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A NONASSOCIATIVE EXTENSION OF THE
CLASS OF DISTRIBUTIVE LATTICES

E. FrRIED AND G. GRATZER

Let Z =1{0,1,2} and define two binary operations A and
V on Z as follows: 0A1=0,0v1=1,1A2=1,1v2=
2,2/A0=2,2V 0=2, both operations are idempotent and com-
mutative. This paper deals with the equational class Z gen-
erated by the algebra <Z; A, V). The class Z contains the
class of all distributive lattices and Z is a subclass of the
class of weakly associative lattices (frellis, T-lattice) in the
sense of E. Fried and H. Skala.

The purpose of this paper is to prove that Z shares the
most important properties of the class of distributive lattices.

A tournament {T; <) is a set T with a binary relation < such
that for all a,be T exactly one of a = b,a < b, and b < a holds.
Equivalently, a tournament is a directed graph without loops such
that exactly one directed edge connects any two distinct points. Just
as chains (linearly ordered sets) can be turned into lattices we can
define meet and join on a tournament {T; <) by the rule:

fe<y, thenz=2Ay=yAczandy=2Vy=y\Vez,
and x =2 Az =2 \V 2 for all x.

Since for all z,ye T,z + y, we have ¢ < y or y < = the above rule
defines A and V on T.

Of course, the algebra {(T; A, V) we constructed is not a lattice:
neither A nor \/ is associative unless {T; <) is a chain, that is, <
is transitive. However, as it was observed in E. Fried [5], the two
operations are idempotent, commutative; the absorption identities hold
and also a weak form of the associative identities.

The smallest example of a nontransitive tournament is the three-
element cycle ({0, 1, 2}; <> in which 0 < 1,1 < 2, and 2 < 0. In the
corresponding algebra Z neither A nor \/ is associative.

Z plays the same role for tournaments as the two-element lattice
does for distributive lattices. A tournament (algebra) <{T; A, V) is
not a chain if and only if it contains Z as a subalgebra.

In this paper we investigate the equational class Z generated
by the algebra Z. Observe that C, = {0, 1}; A, V) is a subalgebra
of Z, in fact, it is a two-element chain. Therefore, Z contains as
a subclass the class D of all distributive lattices. (Indeed, D is
generated by C,.)

The results of this paper can be summarized as follows: many of
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the most important properties of D generalize to Z, and, in fact, Z
is the only equational class (other than D) generated by tournaments
to which these results generalize.

In Part I, we discuss congruences in, and identities of Z. Section
2 contains some preliminary results and some important concepts, in-
cluding the proper form of distributivity for tournaments. In §3 the
minimal congruence relation @(a, b) is described in Z and is applied
to show that the Congruence Extension Property and the Amalgamation
Property hold for Z. In §4 it is shown that the result of §3 charac-
terizes the class Z. This is applied in §5 to find a finite set of
identities (in fact, two) characterizing the class Z'. Part II contains
the structure theorems. In §6 we describe the structure of finite
algebras in Z: they are all of the form D x Z*, where D is a uniquely
determined distributive lattice. Section 7 gives the structure of free
algebras over Z: the free algebra on 7 generators is of the form
Fy(n) x Z"*, where F,(n) is the free distributive lattice on % generators
and k,=3""1—2"+1. We prove in §8 that every algebra in Z can be
embedded in an injective one. The injectives in D are known to be
the complete Boolean lattices. The injectives in Z are the extensions
of Z by complete Boolean lattices.

EXAMPLES. An “evaluation” of elements of a set 4 is a map @
of A into another set S, equipped with a binary relation <, meaning
“better than”. We say that b is better than a(a, be 4) if ap < bp.
If we want to be able to compare any two elements of A, then we
have to assume that {S; <) is a tournament.

Evaluating a sample {a, ---,a,> of elements of 4 we get an
“egvaluation vector”: {a,®, +--, a,?>. The study of the equational class
generated by (S; A, V) is the investigation of the algebra of the
evaluation vectors. Thus Z is the “algebra” of the evaluation vectors
over Z.

Given a set X we can consider the set P(X) of all partitions
(X,, X;> of X into two sets. If (X, X, (Y, Y,>e P(X) we can set
Xy, X> =Y, Y) if and only if X, =Y,. This makes P(X) into a
distributive lattice. Any distributive lattice is a sublattice (up to
isomorphism) of some P(X).

Now consider the set Z(X) of all partitions of X into three subsets
(X, X,, Xop. For (X, X, X,),(Y,, Y,, Y,) e Z(X) we declare {X,. X,

t The results of this paper were announced in the Notices of the American Mathematical
Society 18 (1971), 402 and 548. Independently, in 1971 K. Baker announced in a lecture
a general result, namely that every equational class of finite type in which the algebras
have distributive congruence lattices and which is generated by a finite algebra can be
defined by a finite set of identities. Our result in §5 is a very special case of Baker’s
result. Of course, the general method of Baker yields more complicated identities for Z.
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Xy =Y, Y,Y)ifand only if X, =Y, UY, X, SY,UY, and X, &
Y,uY, Again, Z(X)eZ, and any member of Z will be (up to
isomorphism) a subalgebra of some Z(X). Observe that Z(X) contains
P(X) as a subalgebra under the correspondence {X,, X,> — (X, X,, @>.

PART I. Congruences and Identities.
2. Preliminary results. An algebra (4; A, V) is called a weakly

associative lattice (WA-lattice) if it satisfies the following set of
identities

(1) xAx=2 and zVa=2 (idempotency) ;
(2) crAy=yAx and 2Vy=yVa (commutativity) ;
(3) rA(Vy=2 and 2V (@AY =2

(absorption identities) ;

(@A2)V@HA2)Vz=2 and

4
(4) (V2 A@WV2)Az=2 (weak associativity) .

