\widetilde{HD} -MINIMAL BUT NO HD-MINIMAL

YOUNG K. KWON

Let U_{HD}^k (resp. U_{HD}^k) be the class of Riemannian *n*-manifolds $(n \ge 2)$ on which there exist k non-proportional HD-minimal (resp. \widetilde{HD} -minimal) functions. The purpose of the present paper is to construct a Riemannian *n*-manifold $n \ge 3$ which carries a unique (up to constant factors) \widetilde{HD} -minimal function but no HD-minimal functions. Thus the inclusion relation

$$U^1_{HD} \subset U^1_{H\widetilde{D}}$$

is strict for $n \ge 3$. By welding k copies of this Riemannian *n*-manifold, it is then established that the inclusion relation

$$U^k_{{\scriptscriptstyle H}{\scriptscriptstyle D}} \subset U^k_{\widetilde{H}\widetilde{\scriptscriptstyle D}}$$

is strict for all $k \ge 1$ and $n \ge 3$. The problem still remains open for n = 2.

1. An *HD*-function (harmonic and Dirichlet-finite) ω on a Riemannian *n*-manifold M is called *HD*-minimal on M if ω is positive on M and every *HD*-function ω' with $0 < \omega' \leq \omega$ reduces to a constant multiple of ω on M. Let $\{\omega_n\}$ be a sequence of positive *HD*-functions on M. If the sequence $\{\omega_n\}$ decreases on M, the limit function is harmonic on M by Harnack's inequality. Such a harmonic function is called an \widetilde{HD} -function on M, and \widetilde{HD} -minimality can be defined as in the case of *HD*-minimal functions.

These functions were introduced by Constantinescu and Cornea [1] and systematically studied by Nakai [6]. In particular the following characterization by Nakai is important (loc. cit., cf. also Kwon-Sario [5]):

(i) A Riemannian *n*-manifold *M* carries an *HD*-minimal function ω if and only if the Royden harmonic boundary Δ_M of *M* contains a point *p*, isolated in Δ_M . In this case $\omega(p) > 0$ and $\omega \equiv 0$ on $\Delta_M - \{p\}$.

(ii) A Riemannian *n*-manifold *M* carries an HD-minimal function ω if and only if the Royden harmonic boundary Δ_M of *M* has a point *p* of positive harmonic measure. These are corresponded such that $\limsup_{x \in M, x \to p} \omega(x) > 0$ and $\limsup_{x \in M, x \to q} \omega(x) = 0$ for almost all $q \in \Delta_M - \{p\}$ with respect to a harmonic measure on Δ_M .

Since an isolated point of Δ_{M} has a positive harmonic measure, the above characterization yields the inclusion

$$U^k_{{}_{HD}} \subset U^k_{\widetilde{HD}}$$

for all $k \geq 1$.

For the notation and terminology we refer the reader to the monograph by Sario-Nakai [7].

2. Let $n \ge 3$. Denote by M_0 the punctured Euclidean *n*-space $R^n - 0$ with the Riemannian metric tensor

$$g_{ij}(x) = |x|^{-4} (1 + |x|^{n-2})^{4/(n-2)} \delta_{ij}$$
, $1 \leq i, j \leq n$

where $|x| = [\sum_{i=1}^{n} (x^i)^2]^{1/2}$ for $x = (x^1, x^2, \dots, x^n) \in M_0$. For each pair (m, l) of positive integers m, l, set

$$H_{ml} = \{8^k x \in M_0 \mid \mid x \mid = 1 \; ext{ and } \; x^i \geqq 0\} \; ,$$

where $k = 2^{m-1}(2l-1) - 1$, and $ax = (ax^1, ax^2, \dots, ax^n)$ for $x = (x^1, x^2, \dots, x^n) \in M_0$ and real a. Let M'_0 be the slit manifold obtained from M_0 by deleting all the closed hemispheres H_{ml} . Take a sequence $\{M'_0(l)\}_1^\infty$ of copies of M'_0 . For each fixed $m \ge 1$ and subsequently for fixed $j \ge 0$ and $1 \le i \le 2^{m-1}$, connect $M'_0(i+2^mj)$, crosswise along all the hemispheres $H_{ml}(l \ge 1)$, with $M'_0(i+2^{m-1}+2^mj)$.

The resulting Riemannian *n*-manifold N is an infinitely sheeted covering manifold of M_0 . Let $\pi: N \to M_0$ be the natural projection.

The following result is essential to our problem (Kwon [4]):

THEOREM 1. A function u(x) is harmonic on N if and only if $[1 + |\pi(x)|^{2-n}]u(x)$ is \varDelta_{e} -harmonic (harmonic with respect to the Euclidean structure) on N. In particular every bounded harmonic function u(x) on the submanifold

$$G = \left\{ x \in N \mid |\pi(x)| > \frac{1}{3} \right\}$$

is constant on $\pi^{-1}(x)$ for each $x \in M_0$ whenever it continuously vanishes on

$$\partial G = \left\{ x \in N \mid | \ \pi(x) \mid = rac{1}{3}
ight\}$$
 .

