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HYPERPOLYNOMIAL APPROXIMATION OF

SOLUTIONS OF NONLINEAR INTEGRO-
DIFFERENTIAL EQUATIONS

A, G. KARTSATOS AND E B. S A F F

Consider the integro-differential equation

(*) U(x) = x' + A(t, x) + ίV(ί, s, x(s))ds = T(t), t e [a, b]

subject to the initial condition

(**) x(a) = h .

Then a problem in approximation theory is whether a
solution x(t) of ((*), (**)) can be approximated, uniformly on
[a, b], by a sequence of polynomials Pn, which satisfy (**)
and minimize the expression ||JΓ( ) — U(Pn)\\9 where || || is a
certain norm. It is shown here that such a sequence of mini-
mizing: polynomials, or, more generally, hyperpolynomials,
exists with respect to the Lp-norm (1 < p ^ oo) and converges
to x(t), uniformly on [a, b], under the mere assumption of
existence and uniqueness of x(t).

The results of this paper are intimately related to those of Stein
[11], who studied the approximation of solutions of scalar linear in-
tegro-differential equations of the form

(1) W(x) == L(x) - \bh(t, s)x(s)ds = f(t) ,
Ja

(L(x) = x{m){t) + fάt)x{m-ι)(t) + + fjt)x{t)) subject to the two-point
boundary conditions:

( 2) Wt(x) = At(x) + B.ix) + \ Vi(t)x(t)dt - 0 , i = 1, 2, . . . , m
Ja

where iliW Ξ Σ ? ^ ^ 1 ' " 1 1 ^ ) , 5<M Ξ Σ?=I W M ) ( * ) . Namely, he
showed that under certain condition on L, h, f, if x(t) is the unique
solution of (1), which satisfies the linearly independent boundary
conditions (2), then for every n ^ 2m — 1 there exists a unique poly-
nomial pn of degree at most n, which satisfies (2) and best approximates
the solution of (1) with respect to the Lp-norm (1 g p < oo). He then
considered the convergence of the sequences {p{n}}, k = 1, 2, , m — 1
to the solution x(t) and its derivatives up to the order m — 1 respec-
tively. Extension of these results were also made for trigonometric
polynomials, or linear combinations of orthonormal functions. The
present paper extends the results of Stein and has points of contact
with the rest of the papers in the references.
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1* Preliminaries* Let # = (—00, + 00). For the system ((*), (**))
we assume the following: A(t, u) is an m-vector of functions defined
and continuous on [α, b]XRm. F(t, s, u) is an m-vector of functions
defined and continuous on the set S = {(ί, s9 u) e [a, b]X[a, b]XRm; s <Ξ t}.
T(t) is an m-vector of functions defined and continuous on [α, 6].

Let Bk, k = 1, m, be the Banach space of all k-vectors of continuous
functions on [α, b] with norm

p |
ίe[α,6]

where, for a vector ue Rk, \u\\ = \Ui By ΰ[ we denote the

Banach space of all functions f eBk which are continuously diίferentiable
on [α, 6], The norm now is

||/IU; = max{||/(<)lk}.

A sequence {gn} of functions in B[ is said to be linearly independent
if every finite number of the gn's is linearly independent on [α, 6].
A linearly independent sequence {gn} is said to be a d-sequence if the
set of all finite linear combinations of the gn's is dense in B[. For
each i = 1, 2, « , m let {gn,i}n=ι be a fixed d-sequence in B[. We
assume without loss of generality that gui(a) Φ 0, ΐ = 1, 2, « , m .
By a hyper polynomial of degree at most j" we mean a function p of
the form

p =

Pi

P2 cj}2gj>2

cumgUm + c2,mg2,m + + cj>mgj>

By /Z% we denote the set of all hyperpolynomials of degree at
most n which satisfy the initial condition (**). For a function f e Bm

we put

W e also m a k e u s e of t h e s y m b o l \\f\\^ i n s t e a d of

2Φ Main results*

THEOREM 1. Let 1 < p ^ 00 and suppose that the system ((*), (**))
has a unique1 solution x(t) defined on [a, 6]. Then for each n suffi-

1 Uniqueness means that any solution of ((*), (**)) which is defined on a subinterval
[a, c] of [a, b] must coincide with x(t).
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ciently large there exists a hyper polynomial Qn e Πn such that

( 3 ) || T - U(Qn)\\p = in f II T - U(P) \\P .
PeΠn

Furthermore, the sequence Qn{t) converges uniformly to x(t) on [α, 6].
For the case p — oo we have, in addition, that the sequence Q'n{t)
converges uniformly to xf(t) on [α, δ]

The proof requires the following lemmas:

LEMMA 1. The set of all hyperpolynomials is dense in Bf

m.

Proof. Obvious.

LEMMA 2. Let feBf

m satisfy (**). Then there exists a sequence
of hyperpolynomials pn e Πn, n = 1, 2, , such that

( 4 ) - p. =0.

Proof. By Lemma 1 there exists a sequence {qn} of hyperpolynomials
such that

( 5 ) l i m l l / - qn\\Bm = 0 .