This axiom system was discovered independently by E. Fried [5]
(he called these T-lattices) and H. M. Skala [16] (she called them
trellis).

(1)-(4) are not independent. (8) implies (1), and (4) and (1) imply
(8). Observe, that the first identity (and, similarly, the second identity)
of (4) can be written in the form

@A)V @A) Ve=@A) V(YA V2

which justifies the name weak associativity.
It is easy to see that in a WA-lattice the polynomial p(x, v, 2) =
((x Ay)V (YA 2)V (A x) satisfies the identities
r = p,,y) = p,y, ©) = py, , ¥)
implying (B. Jonsson [13]) that

LEmMMA 1. The congruence lattice of a WA-lattice is distributive.

If A and B are WA-lattices, @ a congruence relation of 4, @ a
congruence relation of B, then we can define a congruence relation
O x @ on AX B:{a,by =<a, by x @) if a =a,(0) and b = b,(D).
Let C(D) denote the congruence lattice of D. Lemma 1 is known to
imply

COROLLARY. FEvery congruence relation of A X B 1is of the form
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6 X @ with © € C(A) and @ € C(B). Therefore, C(A x B) = C(A) x C(B).

Combining Lemma 1 with another result of B. Jonsson [13] we
get the crucial

LEMMA 2. Let A be a finite WA-lattice and let K be the equational
class generated by A. Then every algebra in K s isomorphic to a
subalgebra of an algebra of the form Alv X ««« X Aln, where I, +++, I,
are arbitrary sets and A, ---, A, are homomorphic images of sub-
algebras of A.

In a WA-lattice A we can define
r<yifandonlyif x=a2 Ay ifandonlyif y=aVy.

The equivalence of the second and third clauses follows from the
absorption identities. Observe that x <z, and x < y and y < ¢ imply
x=9. Also, 2 =<2V y,y=<2V Yy, and it follows from (4) that z < ¢
and ¥ < ¢t imply x \V y < ¢; these can be summarized by stating that
2V y is the least upper bound of # and y. Dually, xAy is the
greatest lower bound of # and y. These properties give an alternative
definition of WA-lattices in terms of < (E. Fried [5] and M. H. Skala
[16]).

We conclude from this immediately, that any tournament is a
WA-lattice. Furthermore, since a homomorphic image of a tournament
A is isomorphic to a subalgebra of A we conclude from Lemma 2:

LEMMA 3. Let A be a finite tournament. Then the equational
class K generated by A comsists of subalgebras of direct powers of A.
In particular, every subdirectly irreducible member of K is a sub-
algebra of A.

Applying this to Z and to the equational class Z it generates we
conclude that every member of Z is isomorphic to a subalgebra of
some Z’. The subdirectly irreducible algebras in Z are Z and C..
Thus Z contains D, in fact, Z covers D.

Given an algebra A and a, be A there is a smallest congruence
relation © under which a = b(6©). This congruence relation is denoted
by O(a,b); it is called a principal congruence relation. Principal
congruences of distributive lattices are described in G. Gratzer and
E. T. Schmidt [10] and G. Gratzer [8}]:

LEMMA 4. Let L be a distributive lattice, a,b,¢,de L, a < b, and
¢ <d. Then the following conditions are equivalent:
(i) ¢ =d6(a,b);
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(ii) e=(@Ve)Adand d=(bVec)Ad.
(iili) aANec=aANdand bV ec=2>Vd.

The most important result of this paper, namely Theorem 2, is
patterned after Lemma 4.

Lemma 4 implies that any distributive lattice L has the property
that ¢ = d(6(a, b)) can be decided in the sublattice generated by a, b,
¢, and d. This property has an important consequence by A. Day [4]:

LEMMA 5. Let K be an equational class of algebras with the
property that for any Ac K and a,b,c,dc 4, c = d(O(a, b)) can be
decided in the subalgebra gemerated by a,b,c, and d. Then K has
the Congruence Extension Property, that is, if A, Be K, A a subalgebra
of B and if O is a congruence relation on A, then there is a congruence
relation @ on B such that @ restricted to A is O.

Another property of distributive lattices we need to generalize
is the uniqueness of relative complements.
Let T denote the equation class generated by all tournaments.

LEMMA 6. The distributive law
(5) sTA@YV=(@ANY)VE@AR)AYV?2)
holds in T.

Proof. Let A be a tournament, x,y,ze A. If two of z,y, and
2z are equal, then (5) holds since it is true in lattices. If {=,y, 2} is
a chain, again, (5) is trivial. So we can assume that {z,y, 2z} is
isomorphic to Z. Since (5) is symmetric in ¥ and 2, we can assume
that y < 2. Therefore, y < 2z <z < y. In this case, z A (y V 2) =
sANz=zand (AYV@AD)A[YV2=@V2)A2=2 0 (5 holds.
Thus (5) holds for all algebras generating T, so it holds for 7.

LEMMA 7. Let A be a WA-lattice satisfying (5). Then for a,b,
ced,aNb=aAcand a\Vb=aV\Vc imply that b = ¢c.

Proof.
b=bA(aVb by (3)
=bA(aVe) sincea Vb=aVe

=((Aa)V(bAC) AN(@Ve) by (5)

=(cAa)VbAc) AN(aVb) sincecbAa=cAcandaVe=aVb
=cA(aVb by (5)

=cA(aVe) sinceaVb=aVe

=c by (3),
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which was to be proved.