3. For each integer $l \ge 1$, consider the subset of N:

$$N_l = \left[M_{\scriptscriptstyle 0}'(l)
ight] \cup \left[igcup_{i
eq l} G_i
ight]$$

where

$$G_i=\left\{x\in M'_{\mathfrak{o}}(i)\mid \mid \pi(x)\mid >rac{1}{3}
ight\}$$
 .

It is obvious that

172

$$G = igcup_{i=1}^\infty G_i$$

and the Riemannian *n*-manifold G is an infinitely sheeted covering manifold of the annulus $\{x \in M_0 \mid 1/3 < |x| < \infty\}$.

We are now ready to state our main result:

THEOREM 2. The Riemannian n-manifold G $(n \ge 3)$ carries a unique (up to constant factors) \widetilde{HD} -minimal function but no HD-minimal functions. Thus the inclusion

$$U^{\scriptscriptstyle 1}_{{\scriptscriptstyle H}{\scriptscriptstyle D}} \subset U^{\scriptscriptstyle 1}_{\widetilde{H}\widetilde{\scriptscriptstyle D}}$$

is strict for Riemannian manifolds of dim ≥ 3 .

The proof will be given in 4-5.

4. For $m \ge 1$ construct $u_m \in HBD(N_m)$, the class of bounded HD-functions on N_m , such that $0 \le u_m \le 1$ on N, $u_m \equiv 0$ on $\bigcup_{i=1}^{m-1} [M'_0(i) - G_i]$, and $u_m \equiv 1$ on $\bigcup_{i=m+1}^{\infty} [M'_0(i) - G_i]$. Clearly $u_m \ge u_{m+1}$ on N and therefore the sequence $\{u_m\}$ converges to an \widetilde{HD} -function u on G, uniformly on compact subsets of G. It is easy to see that $0 \le u < 1$ on G and $u \mid N - G \equiv 0$. Since

$$u_m(x) \geq rac{| \, \pi(x) \, |^{n-2} - \, 3^{2-n}}{| \, \pi(x) \, |^{n-2} + \, 1}$$

on G by maximum principle and Theorem 1, it follows that 0 < u < 1on G. Note that $\lim_{|\pi(x)| \to \infty} u_m(x) = 1$.

We claim that the function u is \widetilde{HD} -minimal on G. In fact, let $v \in \widetilde{HD}(G)$ be such that $0 < v \leq u$ on G. In view of

$$0 \leq \limsup_{x \in G, x \to y} v(x) \leq \limsup_{x \in G, x \to y} u(x) = 0$$

for all $y \in \partial G$, v can be continuously extended to N by setting $v \equiv 0$ on N - G. By Theorem 1 v attains the same value at all the points in N which lie over the same point in M_0 . Thus we may assume that u, v are bounded harmonic functions on $\pi(G) = \{\pi(x) \mid x \in G\}$ such that u, $v \equiv 0$ on $\pi(\partial G)$.

Again by Theorem 1, $(1 + |x|^{2-n})v(x)$ is Δ_e -harmonic on $\pi(G)$. In view of the fact that Δ_e -harmonicity is invariant by the Kelvin transformation, the function

$$rac{1}{3^{n-2}|\,x\,|^{n-2}}(1\,+\,3^{2(n-2)}|\,x\,|^{n-2})v\Big(rac{x}{9|\,x\,|^2}\Big)$$

is \varDelta_e -harmonic on M_0 for 0 < |x| < 1/3 and continuously vanishes for

|x| = 1/3. Therefore, there exists a constant $a \ge 0$ such that

$$v\Big(rac{x}{9|\,x\,|^2}\Big) = rac{3^{n-2}a}{1\,+\,3^{2(n-2)}|\,x\,|^{n-2}}$$

on M_0 for 0 < |x| < 1/3 (cf., e.g. Helms [3, p. 81]). Thus

$$\lim_{x\to 0} v\Big(\frac{x}{9|x|^2}\Big) = 3^{n-2}a$$

exists and $v = 3^{n-2}au$ on G, as desired.

5. Suppose that there exists another \widetilde{HD} -minimal function ω on G. Choose a point $q \in \mathcal{A}_{M,G}$, the Royden harmonic boundary of G, such that q has a positive harmonic measure and

$$\limsup_{x \in G, x \to q'} \omega(x) = 0$$

for almost all $q' \in \Delta_{M,G} - \{q\}$ relative to a harmonic measure for G. Let $j: G^* \to \overline{G} \subset N^*$ be the subjective continuous mapping such that $j \mid G$ is the identity mapping and f(x) = f(j(x)) for all $x \in G^*$, the Royden compactification of G, and $f \in M(N)$, the Royden algebra of N. Here \overline{G} is the closure of G in N^* . Note that a Borel set $E \subset \partial G$ has a positive harmonic measure if and only if $j^{-1}(E)$ has a positive harmonic measure (cf. Sario-Nakai [7, p. 192]). Therefore, $j(q) \notin \partial G$ and $\partial G \subset j(\Delta_{M,G})$.

