some neigh-
borhood N of z0 such that N — {z0} gΞ G. The point z0 is called an
essential isolated singularity of / or simply an essential singularity
of / if and only if the point z0 is an isolated singularity of at least
one of the functions fk.

In [1], M. B. Balk derived the small Picard theorem for bientire
functions by appealing to Picard's big theorem for analytic functions
and the theory of quasi-normal families of analytic functions [6, p.
66]. Then in [2], the same author derived the big Picard theorem for
bientire functions by applying similar methods. Later in [3], the same
author succeeded in establishing Picard's big theorem for the larger
class of polyentire functions by utilizing a theorem of Saxer [7],
which generalizes the classical Schottky theorem. Finally in [4], a
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general version of Picard's big theorem was established for the still
larger class of polyanalytic functions at an arbitrary isolated singularity,
finite or infinite, by means of the Poisson-Jensen integral formula [5,
p. 1] and quasi-normal families of analytic functions.

The results cited above invite some interesting speculation. The
class of polyanalytic functions can be enlarged in various obvious
ways. It is then natural to inquire as to whether a version of Picard's
theorem is also valid for such a larger class of functions. In this
paper we introduce such a larger class of functions which for the
purposes of this paper are called multianalytic functions. We then
establish a version of the big Picard theorem for the class of multi-
analytic functions at an arbitrary isolated singularity, finite or infinite.
The above result seems to be noteworthy on two accounts. In our
formulation of Picard's big theorem for multianalytic functions we
have adopted a rather general definition of an essential isolated sing-
ularity of a multianalytic function and we have also employed a rather
general notion of an exceptional value for a multianalytic function at
an isolated singularity.

Now let z0 be an arbitrary complex number, finite or infinite, and
let 0 < R < + oo# If zQ is finite, then A(z0, R) will denote the set of
all finite complex numbers z such that 0 < \z — zo\ < R. If z0 = oo,
then A(z0, R) — A(oo9 R) will denote the set of all finite complex numbers
z such t h a t R < \z\ < + oo. We also set N(z0, R) = A(z0, R) U {z0}.

Finally if z0 is finite, then C(z0, R) will denote the circumference with
center z0 and radius R which is oriented in the counterclockwise sense.

A function / : A(zQ9 R)—+Γ is said to be multianalytic on A(z0, R)
if and only if there is some nonnegative integer n ^ 0 and a sequence
{fk} of functions analytic on A(zθ9 R) for all k ^ — n such that

+ oo

(2) /(*) = Σ
k=-n

for all z in A(z0, R). If z0 = oo, then in the series in equation (2) it
is understood that the term (z — zo)

k is replaced by 1/2* for each
k ^ — n. It is also understood that the series in equation (2) is almost
uniformly convergent on A(z0, R), that is the series is uniformly con-
vergent on every nonempty closed subset of A(zθ9 R) If z0 is any
complex number, finite or infinite, then a function / is said to be
multianalytic at zQ if and only if there is some R > 0 so that / is
multianalytic on A(zθ9 R).

Observe that if the functions fk in equation (2) are actually
analytic in N(z0, R) for each k ^ — n, then the series in equation (2)
is almost uniformly absolutely convergent in A(zQ, R).

We now wish to introduce a notion of an essential isolated singu-
larity for multianalytic functions. If / is multianalytic at z0 and is
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represented on A(zθ9 R) by equation (2) one might be inclined to say
that z0 is an essential isolated singularity of / if and only if the
point z0 is an essential isolated singularity of at least one of the
functions fk for some k ^ — n in analogy with the definition of an
essential isolated singularity for polyanalytic functions. We will see
later that the above definition of an essential isolated singularity
for a multianalytic function is unduly restrictive. For the purposes
of this paper the following somewhat more general definition of essential
isolated singularity for a multianalytic function turns out to be appro-
priate. To this end let / be multianalytic at zQ and suppose that /
is represented on A(z0, R) by equation (2). Later we shall show that
the functions fk in equation (2) are uniquely determined on A(z0, R)
by / . Consequently the following definitions are not ambiguous. For
each k ^ — n, we now define dk — d(fk) the order of fk at z0 as
follows. If fk Ξ= 0 on A(z0, R), then dk = — oo. If z0 is an essential
isolated singularity, then dk — + oo. Now suppose that fk Φ 0 on
A(z0, R) and that z0 is not an essential isolated singularity of fk. If
z0 ~ oo, then there is some unique integer v so that fk(z)jzv is analytic
and not zero at z0 = oo. In this case we set dk = v. If z0 Φ oo, then
there is some unique integer v so that (z — zoyf}:(z) is analytic and
not zero at z0. In this case we set dk — v. Note that dk is either an
integer or ± oo. We now define d = d(f) the order of / at zQ to be
the least upper bound of the numbers dk — k for k ^ — n. Note that
d is either an integer or ± oo. Observe also that d = — oo if and
only if / = 0 on A(z0, R). We now say that z0 is an essential isolated
singularity of / if and only if d — + oo. We also say that z0 is a
nonessential isolated singularity of / or a pole of / of order d if and
only if d Φ + oo.