It should be pointed out that, unlike in lattices, (5) is not self-
dual. The independence of (5) and its dual is shown in [6].

In conclusion we mention that a list of identities describing T
was given in [9].

3. Principal congruences. In this section we state and verify
the analogue of Lemma 4 for Z. To facilitate the discussion we
introduce some notation. We define five polynomials in the variables
Xy, Xgy sy Tqy AN 25

(6) D=2 ATy 0= @ V Ty Dy = (903\/5175)\/904, and p, = @,
(7) p= (@ VD)V D)AD)AD.

THEOREM 1. Let AcZ, and let a,b,c,dcA,a < b, and ¢c < d.
Then the following conditions are equivalent:

(1) ¢=dO(,bd));

(ii) ¢=p(a,a,b,c, d) and d = p(b, a,b,c, d);

(i) aAlAbD)=aAN@ADb and (aVe)Vbdb=(aVdVb

REMARK. If A is a lattice, then p, < 2, < p,; similarly, p, =
x; = p,.  Therefore, p = (@, V (0. V 2)) A (D5 A D) = (B V D) N\ @ =
(@, V (®, A 25) A @5 reducing the first half of (ii) to the first half of
Lemma 4. (ii). The second half of (ii) can be handled similarly. As
for (ii), A and \/ are associative if A is a lattice, and soa A (¢ A b) =
bAc,a A(dANDb =aAd,and so on, yielding Lemma 4. (iii). Observe
the different placing of the parentheses in the two equations in (iii).

Proof. (i) implies (ii). We prove this implication in several steps.

(o) A is isomorphic to C, = {0,1}. Since C, is a lattice a re-
ference to Lemma 4 settles the matter. Or, equivalently, check the
implication fora =0, b =1land ¢=0,d=1, or¢c=d=0,orc=d =1,
and for a=b=1and ¢c=d =0 or ¢ =d =1 (seven cases).

(8 A is (isomorphic to) Z = {0, 1, 2}. If {a, b, ¢, d} # Z, then we
proceed as under (). If @ = b, then we must have ¢ = d, thus we
can assume that a = b. By symmetry, we can assume thata =0, b =
1. Since Z is simple, <{c¢, d) could be (2, 2, <1, 25, or (2, 0> (all other
pairs contradict that ¢ < d or that {e, b, ¢, d} = Z). Therefore, it is
sufficient to check the implication in Z® for a = <0, 0, 0>, b = (1,1, 1),
c=1<2,1,2) and d = {2,2,0). Compute:
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m=aANd={2,2,0,p=aVec=<(0,10,p,=0bVd Ve
=42,2,1> Vv {21,2> =<2, 2 25, p, =<2,2,0> p(a,a,b,c,d
= (((aV D)V D) A D) N\ Ds
= (((K0, 0, 0> v <2,2,0>) v <0,1,05) A <22, 25) A (220
= ((£0, 0, 0>\/<0, 1, 0%) A <2, 2, 2)) A (2,2, 0)
= (0, 1,0)> A <2,2,2)) A <2, 2,0)
=<2, 1,2)A{2,2,00 =¢2,1,2> =¢,

and similarly, p(b, a, b, ¢, d) = d.

(v) Assume the implication to hold for the algebras A4, ---, 4,,
and let B be a subalgebra of A, x <+« x A4,. Then the implication
holds in B. Indeed, leta, b,¢,deB,a < b,¢ < d and let ¢ = d(O(a, b))
in B. By a result of A. I. Malcev (see Theorem 10.3 of [7]) there
is a sequence of elements 2, = ¢, z,, -+, 2, = d of B, and unary algebraic
functions p,, ++-, p,_, of B such that {p;(a), :(b)} = {2;, z:4,} for ¢ =
0,1, .-, m— 1.

For an element u of B let u' denote the ith component of wu,
that is, u = u™, .-+, ™). A unary algebraic function is of the form
q(uy, +++, 2, +++, U,), Where u,, --+,u, € B and p is a polynomial. So
we can define p® a unary algebraic function on A; by q{, ---, 2,
“ee, ).

Using the sequence of elements of A;: z{", 2, «.- 2% of B;, and
the unary algebraic functions: »”, --., p;?,, we conclude that

a('i) = b(i)(@(c(i), d(i))) in A’b .
Thus, by assumption,

c(i) — p(a(i)’ a(i)’ b(i)’ c(i)’ d(i)) and
d(’i) — p(b(i)’ a(i)’ b(i)’ c(i)’ d(i)) .

for 1=1,+-+,n. Hence, ¢ = p(a,a, b,c,d) and d = p(b, a, b, ¢, d),
which was to be proved.

Now we are ready to prove the implication. Let Ae Z, a,d,¢c,de
A,a<b,c<d, and ¢ =d(O(a, b)). Invoking Malcev’s result used above
we can assume that A is finitely generated. Since Z is generated by Z,
an n-generated algebra can have no more than 3*" elements, hence it
is finite. Thus A is finite. By Lemma 3, A can be embedded in
some Z*. By (a) and (B) the implication holds in Z, hence by (7) it
holds in A, completing the proof.

(ii) mplies (iii). This implication takes the form of a universal
Horn sentence (see, for instance, [7], §46), therefore, it holds in Z if
and only if it holds in Z. In Z, if « = b, then the assumption implies
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¢ = d, hence the conclusion obviously holds. If a b (@ < b), then the
functions a A (x A b) and (¢ \V z) V b are constants (@ A (x A b) =a
and (¢ \V ) V b = b), so the conclusion is obvious.

