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ADJOINT BOUNDARY VALUE PROBLEMS FOR
COMPACTIFIED SINGULAR DIFFERENTIAL

OPERATORS

PHILIP W. WALKER

This paper is concerned with differential operators and
their ad joints induced in the Hubert space £?2{w) by an
operator (l/w)l where I is an nth order singular differential
operator and w is a weight. It is shown that weights may
be chosen and boundary conditions may be imposed so that
the structure of these operators is similar to that of regular
differential operators.

1. Preliminaries* Throughout I will denote an operator of the
form,

(1.1) l(y) = y™ + ±±
where each pk is an (n — k) times continuously differentiable complex
valued function on an interval (α, b). We allow a = — oo and/or b =
oo. The formal adjoint of I will be denoted by l+. Hence

Σ ( - i)n-k(pky)(n-k)

kΣ
k=i

for all n times differentiable y on (a, 6).
If y is an (n — 1) times differentiable function then k(y) will

denote the vector valued function, column (y, y\ , yin~1]), and if each
of yu y2, "*yVn is an (n — 1) times differentiable function then K(yί9
Λ", yn) will denote the matrix valued function whose (ί, j) entry
is y(/"1} for 1 <L i, j <ί n.

^ will denote the complex numbers, the space of all complex
n x 1 column vectors will be denoted by ^ , and the space of all
complex n x n matrices will be denoted by ^£n. If M is a matrix
then M* will denote its conjugate transpose.

DEFINITION 1.1. Let (φl9 .. 9φn) be a sequence of linearly inde-
pendent solutions to

(1.2) l(y) = 0 on (α, 6) .

The statement that (θl9 •••,#«) is the adjoint of (φu *",φn) means
that θk is the complex conjugate of the (k, n) entry of the matrix
[K(φu •• , ^ ) Γ 1 for i = l , 2 , . . . , % .

We shall make use of the following facts concerning adjoints of
fundamental systems of solutions to Eq. (1.2).
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L E M M A 1.2. Let (θl9 •••,#») be the adjoint of (φl9 •• , 9 ? J , a

sequence of linearly independent solutions of Eq. (1.2). Let toe (a, b)

and let f: (a, b) —> ̂  be Lebesgue integrable on every compact subin-

terval of (α, b). It follows that

(1.3) l(y) = f a.e. on (a, b)

if and only if

k(y)(t) = K(φl9 , <Pn)(t){[K(<Pl9 ,

/or αii t in (α, 6).

This follows from consideration of the standard vector matrix
formulation of Eq. (1.3) and from Eq. (3.2), p. 75 of [1].

LEMMA 1.3. Let φk and θk9 k = 1, •••, n, be as in Lemma 1.2.

It follows that (θl9 •••, θn) is a linearly independent sequence of solu-

tions to

(1.5) l+(y) = 0 on (a, b) .

See problem 19, p. 101 of [1] and Theorem 5, p. 38 of [5]. Note
that in the latter reference the formal adjoint differential operator is
defined without taking complex conjugates. The same is true in Ref.
[2] wherein on p. 69 in Corollary 3.8.2c we find justification for

LEMMA 1.4. Let φk and gk be as in Lemma 1.2.
Then

[K(θl9 , θn)]*P[K(φl9 , φn)] = 1 on (α, b) .

Where I is the n x n identity matrix and P is the concomitant matrix
of I.

See §3.7 of [2] or p. 285 of [1] (therein denoted B) for the
definition of P.

By a weight we mean a positive real valued continuous function.
If w is a weight on (α, b) then <2f2(w) will denote the Hubert space
of all (equivalence classes of) Lebesgue measurable / : (α, b) —* ^

satisfying [h\f\2w< oo. If /, ge^2(w) then </, g) = Vfgw, and
Ja Ja

11/11 = V^Λ7>.

DEFINITION 1.5. The statement that w is a compactifying weight
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for I means that all solutions to Eq. (1.2) and the all solutions to
Eq. (1.5) lie in £f\w).

Since the solution spaces of Eqs. (1.2) and (1.3) are finite dimen-
sional spaces of continuous functions it follows that every operator I
has many compactifying weights. The reason for the terminology
is that operators induced in ^f2(w) by (l/w)l and certain boundary
conditions will have compact inverses.

The study of operators with a compactifying weight is in some
sense complementary to the study of those with an Z-admissible weight
considered in [7].