Note in particular that if the point zQ is an essential isolated
singularity of at least one of the functions fk for some k ^ — n, then
according to the above definition the point z0 is an essential isolated
singularity of / . Note further that z0 can be an essential isolated
singularity of / even though the point zQ is not an essential isolated
singularity of any of the fk.

Now let / be a function which is multianalytic at a point z0. If
a is any finite complex number, then a is termed an exceptional value
for / at z0 if and only if there is some R > 0 so that / — a is defined
and never zero on A(z0, R). We wish to introduce a somewhat more
general notion of an exceptional value for / at z0. Suppose that g
is any function which is multianalytic at z0 and which is such that
z0 is not an essential isolated singularity of g. Then g is termed an
exceptional value for / at z0 if and only if there is some R > 0 so
that / — g is defined and is never zero on A(z0, R). If g and h are
two exceptional values for / at zQ, we say that these exceptional
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values g and h are distinct if and only if there is some R > 0 so
that g — h is defined and not identically zero on A(z0, R).

With the aid of the above terminology we can now state our main
result in the following concise form.

THEOREM. Let f be a function which is multianalytic at a
point zQ, finite or infinite. If z0 is an essential isolated singularity
of f, then f can have at most one exceptional value at z0.

First note that the above theorem is sharp in the sense that if
z0 is not an essential isolated singularity of /, then / has at least
two exceptional values. In fact if a in any nonzero finite complex
number, then / — a is clearly an exceptional value for / at zQ.

Before proceeding to a demonstration of the above theorem one
observation seems to be in order. It is natural to ask if the above
theorem remains valid if we employ a somewhat more general definition
of multianalytic function. One might be tempted to say that a function
/ is multianalytic in A(zθ9 R) if and only if there exists a sequence
of functions {fk} analytic in A(z0, R) for k — 0, ± 1, ± 2, , such that

for all z in A(z0, R) where suitable assumptions are made in regard
to the convergence of the above series. In this series it is understood
that if z0 = oo, then the expression (z — zo)

k is replaced by l/zk for
k = 0, ± 1, ± 2, . If such a definition of multianalytic function is
adopted then the above theorem becomes false. The difficulty of course
arises from the presence of terms of the form (z — zo)

kfk(z) in the
above series for infinitely many k ^ 0. As a particularly simple
example we take f(z) = ezez. Observe that

/(*) = ! > £ .
k=o

for all z. This function / is certainly multianalytic at the point
zQ — oo according to the provisional definition of this paragraph. It
is also reasonable to regard the point z0 — oo as an essential isolated
singularity of this function / . This function /, however, assumes only
positive real values.

Observe that if / is multianalytic and of order d at a finite point
zQ, then g(z) = f(z + zQ) is multianalytic and of the same order d at
the point 0. Also if / is multianalytic and is of order d at the point
0, then g(z) = f(l/z) is multianalytic and of the same order d at the
point co. From the above observations we see that in order to establish
the above theorem that there is no loss in generality in assuming that
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the essential isolated singularity is at the point z0 = oo.
In what follows we shall invariable assume that / is a given

function which is multianalytic at the point z0 = oo. Consequently
there is some R > 0 and some nonnegative integer n ^ 0 and a
sequence {fk} of functions analytic on A(oo, R) for all k ^ — n such
that

(3) f(z) =_ Σ ^
; = - « Zk

for all z in A(oo? Jϊ), where z denotes the complex conjugate of z and
where it is understood that the series in equation (3) is almost uniformly
convergent in A(°o? R). Also in what follows it will be convenient
to assume that for each k I> — n, that the Laurent series expansion
of fk with center zQ = °° is given by

(4) Λ<*>=Jl
for all (z \ > R.

We now need the following result.

LEMMA 1. For p > R, the series

( 5 ) .2-* z TiΓ-

is almost uniformly convergent in R < | z \ ^ p. Also the above series
is almost uniformly absolutely convergent in R <\z\ < p.

Proof. First observe that the general term of the series in equation
(5) may be written in the form zkfk(z)/ρ2k = (zz/ρ2)kfk(z)/zk. Now the
sequence {(zz/p2)k) is monotone decreasing and uniformly bounded for
R < \z\ ̂  p. Consequently by Abel's theorem the series in equation
(5) is almost uniformly convergent in R < | z | ^ p. Next let R < μ <
λ < p. Since the series in equation (3) is uniformly convergent on μ ^
I z I ̂  λ we see that there is some positive constant M so that | fk(z)βk I Ŝ
M for μ ^ | s | ^ λ and for & :> — n. Thus if /* έ* | s | ^ λ we see
that \zkfk(z)/p2k\ ^ (X/p)2kM for all Jfc ̂  - n. Consequently by the
Weierstrass test, the series [in equation (5) is uniformly absolutely
convergent in μ ^ ] z \ ̂  λ Thus the series in equation (5) is almost
uniformly absolutely convergent in R < | z \ < p. This completes the
proof of the lemma.