(iii) ¢mplies (i). Let ©® = O(a, b) and let [x]O© denote the congruence
class of A containing x. Then

[a A AD]O=][aAN(@AD]O,
and so, using [a]® = [b]0, and & A (y A @) = y A @, we obtain, in turn:
[e]® A ([c]O A [0]0) = [al® A ([d]O@ A [b]6O)

(8) [@]l® A [c]® = [a]® A [d]6 .
Similarly,
(9) [a]6 V [¢]0 = [a]® V [d]6 .

Applying Lemma 7 to A4/0, (8) and (9) imply that [c¢]® = [d]O,
that is, ¢ = d(6(a, b)), completing the proof of Theorem 1.

Observe, that Theorem 1 implies that the assumptions of Lemma
5 are satisfied in Z. Thus,

COROLLARY 1. Z has the Congruence Extension Property.

A class K of algebras is said to have the Amalgamation Property
if for any A, B, B,€ K, and embeddings f;: A— B;, ¢ = 1, 2, there is
a Ce K and embeddings g;: B;— C, 1 = 1, 2, such that f,g, = f.g.. For
a general discussion of the Amalgamation Property see B. Jonsson
[12].

COROLLARY 2. Z has the Amalgamation Property.

Proof. By Theorem 138.16 of [8] it is sufficient to prove that for
given A, B, B,c Z, embeddings f;: A— B;,©t=1,2, and a,be B, a #+
b, there exist homomorphisms g;: B; — Z, ¢ = 1, 2, such that f,g, = f.0:
and ag, + bg,. By Lemma 3, there is a homomorphism g¢,: B,— Z
satisfying ag, = bg,. Let © be the congruence relation of A induced
by g.. By Corollary 1, there exists a congruence relation & on B,
satisfying @, = 6. Let g, be the natural homomorphism of B, onto
B,/6. By Lemma 3 again, there is a homomorphism g}: B,/6 — Z.
We define g, = glg). Obviously, f.g, = f.g.» concluding the proof.

In closing this section, we mention that the polynomial p, which
plays a central role in Theorem 1, was found using free algebras. A
free algebra was used also to discover the identity (5) in order to
get Lemma 7.

Alternate forms of p suchas p = (((x, V @) A @) V @) A ¢, or any
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of the other possibilities can also be found using the free algebra
technique.

4. The characterization theorem. We started out in our research
trying to find a finite set of identities characterizing Z. Since we
believed that the equivalence of Lemma 4. (i) and (ii) is characteristic
of D we wanted to find the analogous result for Z hoping that it
would characterize Z. The next step would then be to find a set of
identities based on which the analogous result for Z can be proved.
As we shall see in §5, this runs into some problems. The situation
was saved by Theorem 1. (iii) and by the fact that Theorem 1. (iii)
can also be used to characterize Z. Since this is the result needed
in §5 we omit the original theorem and prove only the latter one.

THEOREM 2. Let K be an equational class of WA-lattices in which
forany AeK,a,bc,dcA, a <bc<d, and c=d(O(a, b)) imply that
aNCAND)=aA{dAband (aVe)Vb=(Vd Vb Then K< Z.

Let A be a subdirectly irreducible algebra in K. We shall prove
that A = C, or A = Z. This obviously implies that K < Z.

If |A] =2, then A = C, since A is a WA-lattice. Thus we can
assume that |4| > 2.

Since A is a subdirectly irreducible algebra with more than two
elements, A has a congruence relation @ =% w with the property that
@ < O for any congruence relation @ of A with ® = w. Since @ # w
there is a congruence class G of @ of more than one element.

We claim that there are elements a, b,ce A such that a, beG,
a<b,and ¢ <a or b <ec. To prove this take x, ye G, x = y. Obvi-
ously, x AyeG and =2 ANy or y=x ANy. Set ¢’ =2 Ay and
V=ua or Y=y so that o/ = b'. If o' and b do not satisfy the
requirements with some ¢’ € A, then for all de A we havea’ Ad = a'
and o'V d =10, that is, o/ <d < b for any deA,d=-a/,d#b". In
this case set ¢ =a’,a =d, and b = b'.

So we can assume that we have

(10) c<a<babeG,

since the other case, ¢ < b < ¢ can be proceeded with similarly (dually).
By (10) ¢ # a, so O{c, a) + w. By the definition of @, we have
® < O(c, a), and by the definition of G and (10) we must have

a = b(Oc, a)) .
We apply the hypothesis of Theorem 2 to this congruence. We obtain:
cva)Va=(VbdVea,
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that is, @ = (¢ \V b) V @, in other words,
(11) c<b=a.
We claim that

12) c=cVb.

Assume, to the contrary, that ¢ <c¢ VvV b. Then O(c,c V b) + o,
and so as above we get

a=b0c,cVb).
Applying the hypothesis of Theorem 2 to this congruence we obtain:
(13) ceAN@AN(@Vb))=cADBANI(ECVD).

By (11),a A (¢ VV b) =a and, by (10), ¢ Aa =c¢ so (13) yields ¢ =
¢ A\ b, or, equivalently,

(14) ¢c<b.

On the other hand, by (11),¢ V b < a; combining this with (14) we
obtain b < a, contradicting (10). This verifies (12).

(10) and (12) jointly mean that {a, b, ¢} is a subalgebra of A and
{a, b, ¢} is isomorphic to Z.

We claim that A = {a, b, ¢}.