We can (and do) assume that each qn is of degree at most n, respec-
tively, where n = 1, 2, •••.

Put dn Ξ= h — qn(a) and let dnΛ be the ith component of dn. Set

sn(t) =

where cnΛ = dnjgui(a). Since

| |d n | | = \\h- qn(a)\\ = \\f(a) - qn(a)\\ >0 as n-

it follows that

lim cnΛ — 0, for each i = 1, 2, , m .

Hence

( 6 ) IISΛIIS^ >0 as n > oo .

Now define pn{t) = qn(t) + sn(t). Then

Pn(a) = qn(a) + sn(a) = qn(a) + dn = h ,
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and so pn e Πn for each n = 1, 2, . From (5) and (6) it follows that

lim | | j f - 0 . 1 1 ^ = 0 .
n—>oo

LEMMA 3. Let

μ.,,svai\\T-U(P)\\,>
PeΠn

Then μn>p —• 0 as n —* °o.

Proof. It suffices to show that μntOO —• 0 as w —> oσ. By Lemma
2 there exists a sequence p f t e 77Λ, % = 1, 2, , such that

lίm||a? - ί?Λ | |B^ = 0

Since x(t) satisfies (*) we deduce that

( 7 ) μM £ || T - E7(p.)IL £ || aί' - ^ | U + II A( , a?) - A( , p.) |L

+ (6 - α) max | |F(ί, s, φ ) ) - F(ί, s, pn(s))\\ .

Obviously \\x'n — p^U ^ ||a?Λ — 2>Λ 11^—^0 as n—> oo. Also from the
uniform convergence of the p n to a? and the continuity of the functions
A and F it follows that the last two terms in the right-hand member
of (7) tend to zero as n—> oo. This proves Lemma 3.

LEMMA 4. If Pn e Πn is a sequence of hyper polynomials such that

( 8 ) l i m | | T - t f ( P n ) I U = 0 , 1 < p ^ oo ,

then the Pn(t) converge uniformly to x(t) on [α, 6]. For the case p =
co we have, in addition, that the derivatives P'n(t) converge uniformly
to xf{t) on [α, 6].

Proof. The proof is similar, but not identical, to that of [2,
Thm. 3, p. 17]. We shall sketch the argument for the real line only.

Let M be a constant such that |a;(ί)| < M for all t e [α, 6]. Note
that \h\ = \x(a)\ < M. Set & = [a, b]X[- M, M]. Since the norms
|| U(Pn)\\p are uniformly bounded, and the functions A(t, u) and F(t, s, u)
are continuous, there exist constants Kγ and K2 such that

| U(Pn)(t) - A(t, u) \>dt ^ K?, ue[-M,M],

I F(t, s, u) I g K2 , a ̂  s ^ t ^ δ, u e [- M, M] .

Let K = K, + K2(b - a)1+1'p, and consider the curves Cλ:u = h + iί(ί -
α)1/<r, C2:u = h — K(t — a)1/q, where <y satisfies the equation 1/p + 1/^ =
1. Let t*, α < ί* ^ 6, i = 1, 2, be the abscissa of the second point of
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intersection of the curve d with the boundary of the rectangle ^?.
Put t* ΞΞ mini*!*, tf). We shall show that for each n there holds

(9) | P . ( t ) | ^ A Γ , t e [ M * ] .

Let tn be the abscissa of the first point to the right of a at which
the graph of Pn(t) intersects the boundary of &. Integrating the
equation

(10) P;(ί) - U(Pn)(t) - A(t, Pn{t)) - (>(ί, β, Pn(s))ds
Jα

from a to tn, we deduce that

Γ T \F(t, 8, Pn(s))\dsdt
j a j a

a)(tn - α)

Hence the point (ίΛ, P»(ίΛ)) lies between the curves d and C2. Thus
*n ^ *̂> which proves (9).

It also follows from integrating the equation (10) that the sequence
Pn(t) is equicontinuous on [α, £*]. Therefore, by Ascoli's Theorem,
each subsequence of the Pn(ί) possesses a subsequence which converges
uniformly on [a, t*]. Suppose that τ/(ί) is the uniform limit on [α, t*]
of the subsequence Pk(t). From (8) and Holder's inequality it follows
that

(11) lim \'U(Pk)(τ)dτ = [*T(τ)dτ , te[a,b] .

Taking the limit as k —> °° in the equation

Pk(t) -h=[ U(Pk)(τ)dτ - [A(τ9 Pk(τ))dτ - [[F(T, S, Pk(s))dsdτ ,

we deduce from (11) and the continuity of the functions A and F
that

y(t) -h= ^T{τ)dτ - Ϋ A{τ, y(τ))dτ - Π V ( τ , s, y(s))dsdτ ,
Jα Jα J a J a

for te[α, ί*] Thus y(t) satisfies the system ((*),(**)) on [α, t*] and
so must equal x(t) on this interval. Since y(t) was an arbitrarily
chosen limit function, the original sequence P«(ί) must converge to
x(t) uniformly on [a, ί*].

