PROPOSITION A. Let V be a valuation ring having a proper prime ideal P which is not branched; then $P = \bigcup_{\lambda \in \Lambda} M_{\lambda}$, where $\{M_{\lambda}\}_{\lambda \in \Lambda}$ is the collection of prime ideals of V which are properly contained in P. In this case, $P \cdot V[[X]] = P[[X]]$ if and only if (*) given any countable subcollection $\{M_{\lambda_i}\}$ of $\{M_{\lambda}\}, \bigcup_{i=1}^{\infty} M_{\lambda_i} \subset P$.

Proof. Assuming (*), let $f(X) = \sum_{i=0}^{\infty} f_i X^i \in P[[X]]$. For each *i*, $f_i \in M_{\overline{\lambda}_i}$ for some $\overline{\lambda}_i \in \Lambda$. Let $p \in P$, $p \notin \bigcup_{i=0}^{\infty} M_{\overline{\lambda}_i}$; since $p \notin M_{\overline{\lambda}_i}$, it follows that $f_i \in M_{\overline{\lambda}_i} \subseteq (p)V$ for each *i* and $f(X) \in (p)V[[X]] \subseteq P \cdot V[[X]]$.

Conversely, assuming that (*) fails, let $\{M_{\lambda_i}\}_{i=1}^{\infty}$ be a countable subcollection of $\{M_{\lambda_i}\}_{\lambda \in A}$ such that $\bigcup_{i=1}^{\infty} M_{\lambda_i} = P$. By extracting a subsequence of $\{M_{\lambda_i}\}$, we may assume that $M_{\lambda_i} \subset M_{\lambda_{i+1}}$ for each *i*. Let $f_i \in M_{\lambda_{i+1}}$, $f_i \notin M_{\lambda_i}$ and let $f(X) = \sum_{i=1}^{\infty} f_i X^i$; then $f(X) \in P[[X]]$ but $f(X) \notin P \cdot V[[X]]$.

MARSHALL UNIVERSITY

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P. M. CURRAN

Volume 42 (1972), 615-620

In the second paragraph of the abstract, p. 615, the first sentence, "If G is generated by n elements, \cdots " should read "If G is a residually finite group generated by n elements, \cdots ".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. RHOADES

Volume 42 (1973), 715-719

In [2] it is shown that, for A a conservative triangle, B a matrix with finite norm commuting with A, B is triangular if and only if

(1) for each $t \in l$ and each n, $t(A - a_{nn}I) = 0$ implies t belongs to the linear span of (e_0, e_1, \dots, e_n) . On page 716 of [2] it is asserted that

(2) $(U^*)^{n+1}(A - a_{nn}I)U^{n+1}$ of type M for each n is equivalent to

(1). This assertion is false. Condition (2) is sufficient for (1) but, as the following example shows, it is not necessary.

EXAMPLE 1. Let A be a triangle with entries $a_{nk} = p_{n-k}$, $n, k = 0, 1, \dots$, where $p_k = 2^{-k}$. Then, for each $n, A - a_{nn}I = (U^*)^{n+1}(A - a_{nn}I)U^{n+1} = B$, where $b_{nn} = 0$ for each n, and $b_{nk} = a_{nk}$ otherwise. The only solutions of tB = 0 for $t \in l$ lie in the linear span of e_0 , so that A satisfies (1). However, B is not of type M.

Since (2) is not equivalent to (1), some of the material on pages 717 and 718 of [2] must now be reworked.

We establish the following facts:

1. If a factorable triangular matrix A contains at least two zeros on the main diagonal, then Com(A) in $\Delta \neq Com A$ in Γ .

2. If A is not factorable, then the number of zeros on the main diagonal gives no information about the size of Com(A) in Γ .

3. Having distinct diagonal entries is necessary but not sufficient for a conservative Hausdorff matrix H to satisfy $\operatorname{Com}(H)$ in $\varDelta = \operatorname{Com}(H)$ in Γ .