Assume to the contrary that there is an element d e A such that
dé¢{a, b,c}. We claim that d can be chosen to be comparable to one
of a,b, and ¢. Indeed, if there is no such d then for an arbitrary
ecA,a Ne=a, since a A e < a implies that ¢ A ¢ = ¢ and so ¢ < e.
Similarly, ¢ VV e = a, implying that @ = ¢, a contradiction. Thus, by
reason of symmetry and duality we can assume that there is an element
d e A satisfying

15) défa,b,¢} and d<a.

Since a,beG and b <c¢<a we conclude that ceG. Thus d=+a
implies the congruence

b =cOd,a).
Therefore,
(16) ANBA=dAN(ANa).

But by (10) b Aa=a and ¢ A a =¢; by (15), d A a = d, hence (16)
yields: d =d A c. Since ¢ # d this means that d <c. So we get
the congruence

a = b6, ) ,
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which implies that

an @va)yvVe=@AVbVe.
But dVVa=a,aVc=c, hence (17) gives

18) a=dvVvbdvVve.

Observe that d < ¢ and b < ¢. Therefore, d \V b=¢, and so (dVbd) Ve
= ¢, contradicting (18) and a + c.

This contradiction shows that A = {a, b, ¢}, that is, A = Z, which
completes the proof of Theorem 2.

5. Identities for Z. We want to find a finite set X of identities
characterizing Z. This set Y should express that Z is a class of
WA-lattices in which minimal congruences can be described by Theorem
1. It is easy to find identities which imply that the relation given
by Theorem 1. (ii) is reflexive, symmetric, and has the Substitution
Property for A and V. However, transitivity takes the form ¢if
Theorem 1. (ii) holds for ¢, d, and for ¢, d,, and d = ¢,, then it holds
for ¢, d,” which we could not turn into an identity.

The trick is to find identities that prove that O(a, b) is in some
sense the transitive extension of the relation given by Theorem 1.
(ii). Then to show that this implies that Theorem 1. (iii) can be
used to describe O(a, b).

We need some notation. We shall use p, p,, +-+, p, of (6) and (7)
without references. Two 4-ary polynomials derived from p will be
used often:

(19) q} = p(xly .’1;1, xl v ny ',’U37 x3 v '/v4)
(20) Q= D@V By, By, 8,V By, B, By VT

Finally, for the polynomials ¢, t,, ¢, and ¢, let R({, t, &, t,) denote
the identities

(21) ty = qi(t, &, s, t) and &V & = @by, b, b, t V L) .

Y consists of three sets of identities. X, is a set of identities
for WA-lattices (for instance, (1)-(4)) and one more identity

(22) (eVyVEA)VEV)=@VHVa)Vze.
2, is the following eight identities:

(23) R(@,, 2, ¢ \ %5, 45 N @), {3, 5} = {1, 2}

(24) Rz, @, q; V %5, q; V %), {3, 5} = {1, 2} .
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2, consists of two identities
(25) T A (Q1 A\ (xx V .')52)) =o; A (Q2 AN (xl V x2)>
(26) @Va)V@Ve =@ VaegVEVa).

THEOREM 8. X = 3, U X, U 2, defines the class Z.

Proof. First we have to see that Y is satisfied in Z. Z, is
obviously satisfied excepting (22).

It is sufficient to verify (22) in Z. Let a,b,ceZ. If |{a, b, c}| =<
2, then they form a sublattice, in which (22) becomes (a V b) VV
(@Vve)=aV (bVe), a triviality. Thus we can assume that Z =
{a,b,¢} If a=0,=1,¢=2, then (0OV1I)V OA2)VOV2=
ITv2)vo=2v0=0and(CV])VOHV2IZ=2CVOHOV2=0V2=0;
ifa=1,0=0,¢c=2,then(1VOV(AA2)VAV2=((1V])V])V2=
l1v2=2and (VO VIV2=0VI1)Vv2=1v2=2 Al the
other substitutions agree with one of these two (up to automorphism)
showing (22) in Z. If «, =2, V 2,, then by (19), and (20), ¢, = @,
and so ¢, A ; = ¢, A\ ®. In other words,

QN2 =g N\ (0@, 2, VX)),
or
G A= (A D) V(G A @) O, 2V x)) .
Applying Theorem 1. (ii) to this congruence we obtain

QN Ty = g, (@, % V Ty @0 A Xy (@ A D) V(G N E5))
(@ A B) V(@ AN T) = qu(@, &, V @y @0 A sy (@0 A %) V(G A\ %)) -

By (21), these two are written in the form R(x,, ©, \V @%,, @, A\ %5, > A %)+
The other six identities under (23) and (24) are similarly proved.
Finally, since ¢, = ¢.(O(x,, 2, \VV %,)), an application of Theorem 1. (iii)
proves (25) and (26).

Now let K be the class of all algebras satisfying Y. By what
we have proved above, Z = K.

Let AeK,a,bec A,and a < b. We define a binary relation @ on A:

¢ = d(®) if and only if there exists a sequence ¢ = 7, 7, +++, 7, = d
of elements of A such that, for all 1 =10, ---,n — 1,7, and 7., are
comparable and R(a, b, ; A Ty, 75 \V Ti41)-

We claim that @ is a congruence relation, in fact, @ = 6(a, b).

@ is obviously symmetric and transitive. Next we show that @
is reflexive, in other words, for all ce A4, R(a, b, ¢, ¢). By (19)-(21),
this means that



A NONASSOCIATIVE EXTENSION 71

27) p(a, a, b, c,c) = pb,a, b,cc)=c.

Using (6) we compute: p, =a Ae,p,=aVe,p=0BVe)Ve=bVe
(by (3)), . = ¢, and so

p(a,a,b,e,e) =(((aV@Aec)VaVve)A(bVe)Acby (3)
={(@Ve)ABVe)Ac=c by (4) .

