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ON DOMINANT AND CODOMINANT DIMENSION OF
QF - 3 RINGS

DAVID A HILL

In this paper the concept of codominant dimension is
defined and studied for modules over a ring. When the ring
R is artinian, a left R module M has codominant dimension
at least n in case there exists a projective resolution

with Pi injective. It is proved that every left iϋ-module has
the above property if and only if R has dominant dimension
at least n. The concept of codominant dimension is also
used to study semi-perfect QF — 3 rings.

Let R be an associative ring with an identity 1. Denote by

mR (resp. Rn) the left (resp. right) iϋ-module R. Using the termino-
logy of [5], we have the following definitions:

(1) R is left QF — 3, if R has a faithful projective injective
left ideal.

(2) R is left QF - 3+ if the injective hull E(*R) is projective.
(3) -R is left QF — 3' if E(mR) is torsionless, i.e., there exists

a set A such that E{R) ^ JJA #•
In general (1)=>(3) . For perfect rings the three conditions

are equivalent for left and right QF — 3 rings. (See [5].)
The dominant dimension of a left (resp. right) jβ-module M9

denoted by dom. dim (ΛM) (resp. dom. dim (MΛ)) is at least n, if there
exists an exact sequence

0 >M >Xλ > >Xn

of left (resp. right) ίί-module where each X{ is torsionless and injec-
tive for i = 1, •••, n. See [3] for details.

Note that this says when dom. dim (RJS) ^ 1 and R is left-
artinian that E{Re?) for i = 1, , n is projective where {β4}, i = 1, , n
is a complete set of orthogonal idempotents, and that each Xt is
projective.

We define codominant dimension as follows:
Let M be a left JS-module. The codom. dim of M is at least n

in case there exists an exact sequence

Pn > P n - 1 > >Pι > M > 0

where P< is torsionless and injective for i — 1, , n.
Following the notation of [3], we say that if such an exact
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sequence exists for 1 <̂  i <̂  n, but no such sequence exists for 1 ^
i ^ n + 1, then codom. dim (mM) = n. If such a sequence exists for
all n then codom. dim (MΛf) = oo. If no such sequence exists codom.
dim (mM) = 0.

An i?-module U is defined to be a cogenerator if for any module
M we can embed it in a product of copies of U. We have:

LEMMA. Let £7, V be left injective cogenerators then the
codom. dim (U) = codom. dim (V).

The proof follows easily from properties of injective cogenerators
and shall omit it.

Let U be a left injective cogenerator. If the codom. dim (U) = n,
we say that R has 1. codom. dim (Miί) — n. In a similar manner one
defines r. codom. dim (R*). Note that if mR is artinian, products of
projectives are projective and direct sums of injectives are injective.
Hence 1. codom. dim (mR) = n is equivalent to the existence of a
resolution

Pn >Pn_ί > >Pt >U >0

where P< is projective and injective and U = EiS,) 0 0 E(Sn)
where S<: i = 1, , n is a copy of each simple left iϋ-module.

In § 1 we characterize semi-perfect QF — 3+ rings in terms of
their finitely generated projective, injectives.

In § 2 we show that 1. dom. dim (M22) and 1. codom. dim (Rjβ) are
the same for artinian rings. Hence, if R is artinian QF — 3 then
the l.-dom. dim (r-dom. dim) 1. codom. dim (r-codom. dim) are the same.

For notation we use J to donote the Jacobson radical, and R{A)(RA)
denotes a direct sum (resp. direct product) of A-copies of R. Also
E(M) will be used to denote the injective hull of an iϋ-module M
and P(M) will denote the projective cover of M when M has a pro-
jective cover. For a left .β-module M, we let s*{M) = {x e R | x M = 0},
and •*(!) = {xeM\I-x = 0} where I g i 2 . We will use T(M) to
denote M/J(M) where J(ikf) is the Jacobson radical of M.

1. QF - 3 Rings. Recall that if mR is noetherian rt-QF - 3 «
rt-QF - 3+. (See [1] and [6].)

To begin with we shall prove that under those hypotheses

rt-QF - 3+ *=> rt-QF - 3' .