In view of the above lemma we may now give the following
definition. For each p > R, it will be formed convenient to introduce
the auxiliary function f(z, p) defined by the condition that
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(6) f(z, p) = Σ z^lM
k p 2 k

for all z in R < | z \ <: p. Note that the function f(z, p) is analytic
on R < IzI < p and continuous on R < \z\ ^ p. Moreover, f(z, p) =
f{z) for all 2 on | z | = |O > i£.

In some considerations it would be convenient if the series in
equation (6) for f(z, p) were almost uniformly convergent in the larger
annulus R < | z | < + 00 for all p > R. This is not the case however.
In order to construct an example we first consider a power series
Σ akz

k, k ^ 0, with radius of convergence one which is uniformly and
absolutely convergent on the closed disc \z\ ^ 1. Let f(z) = Σ akz

k/zk,
k ^ 0, for all \z\ > 0. This function / is multianalytic in A(oo, 0).
If p > 0, then /(z, p) = Σ cikZ2k/p2k, k ^ 0, is absolutely and uniformly
convergent in 0 ^ [z| ^ ^ and divergent elsewhere.

Next we have the following uniqueness result which we have
appealed to earlier.

LEMMA 2. Let the function f be multianalytic on A(zQ, R) and
assume that f is represented on A(z0, R) by equation (2). Then the
functions fk in equation (2) are uniquely determined on A(z0, R) by
the function / .

Proof. There is no loss in generality in assuming that z0 = 00
and that / is represented on A(oo,R) by equations (3) and (4). It
now suffices to show that if / = 0 on A(c°, R), then fk = 0 on
^.(00? R) for all k ^ - n. Since / = 0 on A(oo, R), then f(z, p) =
0 for all \z\ = <o > R. If Cp = C(0, p)9 then from equation (6) we see
that

Γ̂ ^v~k I

for all p > R and for every integer y. Hence αίϋ* = 0 for all k ^ — n
and for every integer v. Hence af] = 0 for all k ;> — w and for every
integer //. Consequently / Λ = 0 on A(oo, R) for each k ^> — n. This
completes the proof of the lemma.

It is desirable at this state to give a rough indication of how we
propose to establish our theorem. To this end let / be multianalytic
on A{ooy R) and let S > R. Now let F denote the collection of all
functions f{pz, p) for which p > S. The functions belonging to F are
all analytic in the annulus R/S < | z | < 1. We will now base a proof
of our theorem on the establishment of a suitable connection between
the behavior of / on ^(oo, R) and the behavior of the family F on
the annulus R/S < | z | < 1. Our proof is analogous to the proof of
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Picard's big theorem for analytic functions which employs MonteΓs
criterion for normal families of analytic functions.

It is with the above point of view that we offer the following
lemmas.

LEMMA 3. Let f be multianalytic and not identically zero on
A(ooy R) and suppose that f has a pole of order d at the point co.
Then there exists an isolated set Z of A (0, 1) with the following
property. For any nonempty closed subset B of A(0, 1) which does
not meet Z, there exist positive constants L, K, and po> which in
general depend on the set B, so that Lpd < | f(pz, p) | < Kρd for all
z in B and for all p > pQ.

Proof. It suffices to find a function P(z) which is analytic and
not identically zero in A(0, 1) such that f(pz, p)/pd —> P(z) as p —> + °o
almost uniformly with respect to z in A(0, 1). We may then take Z
to denote the set of zeros of P(z) in A(0, 1). With the above goal in
mind we proceed as follows. Let / be represented on A(oo9R) by
equations (3) and (4). Let σ > R be fixed. From the almost uniform
convergence of the series in equation (3) we see that there is some
positive constant M so that \fk(z)/zk\ ^ Mfor \z\ = σ for all k ^ — n.
Hence \fk(z)/zdk+1\ g M/σd^k+1 ίor \z\ = p a n d k ^ - n. Now for each
k^ — n, the functions fk(z)/zdk+ι are analytic on N(ooy R) and have a
zero of order one at the point z0 = co. Hence from Schwarz's lemma
we deduce the estimate

which is valid for | z \ ̂  σ and for all k ^ — n. We shall appeal to
the above estimate several times in the course of our argument.
Now for each fc :> — n, let ak = a[k) where v = dk. Next for each
k >̂ — n, le t bk = ak if dk — k = d and let bk — 0 if dk — k g d — 1.
Also for each k ^ — n, let ck = ak — bk. Observe that bk Φ 0 for at
least one k >̂ — n. If we now integrate fk(z)/zdk+1 around the circum-
ference C(0, σ) then from inequality (7) we deduce the estimate