Considering the fact that the proof given above carries over under
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the more general hypothesis that the initial values of the Pn{t) converge
to the corresponding initial value of x(t), one can show, as in the
proof of [2, Thm. 3, p. 17], that the sequence Pn(t) converges to x(t)
uniformly on [a, δ]

For the case p = oo it follows immediately from equation (10)
that lmv^Pi ί ί ) = x'(t) uniformly on [a, b].

Proof of Theorem 1. It is clear from Lemmas 3 and 4 that if
the minimizing hyperpolynomials Qn exist, then they have the asserted
convergence properties.

We first show that if Qk does not exist, then there is a hyper-
polynomial Pk e Πk such that

(12) \\T-U(Pk)\\p<μk,p + l/k,

and

(13) | | P * | L > f c .

If this were not the case, there exists a sequence of hyperpolynomials
TΓy 6 Πk such that

(14) || T - Z7(τry) H, > μktP as j

and

H^lU^fc, vj .

It is not difficult to show that the set {π e Πk\ 117Γ[̂  ^ k] is compact
in the Bf

m norm. Hence there is a subsequence of the πά which
converges in the Bf

m norm to a hyperpolynomial 7Γ0 e Πk. From (14)
and the continuity of the functions A and F it follows that

which is a contradiction.
Now suppose that there is an increasing sequence of positive

integers k such that Qk does not exist. Then there is a sequence of
hyperpolynomials Pk e Πk which satisfy (12) and (13). For this sequence
we have

(15) \\T-U{Pk)\\v >0 as k >oo,

and

IIPjfelL—> °° a s & — > °°

But from (15) and Lemma 4 we also have ||P&|U —̂  II^iU as k-^°o,
which is a contradiction.

Hence Qn exists for n sufficiently large. This completes the proof
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of Theorem 1.
To prove the existence and convergence of best hx approximating

hyperpolynomials we impose Lipschitz conditions on the functions A, F.

THEOREM 2. Suppose that

\\A(t, u) - A(t, v)\\ ̂  \\\u - i;||, (ί, u, v) e [a, b]XRmXRm ,

\\F(t, 8, u) - F(t, 8, v)\\ ̂  X2\\u - v\\, (ί, 8, u, v) e SXRm ,

where Xl9 λ2 are fixed positive constants. Let the system ((*), (**))
have the unique solution x(t) on [a, &]. Then for each n sufficiently
large there exists a hyper polynomial Qn e Πn such that

II Γ - C^Q.) |k = inf || Γ -
Peπn

Furthermore, the sequence Qn(t) converges uniformly to x(t) on [α, b].

The proof relies on the following analogue of Lemma 4:

LEMMA 5. If Pne Πn is a sequence of hyperpolynomials such that
l im^^ || T — Z7(P»)||i — 0, then the Pn{t) converge uniformly to x{t) on
[a,b].

Proof. Clearly,

\\x{t) - P%{t)\\ £ \t\\T(τ)-U(Pn)(τ)\\dτ+ [\\A(τ, x{τ)) - A(τ, Pn(τ))\\dτ

+ Γ [\\F(τ, s, x(s)) - F(τ, s, Pn(s))\\dsdτ

^ || Γ - ϋ-(P.)lli + \\'Mτ) - P&
Jα

+ λ,(δ - α)(Ί|α;(r) - Pn{τ)\\dτ .
J

From GronwalΓs inequality we deduce that

\\x{t) - Pn(t)\\ g || T - U(Pn)\lexp [(λ, + λ2(6 - a))(b - a)} .

Thus 11 x — Pn I!«, —> 0 as n —> c>o.

Proof of Theorem 2. It follows from Lemmas 3 and 5 that if
the minimizing hyperpolynomials exist, then they converge uniformly
to x(t) on [α, 6]. To establish existence one argues as in the proof
of Theorem 1.

REMARKS. Let A, F satisfy the conditions of Theorem 2 and, for
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1 ^ P < °°, let QneΠn denote I^-norm-minimizing hyperpolynomials.
Concerning the degree of convergence of the Qn to x it can be shown,
by use of Holder's inequality and GronwalΓs inequality, that

\\x - Q*L ^ μM(b - ay-W'exp [(\ + λ2(& - α))(6 - a)] .

Also if the functions T(t) — U(Qn)(t) satisfy a Lipschitz condition
on [a, b] uniformly w.r.t. n, the sequence Q'n(t) converges uniformly
to x'(t) on [α, &]. The proof of this fact follows from Theorem 5 in
[13].

The results of this paper can be extended to integro-differential
equations with Fredholm integrals of the form

W(x) = a' + A(t, x) + [ V(ί, s, x(s))ds = T(t) .

It would be of interest to obtain similar results for equations of
the type (*) under linearly independent boundary conditions of the
form:

Bx(a) + Cx(b) + \bV(t)x(t)dt = h ,

where B, C are constant m x m matrices and V is a continuous m x
m matrix-valued function on [a, &].
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