PROPOSITION 1.1. Let nR be noetherian. If E(Rm) is torsion-
less then E(R$) is projective.
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a

Proof. Given that 0 —> E —» RA is monic, where A is an indexing
set. We show that there exists a finite number of Ra's9 aeA say
Ra., *,Ram such that πθ\R = θ where π is the projection RΛ —*
Θ Σ£=i -K«< * s πionic. Let S be the set of all finite intersections of
right ideals {Ka}aeA where Ka = ker (πao θ \R). Note that f\%=lKai induces
a natural embedding of

o—>

Thus i2/n?=i Ka. is torsionless. Hence by [2, Thm. I, p. 350]

n κai = .„•„ n K

Now since mR noetherian, the set {^(Π?=i K<*)} has a maximal element

SΆ(Γ)T=ι Ka) where f) ifα. e S . Thus ,/ s(ΠΓ=i ^ ) = Γl£=i ̂  ί s a

minimal right ideal in S. But then a? e f)Γ=i ^ =* a? e Π«e^ #«• Thus
Π £ i ίΓβi = 0. This implies that θ is monic. But then πθ is monic
since ker (πθ) f] R Φ 0 if ker (πθ) Φ 0. This shows E is projective.

We next show that QF — 3+ => QF — 3 for semi-perfect rings.
First we need the following lemma.

LEMMA 1.2. Let K be finitely generated. Suppose there exists
an exact sequence

where E(K) = Eu Ei+1 = E(E4) for 1 <J i ^ n — 1 and each Ei is pro-
jective. Then Eu •••, En are all finitely generated.

Proof. This follows easily from the proof of [4, Lemma 1].

PROPOSITION 1.3. Suppose R is semi-perfect. If R is left QF —
3 + then R is left QF - 3.

Proof. By Lemma 1.2 E(R) is finitely generated. Since R is
semi-perfect E(R) = © Σ?=ι R^ where each e< is an indecomposable
idempotent.

Let Rel9 , Rek be a subset of i?^, , Ren, where the set
{Rel9 , Rek) is a complete set of isomorphism classes of [Reu , Ren}.
Then ί7 = Reγ φ © Rek is a minimal projective injective.

Now we come to the main theorem of this section.

THEOREM 1.4. Let R be semi-perfect. The following are equiva-
lent:
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(a) R is left QF - 3+.
(b) E(mR) is finitely generated and every finitely generated left

injective has an injective projective cover.
( c ) Every finitely generated left projective has a projective

injective hull.

Proof. (b)=>(a): Consider

P(E(R)) • E{R) > 0 .

Embed R - i E(R) then by the projectivity of R there exists a map
Θ':R-+P{E{R)) such that ff is monic.

Consider the following diagram:

0 >R-^

P(E{R)) .

Here θ"(r) = θ'(r) for all reR. Also θ" is monic. The injectivity
of E(R) forces E(R) to be a direct summand of P(E(R))9 hence
projective.

(a) « (c): Consider R{n\ R{n) ^ E{R){n). Thus E(P) ^ #(JB) , where
P φ P ' = i?(%), as a direct summand. Hence JF(P) is projective. The
converse is trivial.

(a) => (b): By Lemma 1.2 E(R) is finitely generated.

Consider P(E) —> E—*0 where P(E) is finitely generated injective.

Let R(n> -̂ » £7—> 0. Combining the above maps we have the following
diagrams:

0 > 22t#> —

E.

So we have /θ' epic a n d . p ' ° i » ) = ι° F u r t h e r we have

E(R)W

P(E)—>E >0

Noting that p" is epic and P(E) is projective, P(E) is a direct
summand of E(RYn). Hence injective.

A ring is perfect in case every module has a projective cover.
We show that QF — 3+ rings can be characterized in terms of the
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protective cover of E(ΛR).

THEOREM 1.5. Let R be perfect. Then every indecomposable
summand of P{E(^R)) is ίnjective if and only if R is left QF — 3+.

Proof. => Consider the following diagram:

Here i is a monomorphism and π is epic Since R is protective there
exists on / such that πf = i. Clearly / is monic Since R is perfect
P(E{χR)) = Σ«e -̂Bβα> where ea are primitive idempotents of R. Now
Im (/) is contained in ΣS=i Rβa9 for n a positive integer, since mR
is cyclic.Thus using the hypothesis, E(ΛR) is protective and R is left
QF - 3+. *= This is trivial.

2 Codominant dimension of rings* We begin with a lemma
which holds the key to the main results of this section.

LEMMA 2.1. Let R be a ring. The following conditions are
equivalent.

(1) For every protective left R-module P, there exists an exact
sequence

0 >P •JSi > >En

where Eif 1 ̂  i ^ n, are injective and protective.
( 2 ) For every injective left R-module Q, there exists an exact

sequence

p > p > . . . > P > o • 0

where Pi9 1 ̂  i ^ n, are injective and protective.