(8) \a\^ M

which is valid for all k J> — n. From the above inequality, it follows
that the series Σ bkz

lk, k ~^> — n, is convergent in the annulus A(0, 1).
Now let

(9) P(z) = ^ Σ h * 2 k ,
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for z in A(091). Evidently P(z) is analytic and not identically zero
in the annulus A(0, 1). Next if k ^ — n and iί p\z\ > σ we see from
inequality (8) that \akρ

dk-kzdk+k\ ^ \pz/σ\dM. Hence for each p > σ,
the series Σ akp

dk~kzdk+k

9 k ^ — n, is convergent for 2 in o /p ^ 121 < 1.
Next for each k^> — n, we see from inequalities (7) and (8) that
\fk(z)/zdk - ak\ ^ 2M/σdk~k for | s | = σ. Now for each k^ - n, the
function fk(z)/zdk — αfc is analytic in iV(oo? R) and has a zero of order
at least one at the point zQ = 00. Hence by Schwarz's lemma we see
that \fk(z)/zdk - ak\ ^ 2M/|z|<jd*-&-1 for A; ̂  - n and |« | > σ. Conse-
quently we have that \zkfk(pz)/pk - akρ

dk~kzdk+k\ ^ 2\z\2k\ρz/σ\d~1M for
k^ — n and p|z\ ^ σ. Hence it follows that

(10) P) - Σ α
2M\z

σ

for |O > σ and σ/p <*\z\
\ c k ρ d k ~ k z d k + k \ ^ [ z f

<l. Next from inequality (8) observe that
/σ^-1 ίor ρ\z\^σ and k^ - n. Hence the

series Σckpd k~kzd k + k

9 k^ — n, is convergent for p>σ and σ/|0^ 12?| < 1.
In addition we have the estimate

(11)
- \z\

pz_

σ

which is valid for p > σ and σ/p <Ξ | z \ < 1. Now from equation (9)
and inequalities (10) and (11) we deduce that

\f(pz,p)-p*P(z)\ =

'',P) - Σ c

. P)-Σ,

k=~n

ZM\z\

σ

for p > σ and σ/p ^ | z | < 1. Hence from the above inequality we finally
obtain the estimate

, 1 3M\z\~]

pd
p 1- | z |

which is valid for p > σ and σ/p <£\z\<l. The result now follows
from the above estimate.

The above lemma has the following partial converse.

LEMMA 3. Let f be multiαnαlytic on A(oo9 R) and let 0 < λ ^ 1
be fixed and suppose that {pm} is a sequence of real numbers greater
than R which diverges to + °°. Suppose that there is some positive
constant K and some integer t so that
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(12)

for I z I = λ and p = pm. Then zQ — oo is a pole of f of order d ^ t.

Proof. Assume that / is represented on A(oof R) by equations (3)
and (4). If Cλ = C(0, λ), then

Vy , P)dz

*==. 2πi

for p > R and for any integer v. Consequently

V K

for p = pm and for any integer v. Now in the above infinite sum it
is easy to see that the coefficients of positive powers of p must vanish.
Hence a[hlh = 0 for k ^ - n and 2k + t - v ^ - 1. Hence <> = 0 for
k^ — n and μ ^ k + t + 1. Hence z0 — oo is a removable singularity
or a pole of /Λ of order dk ^ fc + t for all & >̂ — w. Hence the point
z0 = oo is a pole of / of order cZ ̂  ί as claimed.

The above result is somewhat technical in nature. The following
special case of Lemma 3 is perhaps more revealing as to the basic
content of Lemma 3.

COROLLARY 1. Let f be multianalytic on A(oo7 R) and let {ρm} be a
sequence of real numbers greater than R diverging to + oo. Suppose
that there is some positive constant K and some integer t so that

(13) \f(z)\^K\z\t ,

for I z I = pm. Then z0 = oo is a pole of f of order d ^ t.

As a special case of Corollary 1 we have the following result
which is a generalization of Liouville's theorem.

COROLLARY 2. A polyentire function which is bounded above in
the finite complex plane is constant function.