2 Solutions of the eigenvalue equation* Our first theorem
shows that solutions to differential equations with a compactifying
weight behave in a manner similar to solutions of second order self-
adjoint equations of the limit-circle type. (See §2 p. 225 of [1].)

THEOREM 2.1. Let w be a compactifying weight for I. If f e
J5f2(w) and λ € ^ (T may be real, even zero) then every solution to

(2.1)

lies in

l(y) = w(Xy + / ) a.e. on (a, b)

Proof. Suppose that y satisfies Eq. (2.1). Let toe(a,b) and let
(£>!, •• ,9?») and (θu •••,#«) be as in Lemma 1.2. Inspection of the
first components of vector Eq. (1.4) shows that

V(t) = Ψ(t) <Pu{t) Xy(s))w(s)ds

for all t e (a, b) where φ is a solution to Eq. (1.2). Thus for t0 ^ t < b
it follows from the Cauchy-Schwartz inequality that

t\θk(s)\2w(s)ds
l /2

T h u s

\y{t)\ ̂  \u(t)\

f o r USt < b w h e r e u = \<P\ + Σ ϊ = i 1^*1 11**11 I l /H a n d

= Σ
Note that each of u and g is in ^f2(w). Applying Theorem 1 of [4]
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with G(t) = t\ and a(t) = β(t) = 1/2, we have that

Γ \v(s) \2w(s)ds ^ c Γ \u(s) \2w(s)ds

for t0 ^ t < b where c = 2 exp (2| |#| |). A similar argument shows
that for a < τ <̂  ί0,

S to 2 Γ<ι

r ^ jr

Thus ye^f2(w).
The next theorem provides a method for specifying initial conditions

for the solutions of Eq. (2.1) at the endpoints of the interval (a, b).

THEOREM 2.2. Let wbe a compactifying weight for I, let f e Jzf2(w)
and let λe 'g 7 . Let (φl9 , φn) be a linearly independent sequence of
solutions of Eq. (1.2) and let Y — K{φl9 •••, <pn). If y is a solution
to Eq. (2.1) then

limY-ι(t)k(y)(t) and lim Y-\t)k{y){t)
ί->α ί->6

exist and are finite. Moreover, if ce ^ n then there is exactly one
solution y of Eq. (2.1) satisfying

(2.2) \imY-\t)k(y)(t) = c ,

and there is exactly one solution y of Eq. (2.1) satisfying

lim Y-ι(t)k{y){t) = c .

Proof. Let (θlf •••,#») be the adjoint of (φί9 , φn) and let t0 e
(α, 6). From Eq. (1.4) it follows that if y satisfies Eq. (2.1) then

Y~\t)k(y)(t) = Y-\

[w(s)(f(s) + \y(s))[(θl9 . . . , θn)(8).]*d8

for all t in (α, b). Since each of 0lf , θn, / , and y (by Theorem 2.1)
is in Sf\vί) it follows that the limits indicated exist, and that
Eq. (2.2) will be satisfied if and only if

(2.3) k(y)(Q = Y(to){c - ^w(s)(f(s) + Xy(s))[(θl9 . . .(ίn)(«)]*

This is just a standard initial condition for solutions of Eq. (2.1);
hence there is exactly one solution satisfying Eq. (2.3). The proof
of the last assertion of the theorem is analogous.
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3* Maximal and minimal operators* For each operator I and
each compactifying weight w, D denotes the set of all functions y in
jSf*(w) which have (on each compact subinterval of (α, b)) an absolutely-
continuous (n — l)st derivative and which have the property that
(l/w)l(y) is in £f\w). L (the maximal operator) denotes the restriction
of (l/w)l to D. D+ and L+ are defined in the same may with I replaced
by l+.

Let (φl9 •••,£>») be a linearly independent sequence of solutions
to Eq. (1.2), and let Y= K(<Pl9 •• ,9>«). Do denotes the set of all y
in D satisfying

(3.1) lim Y~\t)k(y)(t) = 0 = lim Y~\t)k{y){t) .
t->b

Note that Do is independent of the fundamental system (φl9 , φn)
which is used. (See Theorem 2.3 p. 70 of [1].) Lo (the minimal operator)
denotes the restriction of L to DQ. Di and Li are defined in the
same way with Eq. (1.2), D, and L replaced respectively by Eq. (1.5),
D+, and L+.