Proof. (1) => (2). For n = 1 a modification for the proof of
Theorem 1.4 will suffice. We assume the lemma is true for the wth
case and prove the n + 1 case. So consider the following exact
sequences.

( i ) o—>pΛ+ίJL &-£->&—,...-^^.+1

(2) Pn+ιJUpn^U tP^Q >0.

Here Q is an arbitrary injective module and
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Pi, •, En

are both projective and injective and Pn+ί is projective.
Also Ek is the injective hull of Cok (Jk).
Denote by K the image of θλ. Using the injectivity of Pn, there

is a map θ2: Eλ —• Pn such ^J^ = in+1θ1 where iΛ + 1 is the embedding
of ϋΓ into Pn. The injectivity of P ^ i and the exact sequence 0 —>
EJPn+1—+ E2 induce a map θz\ E2-^Pn_γ which one can easily check
has the property θdj2 = inθ2.

In like manner we can define θk: Ek^ —> Pn+2_k such that

*-! = W s - A - i , k = 2, -*-,n + 2 .

This information is summed up in the following diagram:

0 P.+1

θl

- E2
EnΛ

Jn+

K •+P.

K

in

θn+2

•0.

0

Having constructed 0n+2, the projectivity of En+ι induces a map
Λt: En+1-+Py such i A = 6 w + 2. Now consider the map Λ1J

r

n+1 — ^TC+1: ΐ
1,,—»•

P t . We have i^hj^ - θn+ι) = θn+2jn+1 - iI(?n+1 = 0. So Im ( V , + 1 -
θ,+ι) ^ ker ( i j .

Now consider the following diagram:

Im (i2
0 .

We can construct h2 using the projectivity of En. By a similar
argument we can show that Im (h2Jn — θn) ^ ker (i2). By a recur-
sive argument we can construct hkJn+2_k — θn+2_k for k = 1, •••, n
in like manner. In particular we have hnJ2 — Θ2\ Eί -^ P n where
Im (/^Jg — ^2) ^ K. We need only show equality to complete the
proof. Let keK. Then there exists an xe Pn+1 such that θ^x) = k.
Thus (hnj2 - Θ^J^-x)) = ^Jiίa;) = ^(a?) = k. Thus /^/2 - θ2 maps
on to iΓ. The proof (2) => (1) is similar. This completes the proof.

Noting that for left artinian rings products of projectives are pro-
jective, and direct sums of injectives are injective one can easily show
that dom. dim (R) ^ n implies dom. dim. (P) ^ n for all projective P
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Likewise letting I = φ X Ea(Sa) be the minimal injective cogenerator
of iϋ, we find that codom. dim(J) ^ n implies codom. dim (Q) >̂ n for
all injectives Q. Thus we have:

THEOREM 2.2. Let R be left artinian then the following are
equivalent:

(1) The inf {me Z\ dom. dim (P) = m for all P projectives} = n.
(2) The inf {meZ\ dom. dim (Q) = m /or αii Q injectives} = w.
( 3) 1. dom. dim (wi2) = n.
( 4) 1. codom. dim (mR) = w.

jfjf wo ŝ cΛ % exists we say 1. dom. dim (i?) = oo

Proof. (3) ==> (1), (4) => (2) by our previous discussion. (1)=>(3):
There exists a projective module P such dom. dim (P) = n.

Now P = φ Σ ^ ί?βα, {eα} primitive idempotents such that for
some eβ dom. dim (Reβ) <n + 1 where eβ e {ea}. Since Reβ < R, n + 1 >
dom. dim (R) >̂ n. This yields the desired result. (2) => (4) is similar.
(1) => (2): By Lemma 2.1 inf {meZ\ codom. dim(Q) = m) ̂  n. If inf of
the above set is strictly greater than n, another application of the
lemma forces inf {meZ\ m = dom. dim (P), P projective} > n which
is impossible. (2) =» (1) is similar.

Let R be left artinian and both left and right QF — 3. Then
by [4, Thm. 10] 1. dom. dim (sjβ) = r. dom. dim (Rm). Thus in view of
2.2 we have:

PROPOSITION 2.3. Let ^R be artinian and QF — 3. Then
1. domdim (mR) = r. domdin (Rm) = 1. codomdin (ΆR) = τ. codomdim (Rm) = n.

Acknowledgement. The author wishes to thank the referee for
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