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WHEN ARE WITT RINGS GROUP RINGS?

ROGER WARE

It has been shown that if C is a commutative connected
semi-local ring with involution J then the Witt ring, W{C, J),
of hermitian forms over C is a factor ring of an integral group
ring Z[G]9 with G a group of exponent two. The purpose of
this note is to characterize those pairs (C, J) whose Witt rings
are actually isomorphic to integral group rings (Theorem 1).

I would like to express my thanks to Alex Rosenberg and Manfred
Knebusch for several helpful suggestions.

This paper is in part motivated by the result of Elman and Lam
which states that if F is a superpythagorean field [3, Th. 4.3, Def.
4.4] then the Witt ring, W(F), of F is isomorphic to a group ring
Z[H], where H can be taken to be any subgroup of F*/F*2 of index
two, not containing the square class of —1 [3, Th. 5.13 (8)]. In
Theorem 1 a different proof of the Elman-Lam result is given and it
is shown that the converse is also true. In order to extend the notion
of superpythagorean to semi-local rings, we employ the concept of
signature as defined in [6].

In what follows C will always be a commutative connected (= no
idempotents other than 0 and 1) semi-local ring with involution J and
A will be the fixed ring of /. We allow the possibility that J is the
identity. The groups of units of C and A are denoted by C* and A*
respectively, and N: C* —• A* is the homomorphism given by N(c) = cJ(c).
We denote by W(C, J) the Witt ring of hermitian spaces over C with
respect to the involution J, as defined in [5] The ring theoretic
operations of W(C, J) are induced by the orthogonal direct sum and
tensor product of spaces respectively. For a in A* we let <α> denote
the class in W{C, J) of the rank one hermitian space C with form
(Cu c2) —>c1J(c2)α and [a] the image of a in the group A*/NC*. Then
<α> - <δ> in W(C, J) if and only if [a] = [6] in A*/NC* and <α><6> = <αδ>.
Hence the assignment [a] —*<α> induces a ring homomorphism
ψ : Z[A*/NC*] ->TΓ(C, J). By [5, Th. 1.16], the mapping ψ is surjec-
tive.

A signature σ of (C,J) is a group homomorphism cr: A* —>{±1}
with the property that σ(iVC*) = 1 and if σ: Z[A* /NC*]-> Z also
denotes the induced ring homomorphism then <7(Kerτ/τ) = 0. As re-
marked in [6], the signatures of (C, J) correspond bijectively with the
ring homomorphisms from W(C, J) to Z. By [5, Example 3.11] the
latter set is in bijective correspondence with the set of non-maximal
prime ideals of W(C, J). If J is the identity and C = A is a field
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then the signatures of C correspond to the (total) orderings on C (cf.
[6, Remark 1.7 (ii)]).

Since the kernel of the natural map ψ : Z[A*/NC*] — W(C, J)
contains the element [1] + [ — 1], [5, Cor. 1.17], it follows that any
signature σ of (C,J) has the property that σ(—1) = — 1. Suppose,
in addition, (C, /) has the following property

(*) C has no maximal ideal M with J(M) = M such that either
C/M = F2 or C/M = F4 and A/MΠ A = F2 (Fn = finite field with n
elements).

Then, by [6, Prop. 1.4], a homomorphism σ:A*-+{±l} with
σ(NC*) — 1 and σ(—1) = — 1 is a signature if and only if <7(α) = l implies
σiNfa) + aN(c2)) = 1 for any cu c2 in C with Nfa) + aN(c2) in A*.

The main result is the following.

THEOREM 1. Assume C has property (*) and —1 is not in NC*.
Then the following statements are equivalent:

( i ) For any a in A* with a£ — NC* we have
(NC + aNC) ί l i * = M7* U αiVC*.

(ii) If σ: A* —>{±1} is a homomorphism such that σ(iSΓC*) = 1
and σ( — 1) = —1 then σ is a signature of (C,J).

(iii) If E is a finite subgroup of A*/NC* not containing the
norm class [ — 1] then there exists a signature a of (C, J) such that
σ{E) = 1.

(iv) If H is any subgroup of A*/NC* not containing [ — 1] then
there exists a signature σ such that o(H) = 1.

(v) The kernel of the mapping ψ:Z[A*/NC*]-+ W{C,J) is the
ideal generated by [1] + [ — 1].

(vi) W(C, J) ~ Z[H] where H is a subgroup of index two in
A*/NC*. The group H can be taken to be any subgroup of index two
not containing [ — 1].

(vii) W(C, J) = Z[H] for some group H of exponent two.