It is now natural to ask if Lemma 3 is still valid if the inequality
(12) is reversed. If this were the case, then Corollary 1 would also
be valid when the inequality (13) is reversed. This leads to the
following question. Suppose that / is multianalytic in A(oot R) and
that {pm} is a sequence of real numbers greater than R diverging to
+ oo and that K is some positive constant such that | f(z) | > K for
\z\ •= ρm. Does it then necessarily follow that the point z0 = oo is not
an essential isolated singularity of /? The answer is no. As an
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example consider the function f(z) — exp (1/zz) sin z. Evidently

r/ \ _ v s * n z

for all I ^ I > 0, the convergence being almost uniform in 0 < | z | < + °°
This function / is clearly multianalytic in A(ooy 0) and has the point
z0 — CXD as an essential isolated singularity. Now let pm = mπ + π/2
for m — 0, 1, 2, . It is easy to see that there is some positive
constant K so that | f(z) | ^ | sin z \ ̂  K for | z \ = ρm. However, it is
possible to establish a useful variant of Lemma 3 when the ine-
quality (12) is reversed if we impose some suitable additional restric-
tions. Our next few lemmas lead up to such a result.

Assume again that / is multianalytic in A(ooy R) and is given by
equations (3) and (4). For each k ^ — n, let

(14)
= Σ c

μ = -k

z\ < + °° ,

aι

μ

k)zμ, 0 < \z\ < + oo .

We now have the following result.

LEMMA 4. The two series

(15)
-f oo

v v Ms)

are almost uniformly convergent in R < | z \ < + °°.

Proof. Let
convergent on
that \fk(z)/zk\ £ M for \z\ = σ and k ^ - n. If Cσ = C(0, tf) and if

> σ, then it is easy to see that

> i2 be fixed. The series in equation (3) is uniformly
z\ = σ. Hence there is some positive constant M so

zk 2ττΐ

for each k ^ — n. From the above equation we see that | hk(z)/zk \ g
(σ/\ z \)2kMσ/(\ z \ — σ), for | z | > σ and k^> — n. From this last inequality
it follows that the second series in (15) is almost uniformly absolutely
convergent in R < | z \ < + oo. From the identity

^ - i — V
k=-n ZK k = -n Z

which is valid for m^> — n and | z | > R, we see that the first series
in (15) is almost uniformly convergent in R < | z \ < + 00. This com-
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pletes the proof of the lemma.
In view of the above lemma we can now make the following

definition. Let / be multianalytic on A(oo9 R) and assume that / is
given by equations (3) and (4). For each k ^ — n, let gk and hk be
given by equation (14). We then define the functions g and h by
the condition that

(16)
9(z) = Σ

k=-n ZK

m =+±hM

for all z is A(<^y R). From Lemma 4, the convergence of the series
in equation (16) is almost uniform on A(ooy R). Consequently the
functions g and h are multianalytic on A(oof R). Note also that / =
g + h. Observe that z0 — oo is a pole of h of order d ^ 2n — 1. Hence
z0 = oo is an essential singularity of / if and only if zQ = c<? is an
essential singularity of g. Note also that f(z, p) — g(z, p) + h(z, p)
for R < I z I ̂  p. In the considerations that follow, the function h(z9 p)
will play the role of a negligible error term so that certain properties
of the function f(z, p) will be inherited by the function g(z, p). The
function g(z, p) is easier to deal with, however, than the function f(z9 p)
because of the following result.

LEMMA 5. For p > R, the auxiliary function g(z, p) can be
extended to 0 ^ \z\ ^ p in such a way that g(z, p) is continuous on
0 ^ I z I 5̂  P and analytic on 0 ^ | z \ < p. Moreover, this unique extension
is given by

k = -n p

for 0 ίg I z I ̂  p, the series in equation (17) being uniformly convergent
on 0^\z\^ p and almost uniformly absolutely convegent on 0 ^ | z | < p.

Proof. Let p > R be fixed. Then from Lemma 1, we see that
the series in equation (17) is uniformly convergent on\z\ = p. However,
for each k ^ — n, we see from equation (14) that the functions zkgk(z)
are actually entire functions. Consequently from the maximum modulus
principle we see that the series in equation (17) is uniformly convergent
on 0 ^ I z I ̂  p. It is easy to see that the series in equation (17) is
almost uniformly absolutely convergent in 0 ^ ] z \ < p. This completes
the proof of the lemma.

Now assume for the moment that the function g is not identically
zero in A(ooy R), This will be the case for example when the function
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/ has an essential singularity at the point z0 = oo. It is not difficult
to see that there is some Ro > R so that if p > RQ, then g(z, p) is
not identically zero in 0 ^ | z | ^ p. For p > Ro, let s Ξ> 0 denote the
multiplicity of the root z = 0 of g(z, p) and let α1? α2, , aq be the
q ^ 0 nonzero roots of g(s, p) in 0 < | z | < p with due regard for
multiple roots. Finally for p > Ro, let the power series expansion of
g(z, p) with center z0 = 0 and radius at least p be given by

g(z, p) = csz
s + cs+ιz

s+ι + ,

for 0 <̂  I z I < |O. Of course s ^ 0 and cs =£ 0. Now s, q, and α1? α2, ,
ag, and cs depend in general upon p for p > iϋ0. The following result
gives some information concerning this dependence.