For the second half of (27) compute: p, = a A ¢, p. = a Ve, p, =
bVveyvVe=>bVe, p,=c and so

p(, a,b,c,c)
={((bV @A) VieVve) ANbVe) Ae since a < b
=((evd V@A) VieaVe) ANDVe)Ac
apply (22) with = a,y = b,and z = ¢
=(((@avdVve)yVe ADdVe) Ae
use the second half of (4) with o =
aV (bVe),y =05, and z =¢
=c.

To show the Substitution Property for A, let ¢ = d(®) with the
sequence 7,, -+, 7, and let ec A. Consider the sequence e A ¢ = e A 7,
EeNnryVEeNnr),eANr,(eANT)V (EANT), eNTy oe, e N7, =eNd.
For any given ¢, 0 < 7 < m, either r; < 7;, or 7y, < ;. Let us assume
that r; < r,,, ({f r;y,, < r; we proceed similarly). By the definition of

@, we have R(a, b, r;, ;). By the definition of R, this means that

T = ql(ay b; Ti’ ,ri+1)

and
i = @@, b, 7, Tiyy) -
By (23),
R(a,b,q, Ne,g. Ne) and R(a,b,g. N\e, q Ne,
that is,

R(a, b, r; Ne, 1y, ANe) and R(a,b, 7 ANe, 1 Ae).
Therefore, by the definition of R:
R(a, b, r; \e, (r; \ €V (T N €))
and

R(a’ b7 Tit1 /\ e, (7',; /\ 6) \/ (/ri+1 /\ 6)) ’
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showing ¢ A e = d A e(D).

Using (24) rather than (23) we prove that ¢ Ve =d V ¢(D).

Thus @ is a congruence relation.

Observe that p(¢,a,b,a,b) = (t V@) A b. Thus p(a,a,bd, a, d) =
a and p(b, a, b, a, b) = b, proving a = b(D).

Finally, if @ = b(0®) for any congruence relation ©, then @ < 6,
thus @ = 6(a, b).

Now let ¢ = d(O(a, b)), ¢ =7, +++, 7, = d as given in the definition
of @. For a given 4, then »;, = q,(a, b, 7 A\ 7oy, 7 V 7)) and 7y, =
(@, b, r; \ 7ipy, 75V Tiy). Substituting these into (25) and (26) we
obtain the crucial equations:

a N Ab) =aA (T Ab)
(@Vvr)Vb=(aVry)Vbd

for all ¢ =0, «+-, n — 1. Thus

aAN(ENAND) =aAN(dAD)
and

@vVeyVb=(@aVvd)Vbd.

In other words, we have shown that ¢ = d(6(a, b)) implies the two
previous equations, which is the hypothesis of Theorem 2.

Therefore, by Theorem 2, K =< Z. Combining this with Z& K
we conclude that K = Z, completing the proof of Theorem 3.

It should be noted that it is much easier to prove that Z can be
characterized by a finite set of identities. The proof given above
actually exhibits one such set.

No more than five variables were used in the identities in %,
hence,

COROLLARY 1. An algebra {A; A, V) belongs to Z if and only
if every subalgebra of {A; N, V) generated by five elements belongs
to Z.

It is easily seen, that in the Corollary, “five” cannot be replaced
by “three”. We do not know whether “four” would do.

Since two identities of an idempotent class can always be subs-
tituted by one, the finite set 3 of Theorem 3 can be reduced to three
identities. R. Padmanabhan [15] has shown that the three identities
can be replaced by two.

COROLLARY 2. There exist two tdentities characterizing Z.
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PArT II. Structure Theorems.

6. Finite algebras. The main result of this section is the
following.

THEOREM 4. FEvery finite algebra A of Z has a representation
of the form

A=Dx Z*,

where D is a (finite) distributive lattice and k a nonnegative integer.
In this representation k is unique and D is unique wp to isomorphism.
In fact, D is a maximal homomorphic image of A in D.

This result is based on three lemmas.

LeEMMA 8. Let the algebra A be a subdirect product of the algebras
A, -+, A,. Let us assume that there exists a family p, ved of
polynomials satisfying the following two conditions:

(i) pd2, 9,9, -, y) =z holds in all A

(ii) for a,be A; there exist a,, @, »+-€A; and ned such that
A, @,y sy +0) = b.

Let, further, A be a subdirect product of A,, «--, A, with the
property that for each i,1 < 1 < n, there is an element {c,, +++, ¢, €
A such that {c,, +++, €, A, Cix1, =+, C,0EA for all ac A;. Then A is
the direct product of A,, +--, A,.

Proof. For m = 1 the statement is obvious. Let us assume that
it has been proved for all k < n. Let A and A, ---, A, be given as
in the lemma. Let B be the algebra we get from A by omitting the
first component of each element of A. Obviously, B is a subdirect
product of A4,, ---, A, and this subdirect product satisfies all the
hypotheses of Lemma 8 (the element of B chosen for ¢,2 <1< n is
the element of A chosen for ¢ with its first component omitted).
Therefore, by induction hypothesis, B = A, X -+ X A,.