The main result of this section is presented in the following
theorem. It is of interest to note that we are able, in the case of
a compactifying weight, to deleniate the minimal operator through
the boundary conditions (3.1); whereas in earlier treatments of similar
problems, even with symmetric operators with maximal deficiency
indices, (see §17 of [6] and §XΠL 2 of [3]). The minimal operator has
been viewed less succinctly as the closure of what would correspond
to the restriction of our operator L to function with compact support
interior to (a, b). (See Corollary 3.5.)

THEOREM 3.1. Let w be a compactifying weight for I. Then Lo

is a densely defined operator on Jίf2(w),

Lf = L+ and (L+)* = Lo ,

where * denotes the adjoint operator in Jίf2(w).

The proof of this theorem will require the following lemmas, some
of which were motivated by the material in §17.3 of [6].

LEMMA 3.2. Let w be a compactifying weight for I and let f e
Sf2{w). There is exactly one solution y to

(3.2) l(y) = wf a.e. on (α, 6)

lying in Do if and only if f is orthogonal to all solutions of l+(y) = 0
on (a, b). Also S^ι(w) is the orthogonal direct sum of range of Lo

and the null space of L+.
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Proof. Using the notation of Theorem 2.2, let y be the solution
of Eq. (3.2) satisfying

\ιm Y-\t)k{y)(t) - 0 .
t-*a

By Theorem 2.1, y is in £?\w). Let λ = 0, and c = 0 in Eq. (2.3);
multiplying both sides of this equation by Y^iQ, and taking the
limit as t0 —• b we see that y will also satisfy

lim Y~\t)k{y){t) = 0 ,

hence be in Do, if and only if

0 = column «/, θ,), •••, </,#„».

In view of Lemma 1.3 the first assertion is proved. Since the null
space of L+ is of finite dimension, the Hubert space £f\w) is the
orthogonal direct sum of it and its orthogonal complement. We have
shown that this orthogonal complement is the range of LQ.

Lemma 1.4 and Theorem 2.2 allow us to give a particularly
simple expression for Lagrange's identity. Note that if w is a com-
pactifying weight for I then it is also a compactifying weight for l+.
Hence by Theorem 2.2 the vectors za and zb defined below do exist.

L E M M A 3 .3. Let w be a compactifying weight for I. Let (φl9 •••,
φ n ) be a linearly independent sequence of solutions to Eq. (1.2) and
let (#!, •••,#*) be the adjoint of this sequence. For each yeD and
zeD+ let

ya - lim [K(ΨU , φn){t)]-ιk{y){t)

and

za - lim [K(θl9 ,
t

and let yh and zb be defined in the same way taking the limits at b
rather than at a.

It follows that if y e D and z e D+ then

(Ly, z) - {y, L+z) = ztyh - z*ya .

Proof. Iΐa<a<β<b then

\β(λ)l(y)zw - \β(λ)

= \[[l(y)z - yFW

= {[k(z)]*Pk(y))\ί
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where P is the concomitant matrix for I. (See pp. 86 and 285 of [1].)
In view of Lemma 1.4 this last expression is the same as

{[[K(θl9 , θn)Γk{z)Y[K{φu , Ψn)Γk{y)}Ya .

The conclusion to the lemma then follows by taking limits as β —> b
and a—+ a.

LEMMA 3.4. If the hypotheses of Lemma 3.3 are satisfied and
each of cλ and c2 is in ^ w then there is a y e D satisfying

ya ~ c1 and yb = c2

and there is a ze D satisfying

za = Ci and zh = c2 .

Proof. We shall show that there is a u e D such that ua = cλ and
ub = 0. A similar argument would show that there is a v e D such
that va = 0 and vb = c2; then y = u + v will satisfy the conclusion to
the lemma.

Let Zj be the solution to l+(y) = 0 on (α, b) that

for j = 1,2, •••, n where ei3 is the n x 1 matrix with (i9 j) entry 1
if i = j and 0 otherwise. Since

lAl^i, , vn)\ &\zi, , %n)

has the limit / (the n x n identity matrix) at α, it follows that
K(zl9 •••, zn) is nonsingular at some (hence all points) point in (a, δ).
Thus zί9 •••, zn are linearly independent and their Gram determinate
(computed with respect to the inner product of £f\w)) is nonzero. In
view of this fact we may let / be the linear combination of zl9 , zn

such that

column «/, sx>, •••,</, zn}) = - c, .