LEMMA 6. Assume that the function g given in equation (16) is
not identically zero on A(oof R). Then there is some Ro > R and there
is some nonnegative integer m and some positive constants Kλ and K2

such that the following is true. If p > Ro, then g(z, p) is not iden-
tically zero in 0 ^ | z | ^ p, and s has a constant value independent
of p, and

(18) | c . | < JKΊJOX —> ,

and

(19) lαiUα.1, .. , | α j > J ί .

Proof. If we consider the series expansion for g(z, p) in equation
(17) which is valid for p> R and 0 ^ | z | ^ p, it is not difficult to verify
the following. There exist integers s ^ 0 and m JΞ> 0 and there exist
entire functions lk for &;> 0 such that Z0(0) = 0, ^(0) = 0, , Zm_1(0) = 0,
but IJϋ) Φ 0, and such that

g(z, p) = zsp2H(z, p) ,

ίov p > R and 0 ^ | z \ ̂  /?. Now there is some Rλ > R so that 1(0,
p) Φ 0 for jθ > i21# Hence if p > R19 then g(z, p) is not identically
zero in 0 ^ | z \ ̂  |O and 2 = 0 is a root of 0(2, |θ) of exact multiplicity
8. Next cs = ^2wi(0, |O) for <o > Jξ^ Hence there is some positive
constant Kλ and some R2 > R, so that \cs\ < if11o

2U-m) for all ,0 > JR2

Next let 0 < σ < R2 be fixed. Then there are positive constants K
and L and some i23 > R2 so that



THE PICARD THEOREM FOR MULTIANALYTIC FUNCTIONS 435

\l(z,p)\^J±\z\K,

for 0 ^ I z I ̂  σ and p > Rd. If we set K2 = L/K we see that | l(z, p) \ > 0
whenever p > R3 and 0 ^ \z\ ^ σ and | z | < K2/p2m. Now choose iϋ0 >
i?3 so that K2/ρ2m < o whenever p > iϋ0. Thus if p > Ro and if 0 ^
I z I ̂  ϋf2/<o2m, then | Z(z, /t>) | > 0. Consequently g(z, p) Φ 0 for <o > # 0

and 0 < \z\ <Ξ K2/p2m. Inequality (19) now follows from this last
estimate. This completes the proof of the lemma.

Next for purposes of completeness we would like to mention some
basic definitions and some elementary results from the Nevanlinna
theory of meromorphic functions [5]. First for x ^ 0 we define the
so called log plus function \og+x defined by the condition that log+x — 0
if 0 g x < 1 and log+x = log x if x ^ 1. Now let R > 0 and suppose
that / is a function which is nonconstant and meromorphic in 0 ^
\z\ < R. For 0 < r < R we define the expression m(r, f) by the
condition that

(20) m(r, f) = - ί- Γ log+1 f(re'*) | dφ .
2π Jo

Next for 0 < r < R we define the expression N(r, f) by the condition
that

(21) N(r,f) = ±

where blf b2, , bq are the q 7> 0 nonzero poles of / in 0 < \z\ < r
with due regard for multiplicities. Also for 0 < r < R we define the
expression T(r, f) by the condition that

(22) T(r, f) = m(r, f) + N(r, f) .

The function T(r, f) is called the characteristic function of / and
plays a fundamental role in the theory of meromorphic functions. We
now mention the following result. Suppose that / has a zero of order
8 or a pole of order — s at z = 0 so that the Laurent series expansion
of / with center z0 = 0 is

f(z) = csz
s + cs+1z

s+ι + ,

where cs Φ 0. We then have that

for 0 < r < R [5, p. 4]. We need also to cite one other result.
Suppose that / is analytic and nonconstant in 0 ^ | z \ < R. If 0 <
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r < R and if 0 < λ < 1, then

(24) \og+M(Xr, /) ^ -f±-^T(r, /) ,

where M(Xr, f) denotes the maximum modulus of / on \z\ = Xr [5,
p. 18].

We are now ready to state and prove an analogue of Lemma 3
which we have alluded to earlier. For this purpose it is convenient
to introduce the following definition. Let / be anbitrary complex
valued function which is defined and continuous on A(oof R). If p >
R and if / does not vanish on the circumference C(0, p), we define
the expression Δpf to be 1/27Γ times the change in the argument of
/ on the positively oriented circumference C(0, p). We now have
the following result.

LEMMA 7. Let f be multianalytic on A(o°, R) and let 0 < X ^ 1
be fixed and suppose that there is some sequence {pm} of real numbers
greater than R/X diverging to + oo and some positive constant K and
some integer t so that

(25) \f(pz,p)\^Kpt ,

for I z I ~ λ and p — pm. Suppose further that the sequence of integers
Λχf(pz, P) for p — pm is bounded above. Then the point zQ — oo is not
an essential isolated singularity of f.