It is also clear that A is a subdirect product of A4, and B, and
(using the hypothesis for A4, 4, ---, A, and 7 = 1) there is an element
d € B such that {¢,d) ¢ A for all ce A,. Now take an arbitrary <a, b) €
A, x B. Since A is a subdirect product of A, and B, there exist
ec A, such that <{e, by € A. By (ii), there exist xe4 and a, a,, --- ¢
A, such that p;(e, a,, a,, -++) = a. Thus, <e, b}, {a,, d), <a,, d), ++-c A
and so (using (ii)):

p1(<e, b>y <a1’ d>’ <a’2, d>y M ') = <p2(6y Qiy Ay o * ')y pl(b’ dy dy ° ')>
= {a, b)
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is also in A, proving 4 = A, x B. Thus,
A=A X4, %X «++ X A, ,

completing the proof of the lemma.

LEMMA 9. Let us assume that for the algebras A, ---, A, the
polynomials p;, he A exist satisfying (i) and (i) of Lemma 8. In
addition, let us assume that for each a, b,ccA;, b+ c there is a
polynomial g satisfying g(a, b, ¢) = a for which g(x,y, y) = y holds in
A, -+, A,. Then any subdirect product of A of A, +-+, A, is iso-
morphic to a direct product of some of the A, -+, A,.

Proof. Again, we proceed by induction and the case n =1 is
obvious. For 1 < % < n, consider the homomorphism ®;: A — A® which
is the map omitting the 4th component. If, for some 7, ®; is an
isomorphism, then A is isomorphic to a subdirect product of A, «--,
A, Ay, -+, A,, and by the induction hypothesis, the conclusions
of Lemma 9 holds for A. So we can assume that no ®; is an iso-
morphism.

Now we show that A4, A, ---, A, satisfy the conditions of Lemma
8. We have assumed the existence of the p, A€ 4.

Choose an 4,1 <7< n. We want to prove that there exists a
{e,, ++, C,y €A such that <c,, «--,¢;_,a, ¢4y, »++,c,0 €A forall ac 4,.

To simplify the notation let ¢ = 1. Since ®, is not an isomorphism
there are elements &, d e A such that ¢ = d and ¢®, = d®,. In other
words, <e, ¢, <+, ¢, {d, <+, c,yc A for some c,€ A,, +--,¢c, €A,
and ¢,de A, ¢+ d.

For an arbitrary aec A4,, there are a,c 4,, +++,a,€ A, such that
{a, @, +++, a,y € A, since 4 is a subdirect product. Choose a polynomial
g satisfying ¢(a, ¢, d) = a (and, of course, g(x,y,y) = y). Then g(Ka,
Ay * a’n>y <C, Coy * e, cn>’ <dy Coy ** 0, cn>) = <a’ Cgy **, cn> is in A’ ver-
ifying the condition. Thus, by Lemma 8, A = A4, X -+« X A,.

LEMMA 10. Any finite subdirect power of Z 1is tsomorphic to
some direct power of Z.

Proof. We shall verify that the hypotheses of Lemmas 8 and 9
are satisfied in Z. Let 4={1,2}, »,=((® V¥ Ve Az and p, =
((®x Ay) A2 Va Itis obvious that (i) of Lemma 8 holds. Let, say,
a = 0. Then p,(0,0,0) =0, 1,(0,2,1) =1, and p,(0, 1, 2) = 2, verifying
(i) of Lemma 8.

We also select g, = (x Vy) Az and g, = (x A 2 V y. Obviously,
g:x, 9,9 =9y,1=12. If b#¢, then b <c¢ or ¢ <b. In the first
case let b = 0 and ¢ = 1; then g,(a, b,¢) = a for ¢ = 0, 1and g,(a, b, ¢) =
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a for ¢ = 2. In the second case, g,(a, b, ¢) = a for @ = 2 and g,(a, b, ¢) =
a for a = 0 and 1. This completes the proof of Lemma 10.

Now we are ready to prove Theorem 4. Let A be a finite algebra
in Z. The only subdirectly irreducible members of Z are C, and Z
therefore A is a subdirect product of two algebras D and E, where
D is a subdirect power of C, and E is a subdirect power of Z.
Obviously, D is a distributive lattice. By Lemma 10, E = Z* for
some integer k. Thus we have proved that A is (isomorphic to) a
subalgebra of D x Z*. We prove that, in fact, A = D x Z*

Let 1 be the greatest element of D and aec E = Z*. We show
that <1, a) e A. Indeed, since A is a subdirect product of D and F
there are elements be E and de D satisfying

(1,5 and <(d,ad>ecA.
Define ec E by the rule:

e(t) = a(t) if b(7) < a(?)

e(t) > b(i) if b(1) > a(@) .

Note that e(7), the ith component of e, is in Z so the condition e(z) >
b(7) uniquely determines e(i). Choose an f e D such that {(f,e)c A.
Then

(1,0 V<f,ep) V<d,apeA.
This element is obviously of the form <1, ¢>, and
g(@) = (b(2) V e(®) V a(t) = e(t) V a(i) = aft) .

Thus g = a, proving <1, a) e A.
Now take an arbitrary de D and ae E. Then <{d, b) ¢ A for some
bec E. For a,be E let us construct ec £ as follows:

e() = a(z) if (i) = b(%)
e(?) # a(®) and b(t) if a(®) = b(7) .

Then (1, a) and <{1,ede A and so
(d, by N<1,e)) N{1,a) =<d,g> €A,

where ¢(7) = (b(7) A e(®)) A a(®). If a(i) = b(i), then e(®) = a(i), and
so g(1) = a(®). If a(i) < b(?), then (we are in Z) b(7) < e(i) < a(7) and
so g(z) = (b(%) A e(®)) A a(®) = b)) A a(i) = a(?). Finally, if b(7) < a(i),
then a(i) < e(?) < b(¢), hence g(i) = (b(z) A e(i)) A a(@) = e(@) A a(i) =
a(i), proving g = a and {d, a) € A. This completes the proof of the
first part of Theorem 4.