For each $m \ge 1$, $u_m(q) = u_m(j(q)) = 1$ since $j(q) \in \overline{\partial G} - \partial G$. Thus it is not difficult to see that $0 < \omega \le \beta u_m$ on G, where

$$eta = \limsup_{x \in G, x ext{ } q} \omega(x) > 0$$
 .

Therefore, $0 < \omega \leq \beta u$ on G and ω is a constant multiple of u on G as in 4.

It remains to show that u is not HD-minimal on G. If it were, u would have a finite Dirichlet integral. But u has a continuous extension to $G \cup \partial G$ with $u \mid \partial G \equiv 0$. Then by Theorem 1 u must attain the same value at all the points in G which lie over the same point in $\pi(G)$, a contradiction.

This completes the proof of Theorem 2.

6. Let G' be the Riemannian *n*-manifold obtained from G by deleting two disjoint closed subsets B, C, where

$$B = \left\{ x \in M_0'(1) \mid \mid x \mid = rac{9}{24} ext{ and } x^{\scriptscriptstyle 1} \geqq 0
ight\}$$
 , $C = \left\{ x \in M_0'(1) \mid \mid x \mid = rac{11}{24} ext{ and } x^{\scriptscriptstyle 1} \geqq 0
ight\}$.

174

For each $k \ge 2$ take k copies G_1, G_2, \dots, G_k of G', and identify, crosswise, B_i with C_{i+1} for $1 \le i \le m$. Here we set $C_{n+1} = C_1$. Then it is easy to see that the resulting Riemannian *n*-manifold $G^{(k)}$ has exactly k non-proportional \widetilde{HD} -minimal functions but no HD-minimal functions.

COROLLARY. For all $k \ge 1$ the strict inclusion

 $U^{\scriptscriptstyle k}_{\scriptscriptstyle HD} < U^{\scriptscriptstyle k}_{\scriptscriptstyle HD}$

holds for Riemannian manifolds of dim ≥ 3 .

7. For the sake of completeness we shall sketch a proof of Theorem 1. In view of the simple relation

$$arDelta u = \|x\|^{n+2} (1+\|x\|^{n-2})^{-(n+2)/(n-2)} {ullet} arDelta_{e} [(1+\|\pi x\|^{2-n}) u]$$
 ,

it suffices to show the latter half.

For each integer $k \ge 0$ let U_k be a component of the open set

$$\{x \in N \mid 2^{3k-1} < |\pi(x)| < 2^{3k+1}\}$$
 ,

and S_k a compact subset of U_k which lie over the set

$$\{x\in M_{\scriptscriptstyle 0}\,|\;|\,x\,|\,=\,2^{_{3k}}\}$$
 .

Since U_k is a magnification of U_0 and the \varDelta_e -harmonicity is invariant under a magnification, it is not difficult to see that there exists a constant q, 0 < q < 1, such that

$$|u(x)| \leq q \cdot \sup \{|u(x)| \mid x \in U_k\}$$

on S_k for any harmonic function u on U_k which changes sign on S_k . Note that q is independent of k.

Let u be a harmonic function on G such that $|u| \leq 1$ and it continuously vanishes on ∂G . For each $m \geq 1$, denote by π_m the cover transformation of G which interchanges the sheets of G: the points in $G \cap M'_0(i + 2^m j)$ are interchanged with points, with the same projection, in $M'_0(i + 2^{m-1} + 2^m j)$ for $j \geq 0$ and $1 \leq i \leq 2^{m-1}$. Define v_m on G by

$$v_m(x) = \frac{1}{2} [u(x) - u(\pi_m(x))]$$
.

Clearly v_m is harmonic on G, $|v_m| \leq 1$, and v_m changes sign on S_k , $k = 2^{m-1}(2l-1) - 1$. Therefore,

$$\max\left\{\mid v_{\scriptscriptstyle m}(x)\mid\mid x\in S_{\scriptscriptstyle k}
ight\} \leq q$$

for all $l \ge 1$. By induction on l, we derive that $|v_m| \le q^l$ on $S_{k'}$, where $k' = 2^{m-1} - 1$. Letting $l \to \infty$, we conclude that $v_m \equiv 0$ on G, as desired.

References

1. C. Constantinescu and A. Cornea, Über den idealen Rand und einige seiner Anwendungen bei der Klassifikation der Riemannschen Flächen, Nagoya Math. J., **13** (1958), 169-233.

2. ____, Ideale Ränder Riemannscher Flächen, Springer, 1963, 244.

3. L. Helms, Introduction to Potential Theory, Wiley-Interscience, 1969, 282.

4. Y. K. Kwon, Strict inclusion $O_{HB} < O_{HD}$ for all dimensions, (to appear).

5. Y. K. Kwon and L. Sario, Harmonic functions on a subregion of a Riemannian manifold, J. Ind. Math. Soc., **35** (1971), 135-161.

6. M. Nakai, A measure on the harmonic boundary of a Riemann surface, Nagoya Math. J., 17 (1960), 181-218.

7. L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970, 446.

Received August 21, 1972 and in revised form January 17, 1973.

UNIVERSITY OF TEXAS