Proof. Suppose that / is given on A( <*>, R) by equation (3) and
(4). First there is no loss in generality in assuming that the lower
limit n on summation in equation (3) is zero. Also there is no loss
in generality in assuming that the exponent t in inequality (25) is
zero. For if the above two conditions are not met we need only
consider the function zn~tf(z)\Un~tzn. Next suppose that the functions
g and h are given by equation (16). In equation (16) it is also under-
stood that n — 0. Let σ > R be fixed. Since the series in equation
(16) are uniformly convergent on \z\ = σ, there is some positive
constant M so that \hk(z)βk\ £ M for \z\ = σ and k ^ 0. Hence
I zkhk(z) I g Mσ2k for | z | = σ and k ^ 0. Now for each k ^ 0, the function
zkhk(z) is analytic in Λ^oo, R) and has zero at z0 — oo of at least order
one. Hence by Schwarz's lemma we see that \zkhk(z)\ ^ Mσ21c+1/\z\ for
\z\^σ and k ^ 0. Consequently \zkhk{ρz)jρk)\ ^ (σM/Xp)(σ/ρ)2k, for
I z I = λ and p ^ σ/X and k ^ 0. Hence | h(pz, p) \ ̂  (σM/Xp)/(l - σ2/ρ2)
for I z I = λ and p > σ/X. From the above inequality we see that
f(ρz9 p) — g(ρz, p) = h(ρz, ρ)—*0 as p —> + oo uniformly with respect
to z on the circumference \z\ = X. There is then some Rλ> R so
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t h a t \f(pz, p) - g{ρz, ρ)\ < K/2 for \z\ = λ and p = ρm > Rim Hence

\g(ρz, ρ)\ > K/2 for \z\ = λ and /o - ft, > i ^ . Now | f(pz, p) - g(pz,

P)\ < \f(pz, P)\ f o r \z\ = λ and p = pn > Rx. Hence zί ,g(^, p) =

dχf{pz, P) for p = pn> Rί Hence the sequence of integers Aλg(pz, p)
for p = pm> R1 is bounded above. Let p be some integer so that
Λ?.g(pz, P) ^ V f° r ι° = Pm > Ri There is some Ro > Rx so that the
conclusions of Lemma 6 are in force for g(z, p). It will also be con-
venient to assume that Ro > 1. From inequation (19) and equation (21)
we see that N(pX, l/g(z, p)) < 2p(m + 1) log p - p log K2 for p = ρm> Ro.
From equation (20) we see that m(px, l/g(z, p)) < \og+2/K for p = pmy RQ.
From the last two estimates and from equation (22) it then follows
that T(ρ\, l/g(z, p)) < 2p(m + 1) log p - p log K2 + log+ 2/K for p =
pm > Ro. If we remember that n — 0 in inequality (18) we see that
log I c8(px)81 < (s — 2m) log p + s log KλX for p — pm> RQ. From the
last tw7o estimates and from equation (23) and from the fact that
RQ > 1 we see that there is some integer q so that T(px, g(zy p)) <
q log p for p = ρm> Ro. It will be convenient to assume that the integer
q is so chosen that q > 0. Now from the above estimate and from
inequality (24) we deduce that log+M(pX/2, g{z, p)) < 3q log p for p =
ρm > Ro. Since Ro > 1 and q > 0 it then follows that | g(ρz9 p) \ < ρzq

for |^ | = λ/2 and p ~ pm> i?0 Hence by Lemma 3, the point ^0 = oo
is not an essential singularity of g. Thus the point z0 = oo is not
an essential singularity of / . This completes the proof of the lemma.

From the foregoing lemma we now have the following corollary
which is of some interest in itself.

COROLLARY 3. Let f be multianalytic on A(°o? R). Suppose that
{pm} is some sequence of real numbers greater than R diverging to
+ co and that K is some positive constant so that

for \z\ = pm. Iff does not vanish in A(ooy R)9 then the point z0 — oo
is not an essential isolated singularity of f.

Note that the above result is sharp in the sense that the above
result is false if we remove the condition that / does not vanish in
A(oo9 R). As an example we may take the function f(z) = exp (1/zz) sin z
which we have considered earlier.