By Theorem 2.2 we may let u be the element in D such that
Lu = f and yh — 0. By Lemma 3.3 it follows that

\J , Zj/ = = \lj1ly Zj/ — \K/f ±J Zj/ Zjalla ,

and since L+zd = 0 for j = 1, 2, , n and zja = ei5 we have that
ua = cx. The argument for the existence of the z e D+ is similar.

Proo/ of Theorem 3.1. That Do is dense in =Sf2(w) follows from
the fact that Do contains all n times continuously differentiate func-
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tions with compact support interior to (a, b).
For the remainder of the proof we will adopt the notation of

Lemma 3.3.
If y e Do and ze D+ then ya = 0 = yb hence by Lemma 3.3,

{Loy, z) = {Ly, z} = {y, L+z) .

Thus L+ s Lo*.
Suppose that geL£. Let ft = L*g and let 2 be any element of

D+ satisfying l+(z) = wh a.e. on (α, 6). (See Theorem 2.1.) If yeD0

it follows from Lemma 3.3 that {yf K) = <τ/, L+2> = {Loy, z) and it
follows from the definition of the adjoint operator that {y, h} = {y,
Log} = {Loy, g}. Hence {Loy, z — g} = 0 for all y e Do. From Lemma
3.2 we have that J*f\w) is the orthogonal direct sum of the range of
I/o and the null space of L+. Thus z — g (after modification on a set
of measure zero) is in the null space of L+. In particular z — g e D+

and since zeD+ it follows that ge D+. Since L+g = L+z and L+2 =
/*, = Log it follows that Lf g L+. Hence the fact that Lt — L+ has
been established.

From Lo* = L+ we have that Lo** = (i>+)* and since A S A** for
any densely defined operator A it follows that I/o S (-^+)*

Applying the part of Theorem 3.1 that has been proved with
I replaced by l+ we find that (Lί)* = L. Since Lt S L+ implying
(Lψ s (Lo

+)* it follows that (L+)* S L. Thus if 7/6 (L+)* then τ/e
D and (L+)*y = Ly; and if zeD+, by definition of adjoint, we have

or

<2/, L+2> - {Ly, z) .

On the other hand, by Lemma 3.3 it follows that

{Ly, z} = {y, L+z) + zΐyb - z*ya .

Thus zfyb — ztya = 0 for all zeD+. Since by Lemma 3.4 there is a
zeD+ such that zα and zb have any preassigned values it follows that
Va — Vb — 0. Since we already have y e D and (L+)*y = Ly it follows
that yeD0 and (L+)*y = Loτ/. Thus (L+)* S Lo. This completes the
proof of the fact that (L+)* = Lo.

COROLLARY 3.5. The operator LQ is closed in Jzf2(w).

Proof. The adjoint of any densely defined operator is closed and
by Theorem 3.1,
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LΓ = (L+y = L0 .

4* Intermediate operators and their adjoints* In this section
we shall consider operators which lie between the maximal and minimal
operators and their adjoints. We shall continue to use the notation
developed in §3 and assume that all our operators are based on an
nth order operator I with a compactifying weight. Furthermore, all
vectors ya,yh,za, and zb are to be formed using an arbitrary but fixed
sequence (φl9 , φn) (of linearly independent solutions to l(y) = 0)
and its adjoint. (See Lemma 3.3.)

If each of M and N is in ^£n and B is the n x 2n matrix (M: N)
then DB will denote the set of all yeD such that

(4.1) Mya

and DB will denote the set of all ze D+ such that

(4.2) zΐ = c*M and zf = - c*N for some c e ^ \

LB and Li will denote the restrictions of L and L+ to DB and DB

respectively.
The following theorem shows that the boundary conditions 4.1

and 4.2 deleneate mutually adjoint operators in <2f2(w).

THEOREM 4.1. If each of M and N is in ^€n then (LB)* = Li
and (Lβ)* = LB.

Proof. By Lemma 3.3, if y e DB and z e Di then

(4.3) (LBy, z) - (y, Liz} = z%yh - z*ya ,

! and from 4.1 and 4.2 it follows that the right hand side of this
equation is zero. Thus Li S LB.

By its definition we have that Lo <Ξ LB, hence LB S Lf so from
Theorem 3.1 we have that L* S L+. Thus L%z = L+z for all z in
the domain of LB. Suppose now that z is in the domain of L%. Then,
by definition of adjoint (Ly, z) = (LBy, z) = <y, L%, z) = (y, L+z), for
all y in DB. On the other hand, by Lemma 3.3 we have that

(Ly, z) - (y, L+z) = ztyh - z*ya .