Proof, (i) => (ii) As mentioned above it is enough to show that
if a is a unit of A with σ(a) = 1 and cl9 c2 are elements of C such that
b = Nfa) + aN(c2) is also a unit then σ(b) = 1. Since σ(a) — 1 it
follows that aί -NC*. Hence by (i), 6 lies in NC* U aNC* so that
a(b) = 1, as desired.

(ii) => (iii) is clear.
(iii) => (iv). Let Sign (C, J) denote the set of signatures of (C, J)

and for a in A*, let V(a) = {σ in Sign (C, J) \ σ(a) = 1}. The sets V(a),
a in A*, can be taken as a subbase for a topology on Sign (C, J) which
makes Sign (C, J) a compact Hausdorff space and each V(a) a closed
set [6, Lemma 2.3, Th. 2.18, Lemma 3.3 (i)] Now let H be a subgroup
of A*INC* with [-1] g H and choose {a^j c A* such that H = {[α,]}ίe7.
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For any finite subset / o c / , the group Ho generated by {[αj}<β/o is
finite and [ — 1]&HO. Hence, by (iii), there exists a signature σ such
that σ(H0) = 1, i.e., f)ieIo V(at) Φ 0 . Thus {Via^^ is a family of
closed sets with the finite intersection property. Since Sign (C, J) is
compact it follows that f\iBI V{a^) Φ 0 , i.e., there exists a signature
σ with σ(H) = 1.

(iv)=>(v). Let G = A*/NC* and let L be the ideal of Z[G]
generated by [1] + [ —1] Now, minimal prime ideals of Z[G] corre-
spond bijectively with group homomorphisms G —> {±1} and under this
correspondence, prime ideals containing L correspond to homomorphisms
sending [ — 1] to —1 [5, Lemma 3.1]. By (iv), the latter set coincides
with the set of signatures of (C, J ) . Thus if K is the kernel of the
mapping ψ, then LczK and if P is a minimal prime ideal of Z[G]
with LczP then by definition of signature, we must also have Ka P.
Thus to prove (v) it is enough to show that L is the intersection of
all such prime ideals. This is done by showing that Z[G]/L ~ Z[H]
where H is any subgroup of index two in G with [ — 1]£H. State-
ment (v) then follows because Z[H] has no nonzero nilpotent elements.
Note that this will also prove the implication (v) => (vi).

Thus let H be a subgroup of index two in G with [ — 1] g H. Let
S = {[1], -[-1]} and G* = H x S. Then Z[G] = Z[G'] and L is the
ideal generated by all elements of the form 1 — s, se S. Hence
Z[G]/L = Z[G']/L = Z[G'/S] = Z[H].

(v) ==> (vi) is contained in the above argument.
(vi) => (vii) is trivial.
(vii) => (i). Let if be a group of exponent two and / : W(C, J)—>Z[H]

an isomorphism. Since for any a in A*, <α>2 = 1 in W(C, J) it follows
that (/«α»)2 = 1 in Z[H] so by [5, Th. 3.23], / « α » = ± h for some
h in H. Now suppose a is a unit in A with a g NC* and clf c2 are
elements of C such that 6 — N^) + aN(c2) is a unit in A. Then by
[5, Th. 1.16 (iii) and Lemma 1.19] (1 + <α»(l - <δ» = 0 in W(C,J).
Hence

in Z[H]. Thus either / « α » = - 1 , or /«&» = 1, or /«αδ» = 1.
Since/is an isomorphism, / « α » = — 1 implies <α> = < —1> in W(C, J)
which implies ae —NC*, contrary to assumption. If /«&» = 1 then
<&> = 1 in W{C, J), i.e., b — Nic,) + aN(c2) eNC*, so we are done in
this case. If /«αδ» = 1 then / « α » = /«&» so <α> - <δ>, i.e.,
beaNC*, completing the proof.

REMARKS. ( i ) In [3], Elman and Lam studied formally real
(= ordered) fields satisfying condition (iii) of Theorem 1. There, they
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proved a structure theorem, [3, Th. 5.13], for the Witt ring and
algebraic fc-groups of such fields which contains the statement that
the Witt ring is an integral group ring. They also proved several
equivalent conditions characterizing these fields which include the
equivalence of (iii) and (iv) [3, Ths. 4.3, 4.7]. In fact, the foregoing
proof of (iii) => (iv) is the same as the proof SI =» S2 in Theorem 4.3.

(ii) Diller and Dress [2] observed the equivalence of conditions
(i) and (ii) when J = Identity and C = A is a field and showed that
these are equivalent to the following:

For any a in A* with α£ — A*2 the field A(Va) is pythagorean,
i.e., sums of squares are squares [2, Satz 4].