We are now finally in a proof of our theorem. The proof is now
formally the same as the proof given in [4, p. 148]. Suppose now
that / is a function which is multianalytic on A(z0, R) and suppose
further that the function / admits two distinct exceptional values g
and h at zQ. First there is no loss in generality in assuming that
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zQ = oo. Also there is no loss in generality in assuming that h = 0
on A(ooy R) and that g is defined and g & 0 on A(ooy R). Since /
and / — g do not vanish on A(oo? R) there exist integers r and s
such that 4>/ = r and 4,(/ — g) = s for all p > R. Consequently
4>/0, P) = r and J,(/(s, /o) - g(z, p)) = s for all p > R. Now there
is some δ > σ > R and some integers w and v so that Aaf(zy p) = u
and Δσ{f{z, p) — g(z, p)) = t; for all ^ > δ. Hence if |O > <5, then the
number of zeros of f(z, p) in σ < 121 < p is (r — u) and the number
of zeros of f{z, p) — g(z, p) in σ < | z \ < p is (s — v). Hence if
p > δ, then the number of zeros of f(pz, p) in σ/p < | z | < 1 is
(r — w) and the number of zeros of f(pz, p) — g(pzf p) in σ/p <
z\ < 1 is (s — v). Now by Lemma 3 we can find σ/p < a < b < 1

and some μ > δ so that L ^ < | g(>z, p) | < Kp* for a < | z | < 6 and
p > μ, where L and K are some positive constants and t is some
integer. Let B denote the annulus a < | z \ < b and let {pm} be a
sequence of real numbers greater than μ diverging to + 00. For each
m ^ 1 define Hm on B by the condition that Hm{z) = f{pmz, pm)/g{pmz,
pm) for all z in 5. Let H denote the set of these functions Hm for
all m :> l First observe that each function Hm is analytic on B.
Next observe that each function Hm assumes the values zero and one
at most (r — u) and (s — v) times, respectively, in B. Consequently
the family H is quasi-normal of order q on B where q ^ min (r — u,
s — v), [6, p. 67]. There are now two cases to consider according as
q — 0 or q >̂ 1. Consider first the case when q ^ 1. Then there
exist q distinct points zl9 z2, , zq in B and there exists a subsequence
Hmv of iϊm such that Hmv —> 00 as v —> + 00 almost uniformly on j? —
{zly z2, •••, ̂  J . Hence there is some a < λ < 6 and some #0 so that
IiLJz) I ̂  1 for Iz \ = λ and i; ̂  v0. Hence | / ( ^ , ̂  | ^ | ^ ( ^ , p) \p > L\
for \z\ = λ and ί? = ^ and t; ^ v0. Also Aλf(pz, p) ^ Δpf{z, p) — r
for p = ^ and v ^ v0. Hence by Lemma 7, the point z0 = CXD is not
an essential singularity of / . This establishes the theorem in the
case that q Ξ> 1. Consider next the case when q = 0. Consequently
the family if is normal in 5. There are now two possibilities to
consider. First there may be a subsequence Hmυ of Hm such that
Hmv - > ω a s i ; ^ + o o almost uniformly on B. In this eventuality one
shows as before that the point zQ — 00 is not an essential singularity
of / . Secondly there may be a subsequence Hmv of Hm which converges
almost uniformly on B. Choose a < λ < 6. There is some constant
M so that \Hn~(z)\ ^ M for |z| = λ and v ^ 0. Hence | / ( ^ , ̂ l ^
ilf I g(pz, P) I < MKp for (# | = λ and |O = pmv and v ^ 0. Hence by
Lemma 3, the point z0 = 00 is not an essential singularity of / . This
establishes the theorem in the case that q = 0. Thus in all cases
we see that zQ = c>o is not an essential singularity of / . This completes
the proof of our theorem.
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As an obvious consequence of our theorem we have the following
result.

COROLLARY 4. Let f be multίanalytic at a point zQ, finite or
infinite. If z0 is an essential singularity of /, then in every annular
neighborhood of z0 the values of f are dense in the extended complex
plane.

It is worthwhile noting that Corollary 4 follows quite easily from
Corollaries 1 and 3.

REFERENCES

1. M. B. Balk, Pieard's theorem for bianalytic entire functions, Dokl. Akad. Nauk
SSSR, 152 (1963), 1282 = Soviet Math. Dokl., 4 (1963), 1529.
2. , The big Picard theorem for entire bianalytic functions, Uspehi Mat.
Nauk, 20 (1965), No. 2, 159-165.
3. , On the values taken by entire polyanalytic functions, Dokl. Akad. Nauk
SSSR, 167 (1966), 12-15 = Soviet Math. Dokl., 7 (1966), 308-311.
4. W. Bosch and P. Krajkiewicz, The big Picard theorem for polyanalytic functions,
Proc. Amer. Math. Soc, 26 (1970), 145-150.
5. W. K. Hayman, Meromorphic Functions, Oxford Math. Monographs, Clarendon Press,
Oxford, 1964.
6. P. Montel, Leqons sur les Families Normales de Functions Analytiques et Leurs
Applications, Gauthier-Villars, Paris, 1927.
7. W. Saxer, Uber eine Verollgemeinerung des Satzes von Schottky, Composition Math.,
1 (1934), 207-216.

Received June 30, 1972 and in revised form December 20, 1972.

UNIVERSITY OF NEBRASKA