Hence zϊyb — zlya = 0 for all yeDB.

Or the vector Za is orthogonal in ^2n (with respect to the standard
L ~ Zbj Γu ~]

inner product) to the subspace of all vectors ya such that y e DB.
L.yb_\

We denote this subspace by V. In view of Lemma 3.4 V is the set

of all vectors u such that
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Mu + Nv = 0 .

Therefore, another way to view V is that it is the orthogonal comple-

jy* . Hence I must be in

this column space or

zal ΓifcΓ*Ί
= c for some c e ^ n .

zb] IN*]

Thus condition 4.2 is satisfied and z e D%. We have shown then that
L%z = L+z for all 2; in the domain of L% and that this domain is a
subset of Di. Thus L% £ I/ί This completes the proof of the first
assertion of the theorem.

Again conditions 4.1 and 4.2 imply that the right hand side
of equation 4.3 is zero when yeDB and zeD£. Thus LB £ {Li)*.
Also from its definition Lt £ LJ, hence (Li)* £ (Lo

+)*; s o by Theorem
3.1 applied to l+ we have that (L^)* £ L. If y is in the domain of
(Li)* then

(Ly, z} - <(L£)*i/, z> - <y, Liz) =

for all ze Di and from Lemma 3.3

Thus z6̂ 6̂ — z*ya = 0 for all ze Di or the vector MM is orthogonal

[ ~ η L^6J

_ a such that ze Di. We

denote this subspace by W. Again by Lemma 3.4 we conclude that

W is the set of all vectors u such that
u* — c*M and v* = c*iV

[ M*~\
N*Y

Since I ̂ α I is orthogonal to W we have that My* + Λtyδ = 0. Thus
L#δJ

yeDB and we have completed the argument that (Di)* £ DB, and
from (Li)* £ L we have that (Li)* £ LB. Thus (Li)* = Lβ.

The next theorem shows that boundary conditions of the type
4.2 can be expressed by conditions of the type 4.1 and conversely.

THEOREM 4.2. Suppose that My Ne ^£fn and that m is the column

rank °/ I 1y* Let D be a 2n x (2n — m) matrix whose columns

form a basis in ^2n for the orthogonal complement of the column

space of ^ \ and let P and Q be the n x (2n — m) matrices such
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that D = \Q \. It follows that ze D+ satisfies condition 4.2 if and

only if

(4.4) P*za + Q*zδ = 0 ,

and it follows that yeD satisfies condition 4.1 if and only if

y* = C * P * and yf = - c*Q* for some c e ^ \

Proof. zeD+ satisfies 4o2 if and only if \ZΛ = Γ ^Z\c for some
Γr 1 L^δJ L " - ^ J r if*η

c G <Sf\ This holds if and only if * | ί s ί n t h e c o l u m n s P a c e o f _ jy* J

and this is equivalent to \Za\ being orthogonal to the orthogonal to

the orthogonal complement of the column space of | ^ . Eq. (4.4)

is simply another way of stating that \ a \ is in the orthogonal com-

plement of the column space of D. The argument for the second

assertion of the theorem is similar.

5* Invertibility and Green's functions* In this section we give
a necessary and sufficient condition for the operator LB9 defined in
§4, to be invertible and show how the inverse operator, when it
exists, may be expressed as an integral operator of the Hubert-
Schmidt type.

THEOREM 5.1, Let M, N e ^ n , let B = (M: N), and let LB be as

in §4. It follows that LB is invertible if and only if the matrix
M + N is nonsingular.

Proof. Since LB is linear it is invertible if and only if the only
solution to LBy — 0 is the zero function. LBy = 0 if and only if y
satisfies the boundary condition 4.1 and y is a linear combination of
the same sequence of solution (φlf •• ,Φn) used to construct ya and
yh. Thus LBy = 0 if and only if

ΛΓlim [K(φl9 , 9n){t)rι[K{<Pu , Ψn){t)]c

(5.1) + JVlim [K(φu , <P.)(t)]-1[K(<Pι, " , 9>.)(ί)]c = 0
t-*b

or (M + N)c = 0

where c is the vector in ^ n such that

V = (Φi, -- ,<Pn)c

Since Eq. 5.1 is satisfied only for c — 0 if and only if M + N is non-
singular the theorem is proved.
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THEOREM 5.2. Let M,Ne^ίn, let B= (M: N), let LB be as in
§4, and suppose that LB is invertible. If f e £f2(w) then ye DB and