To prove the uniqueness of D we show that D is a maximal
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homomorphic image of A in D. It is obvious that D is a homomorphic
image of A in D. Let © be an arbitrary congruence relation on A
such that A/® ¢ D. By the Corollary to Lemma 1, ® = @ X O, X +++ X
0, and

A/O = DJO X Z,)6, X +++ X Z,/0,, where Z, = -+r=12,=7.

Since Z/0; e D only if | Z/0;| = 1, we conclude that A/ = D/6, proving
that D is a maximal homomorphic image. This implies the uniqueness
of D up to isomorphism. Knowing that D is unique, it obviously
follows that k is unique. This concludes the proof of Theorem 4.

COROLLARY. The congruence lattice C(A) of any finite algebra A
in Z is a finite Boolean lattice.

Proof. Indeed, if A = D x Z*, then C(4) = C(D) x C(Z)* = C(D) x
C¥, and C(D) is known to be Boolean.

7. TFree algebras. The following results describe the structure
of free algebras over Z in terms of the free algebra over D.

THEOREM 5. Let Fy(n) and F,(n) denote the free algebra on n
generators over D and Z, respectively. Then

F,(n) = Fy(n) X Z*
where k, = 3" — 2" + 1.

Proof?. Let FF = Fy(n) and D = Fy(n), and let X = {z, -+, 2,
be a set of free generators of F. Obviously, F,(n) is a subalgebra
of Z*", hence finite. Thus by Theorem 4,

F=Dx Z*,

for some nonnegative integer k. By the corollaries to Lemma 1 and
Theorem 4, k is the number of congruence relations @ of F' satisfying
F/6 = Z.

Let », and ®, be homomorphisms of F onto Z inducing the same
congruence relation . Then X@, = X®, = Z and @;, © = 1, 2, partitions
X into Xj, Xi Xi by setting X} = jo;'. Since these partitions are
the restrictions of the ©-classes to X, they agree. It is easily seen
that for ae X} and be X! the fact that ap; < b®; is expressed by
aV b= b(B). Therefore, for some automorphisms « of Z, we have
@, = P,cx. Since the converse is obvious, we conclude that k equals

2 'We would like to thank R. Quackenbush for a considerable simplification of the
original proof.
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the number of maps of X onto Z up to automorphisms of Z, or
equivalently, all maps # of X onto Z satisfying x,9 = 0. There are
altogether 3" maps of {x,, --+, 2,_,} into Z. Of these, 2" does not
have 1 in the image and 2" does not have 2 in the image, the
overlap being one map (the constant 0 map). Therefore, &k = 3*™* —
2.2t + 1 =3""— 2"+ 1, as claimed.

We can apply Theorem 5 to describe all finite projective algebras
in Z.

COROLLARY. A finite algebra A is projective in Z if and only if
it s tsomorphic to some P X Z* where k is a nonnegative integer and
P s projective in D.

REMARK. By R. Balbes [2] (see also G. Gratzer and B. Wolk
[11]) a finite distributive lattice is projective in D if and only if the
join of any two meet irreducible elements is again meet irreducible.

Proof. It is well-known that A is projective if and only if it is a
retract (idempotent endomorphic image) of a free algebra. Firstly, let
A = P x Z* where P is projective in D. Choose an integer n such that
P is a retract on Fp(n) and k < k,. Then, obviously, A4 is a retract
of F,(n). Conversely, let A be a retract of some F,(n). By Theorem
4, A= D x Z*. Since D is a retract of A, we conclude that D is a
retract of F;(n). By the Corollary of Lemma 1, the retraction must
collapse all copies of Z, hence P is a retract of F,(n), showing that
P is projective in D. This concludes the proof.

8. Injective algebras. The algebra I of Z is called injective (see,
for instance, [8], §13) if for any A, Be Z, A a subalgebra B, any homo-
morphism ¢: A — I can be extended to a homomorphism of B into I.

THEOREM 6. Z 1is imjective in Z. Any direct power of Z 1is
injective in Z and, therefore, every algebra can be embedded in an
injective. An algebra is injective if and only if it is isomorphic to the
extension of Z by a complete Boolean algebra.

Proof. Rather than giving a direct proof of these results we shall
employ a trick from [14] and then use a result of [3] to get the last
statement of Theorem 6, which implies the other two.

Let us denote by Z the algebra Z with three new nullary operations:
0,1, and 2. Let Z denote the equational class generated by Z. Just
as ip Lemma 2, every algebra in Z can be embedded in a direct power
of Z.

Z is generated by a finite simple algebra 7 with no subalgebras
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and so by a result of A. Day [3], the injectives in D are exactly the
algebras 2[3] where B is a complete Boolean algebra (for this concept
see [7], §22).

Therefore, it suffices to prove the following statement:

An algebra A is injective in Z if and only if 0,1, and 2 can be
interpreted on A so that the resulting algebra A belongs to Z and A
is injective in 2.

Indeed, if A is injective in Z, then for some set J there is a
homomorphism (in fact, a retraction) @ of Z’ onto A. We can inter-
pret 0,1,2 on Z’ as on (Z)’, and then on A by 0, 1p, and 2¢. This
makes A a homomorphlc image of (Z)J €Z, and so AcZ. Since A
is a retract of (Z)’, it is injective in Z. The converse is obvious.
This completes the proof of Theorem 6.

It follows from Theorem 6 and B. Banasehewski [1] that every
algebra A in Z has an injective hull uniquely determined up to isomor-
phism (leaving A fixed).
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