Following Elman-Lam [3, Def. 4.4], we call (C, J) superpythagorean
if (C, J) has property (*) and satisfies the conditions of Theorem 1.

COROLLARY 2. If (C, J) is superpythagorean then every unit of A
which is a sum of norms is itself a norm.

Proof. This follows from condition (i) with a = 1. (See also [6,
Prop. 3.13].)

COROLLARY 3. (cf. [3, Cor. 4.5]). Assume A*/NC* is a finite
group of order 2n, n^l. Then (C, J) is superpythagorean if and only
if C has exactly 2n~1 distinct signatures.

Proof. Apply condition (ii) of the theorem together with the fact
that there are exactly 2n~ι homomorphisms A*/NC* —•{±1} sending
[-1] to - 1 .

REMARK. In contrast to the Witt ring, the Witt-Grothendieck
ring K(C, J) of isometry classes of nondegenerate hermitian spaces over
C is seldom an integral group ring. In fact, if — lgiVC*, it is not
difficult to show that the following statements are equivalent:

(a) K(C, J) is the integral group ring of some group,

(b) K(C,J)£ϊZ[A*/NC*],
(c) A*/NC* is cyclic of order two,
(d) W(C, J) s Z,
(e) Ker ψ is additively generated by [1] + [ — 1].
For the remainder of the paper we assume that J is the identity

(so C = A and JVC* = A*2).

PROPOSITION 4. Let A be a local ring with maximal ideal M and
residue class field k = A/M. Assume 1 + M e A*2 (this happens, for
example, if A is henselian [1, Ex. 3, p. 126]). Then

( i ) A is superpythagorean if and only if k is a superpythagorean
field.
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(ii) If, in addition, A is a valuation ring with field of fractions
F then A is superpythagorean if and only if F is a superpythagorean
field.

Proof. ( i ) By [4, Satz 7.1.1, N.B. 7.1.3] there is an isomorphism
of Witt rings W(A) = W(k) and hence A is superpythagorean if and
only if k is.

(ii) Let A be a valuation ring with field of fractions F and
assume A is superpythagorean. Since F is a field, in order to show
a function σ: F* —»{±1} with σ(F*2) — 1 and σ{ — 1) — — 1 is a signature
it is enough to show that σ(a) = 1 implies σ(l + a) = 1. Thus suppose
a is an element of F* with σ(a) = 1 and let σ — σ | A*. Then σ(A*2) = 1
and σ( — 1) = — 1 so σ is a signature of A. Since A is a valuation
ring of F, for any α in F, either a is a unit in A, or α e M, or α"1 e ilί
If a is a unit in A then 1 + a is also a unit (if 1 + αeJl ί then
1 + m = — α for some meM and since 1 + AfcA* 2 this means
1 = 0 (1 + m) = σ( — a) = — σ(α) = — 1, impossible). Since σ is a signa-
ture, σ(l + a) = σ(l + a) = l. If a e M then 1 + a e A*2 so σ(l + α) = 1
and if α"1 e ikf then σ(l + or1) = 1 and

σ(l + α) = σ(a(a~ι + 1)) = ^(^(α" 1 + 1) = 1, showing that ί7 is super-
pythagorean.

Conversely, suppose F is superpythagorean. Since A is integrally
closed in F, the inclusion A* —•ί7* induces an inclusion A*/A*2-+F*/F*2.
Since both are vector spaces over F2 any homomorphims σ: A*/A*2—*{±1}
extends to a homomorphism σ : F*/F*2 —*{±1}. If 5 is a signature of
JP then σ is a signature of A, completing the proof.

REMARK. The last part of the proof actually shows that if A c B
are rings with A* Π B*2 = A*2 then A is superpythagorean if B is.

EXAMPLES. Assume k is a superpythagorean field. Then

(a) The ring of formal power series in ^-variables, &[[-XΊ, •••,
Xn]]9 is superpythagorean. The ring of dual numbers over k,k[ε]9ε

2 = 0,
is superpythagorean.

(b) If n ^ 2 the quotient field k((Xu , Xn)) of k[[Xu , JSΓJ]
is not pythagorean (hence cannot be superpythagorean). However,

(c) [3, Cor. 4.6]. For any n^l the field k{(XJ) (Z»)) of
iterated Laurent series over k is superpythagorean.

Proof, (a) This is immediate from Proposition 4 (i).
(b) It is not difficult to check that X2 + Y2 cannot be a square

in the field k((X, Y)).
(c) Here it is enough to show that k((X)) is superpythagorean.

However, this follows from (a) and Proposition 4 (ii).
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