Proof of 1. Let n and k denote the smallest integers for which $a_{kk} = a_{nn} = 0$, n > k. Then the system $t(A - a_{kk}I) = 0$ clearly has a solution in the space spanned by (e_0, e_1, \dots, e_n) . It remains to show that there is a solution not in the subspace spanned by (e_0, e_1, \dots, e_k) . Since A is factorable, either the kth row or the kth column of A is zero. In either case we can obtain a solution of the system using $t_n = 1$, $t_k = 0$ for k > n, which can be used to construct a non-triangular conservative matrix B which commutes with A.

Proof of 2. Define $D = (d_{nk})$ by $d_{n0} = 1$, $d_{nk} = 0$ otherwise. Then $D \leftrightarrow B$ implies that $(DB)_{nk} = b_{0k}$, whereas $(BD)_{n0} = \sum_j b_{nj}$, and $(BD)_{nk} = 0$ for k > 0. Thus, if B is any matrix satisfying (i) $b_{0k} = 0$ for all k > 0 and (ii) $\sum_{j=0}^{\infty} b_{nj} = b_{00}$ for all n > 0, then $B \leftrightarrow D$. For example, if $b_{00} = 1$, $b_{nk} = 2^{n-k-1}$, $k \ge n > 0$ $b_{nk} = 0$ otherwise, then B is row infinite and commutes with D. D is factorable, but A = D + I is not. Moreover, since Com(I) in $\Gamma = \Gamma$, Com(A) in $\Gamma = \text{Com}(D)$ in $\Gamma \neq \text{Com}(D)$ in Δ .

Example 1 with $p_0 = 0$ is a nonfactorable matrix with an infinite number of zeros on the main diagonal, and yet $\operatorname{Com}(A)$ in $\Gamma = \operatorname{Com}(A)$ in Δ .

The following examples establish 3.

EXAMPLE 2. Let H be the Hausdorff matrix generated by $\mu_n = -2n(n-1)/(n+1)(n+2)$, $B = (b_{nk})$ with $b_{0k} = b_{1k} = 1$ for all $k, b_{nk} = 0$ otherwise. Then $B \leftrightarrow H$, but $B \notin \Delta$ since $b_{01} \neq 0$.

EXAMPLE 3. Let H be generated by $\mu_n = n(n-1/2)/(n+1)(n+2)$. We can regard H as the product of two Hausdorff matrices H_{α} and H_{β} , with generating sequences $\alpha_n = (n-1/2)/(n+1)$ and $\beta_n = n/(n+2)$, respectively. From Theorem 1 of [1], the sequence $t = \{t_n\}$, with $t_0 = 1$, $t_n = (-1)^n (1/2)(-3/2) \cdots (-n+3/2)/n!$, n > 0 satisfies $tH_{\alpha} = 0$. Therefore tH = 0. Let B be the matrix with the sequence t as each row. Then

$$(HB)_{nk} = \sum_{j=0}^n h_{nj} b_{jk} = t_k \sum_{j=0}^n h_{nj} = t_k \mu_0 = 0 \; ,$$

and

$$(BH)_{nk}=\sum\limits_{j=k}^{\infty}b_{nj}h_{jk}=\sum\limits_{j=k}^{\infty}t_{j}h_{jk}=0, \hspace{0.2cm} ext{so that} \hspace{0.2cm} B \longleftrightarrow H .$$

References

1. B. E. Rhoades, Some Hausdorff matrices not of type M, Proc. Amer. Math., Soc., 15 (1964), 361-365.

2. ____, Commutants of some Hausdorff matrices, Pacific J. Math., 42 (1972), 715-719.

INDIANA UNIVERSITY

Corrections to

VERSUM SEQUENCES IN THE BINARY SYSTEM

CHARLES W. TRIGG

Volume 47 (1973), 263-275

Line 12 should read "the universal verity of the conjecture [5, 6]". Instead of the universal verity of the conjecture [1, 2]. The first page should be 263 instead of 163.