G(t, s)f(s)w(s)dsfor all te (α, 6) where
a

G(t, s) =
for a < s <t < b

- [(φi7 ...y φn)(t)](M+ J V ) " W [ ( ^ , •••, θn)(8)]*

for a < t < s <b

wherein (φu , φn) is a linearly independent sequence of solutions
to l(y) = 0 on (a, b) and (θl9 •••, θn) is its adjoint.

Proof. yeDB and LBy = / if and only if condition 4.1 holds
and l{y) = w/ a.e. on (α, 6). By Lemma 1.2 we see that this last
differential equation holds if and only if

•••,<Pn)(τ)Γk(y)(τ)

whenever t, τ e (α, δ). Using the fact that each θk and / is in
we may conclude that if l{y) = w/ a.e. on (a, b) then

•••,Ψn){t)Γk{y)(t)

\t[(θ1,"',θ,)(8ψf(8)w{8)d8
Jσ

and

for all t in (α, b). Multiplying the first of these equations (on the
left) by M and the second by N and adding we see that if l(y) = /
a.e. on (a, b) and 4.1 is satisfied then

N)[K(φlf

(5.2) = \ t

Using the fact that M + N is nonsingular (see Theorem 5.1),
solving Eq. (5.2) for k(y)(t)9 and examining the first components of
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the resultant equation we see that the integral equation indicated in
the theorem is satisfied.

If the integral equation in the theorem is satisfied then differen-
tiating we find that

V'(t) = Σ <Pk(t)θk{t)f(t)w(t)
k=ί

(5.3) + ( V i , , Φ*)'W + m-Wm, ••', θnψf(s)w(s)ds
Ja

- \\(<Pu , <PnY(M + iV)-W[(^, . . . , θnψf(s)w(s)ds

for all t in (α, b). Returning to Definition 1.1 we see that Σ L i Φψθk

is the (j + 1, n) entry of the n x n identity matrix. In case n = 1
Eq. (5.2) is immediate from the integral equation of the theorem,
and in case n ̂  2 the last observation and continued differentiation
of Eq. (5.3) shows that Eq. (5.2) is satisfied. Taking the limits as
t —> a and as t —•> b in Eq. (5.2) we find that

(5.4) Mya + Nyh=[- M(M + N^N + N(M + N)

where

and adding and subtracting M(M + N)~ιM in the term in brackets
on the right side of Eq. (5.4) we see that condition 4.1 is satisfied.

Returning to Eq. (5.2), if we add and subtract

on the right hand side we find that

k(y)(t) = K(φl9 •-., ?>»)(«)[- (M+ NΓ

for all t in (α, 6). Letting t0 be a point in (a, b) and adding and
subtracting

(0i, ~,θ«)(8)]*f(8)w(s)ds

in the term in brackets in the last equation we see that

k(y)(t) = K(φl9 , <Pn)(ί)[c + J| [(φl9



278 PHILIP W. WALKER

for all t e (α, 6) where c is a constant vector in <g*n. Thus by (a slight
modification of) Lemma 1.2 y is a solution to l(y) = wf a.e. on (a, δ).
Using Theorem 2.1 we may now conclude that yeDB and LBy = / .

REFERENCES

1. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations,
McGraw-Hill, New York, 1965.
2. R. H. Cole, Theory of Ordinary Differential Equations, Appleton-Century-Crofts,
New York, 1968.
3. N. Dunford and J. T. Schwartz, Linear Operators, Part II, Interscience-Wiley, New
York, and London, 1963.
4. H. E. Gollwitzer, A note on a functional inequality, Proc. Amer. Math. Soc, 23-
(1969), 642-647.
5. K. S. Miller, Linear Differential Equations in the Real Domain, Norton, New York,
1963.
6. M. A. Naimark, Linear Differential Operators, Part II, Frederick Ungar, New York,
1968.
7. P. W. Walker, Asympotics for a class of weighted eigenvalue problems, Pacific J.
Math., 40 (1972), 501-510.

Received August 18, 1972.

VIRGINIA POLYTECHNIC INSTITUTE

AND

STATE UNIVERSITY




