Proposition A. Let V be a valuation ring having a proper prime ideal P which is not branched; then $P=\bigcup_{\lambda \in A} M_{\lambda}$, where $\left\{M_{\lambda}\right\}_{\lambda \in A}$ is the collection of prime ideals of V which are properly contained in P. In this case, $P \cdot V[[X]]=P[[X]]$ if and only if $\left({ }^{*}\right)$ given any countable subcollection $\left\{M_{\lambda_{i}}\right\}$ of $\left\{M_{\lambda}\right\}, \bigcup_{i=1}^{\infty} M_{\lambda_{i}} \subset P$.

Proof. Assuming (*), let $f(X)=\sum_{i=0}^{\infty} f_{i} X^{i} \in P[[X]]$. For each i, $f_{i} \in M_{\bar{\lambda}_{i}}$ for some $\bar{\lambda}_{i} \in \Lambda$. Let $p \in P, p \notin \bigcup_{i=0}^{\infty} M_{\bar{\lambda}_{i}}$; since $p \notin M_{\bar{\lambda}_{i}}$, it follows that $f_{i} \in M_{\bar{\lambda}_{i}} \subseteq(p) V$ for each i and $f(X) \in(p) V[[X]] \cong P \cdot V[[X]]$.

Conversely, assuming that (*) fails, let $\left\{M_{\lambda_{i}}\right\}_{i=1}^{\infty}$ be a countable subcollection of $\left\{M_{\lambda}\right\}_{\lambda \in 1}$ such that $\bigcup_{i=1}^{\infty} M_{\lambda_{i}}=P$. By extracting a subsequence of $\left\{M_{\lambda_{i}}\right\}$, we may assume that $M_{\lambda_{i}} \subset M_{\lambda_{i+1}}$ for each i. Let $f_{i} \in M_{\lambda_{i+1}}, f_{i} \notin M_{\lambda_{i}}$ and let $f(X)=\sum_{i=1}^{\infty} f_{i} X^{i}$; then $f(X) \in P[[X]]$ but $f(X) \notin P \cdot V[[X]]$.

Marshall University

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P. M. Curran

Volume 42 (1972), 615-620
In the second paragraph of the abstract, p. 615, the first sentence, "If G is generated by n elements, ..." should read "If G is a residually finite group generated by n elements, ...".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. Rhoades

Volume 42 (1973), 715-719
In [2] it is shown that, for A a conservative triangle, B a matrix with finite norm commuting with A, B is triangular if and only if
(1) for each $t \in l$ and each $n, t\left(A-a_{n n} I\right)=0$ implies t belongs to the linear span of $\left(e_{0}, e_{1}, \cdots, e_{n}\right)$. On page 716 of [2] it is asserted that
(2) $\left(U^{*}\right)^{n+1}\left(A-a_{n n} I\right) U^{n+1}$ of type M for each n is equivalent to
(1). This assertion is false. Condition (2) is sufficient for (1) but, as the following example shows, it is not necessary.

Example 1. Let A be a triangle with entries $a_{n k}=p_{n-k}$, $n, k=0,1, \cdots$, where $p_{k}=2^{-k}$. Then, for each $n, A-a_{n n} I=$ $\left(U^{*}\right)^{n+1}\left(A-a_{n n} I\right) U^{n+1}=B$, where $b_{n n}=0$ for each n, and $b_{n k}=a_{n k}$ otherwise. The only solutions of $t B=0$ for $t \in l$ lie in the linear span of e_{0}, so that A satisfies (1). However, B is not of type M.

Since (2) is not equivalent to (1), some of the material on pages 717 and 718 of [2] must now be reworked.

We establish the following facts:

1. If a factorable triangular matrix A contains at least two zeros on the main diagonal, then $\operatorname{Com}(A)$ in $\Delta \neq \operatorname{Com} A$ in Γ.
2. If A is not factorable, then the number of zeros on the main diagonal gives no information about the size of $\operatorname{Com}(A)$ in Γ.
3. Having distinct diagonal entries is necessary but not sufficient for a conservative Hausdorff matrix H to satisfy $\operatorname{Com}(H)$ in $\Delta=$ $\operatorname{Com}(H)$ in Γ.

Proof of 1. Let n and k denote the smallest integers for which $a_{k k}=a_{n n}=0, n>k$. Then the system $t\left(A-a_{k k} I\right)=0$ clearly has a solution in the space spanned by $\left(e_{0}, e_{1}, \cdots, e_{n}\right)$. It remains to show that there is a solution not in the subspace spanned by ($e_{0}, e_{1}, \cdots, e_{k}$). Since A is factorable, either the k th row or the k th column of A is zero. In either case we can obtain a solution of the system using $t_{n}=1, t_{k}=0$ for $k>n$, which can be used to construct a nontriangular conservative matrix B which commutes with A.

Proof of 2. Define $D=\left(d_{n k}\right)$ by $d_{n 0}=1, d_{n k}=0$ otherwise. Then $D \leftrightarrow B$ implies that $(D B)_{n k}=b_{0 k}$, whereas $(B D)_{n 0}=\sum_{j} b_{n j}$, and $(B D)_{n k}=0$ for $k>0$. Thus, if B is any matrix satisfying (i) $b_{0 k}=0$ for all $k>0$ and (ii) $\sum_{j=0}^{\infty} b_{n j}=b_{00}$ for all $n>0$, then $B \leftrightarrow D$. For example, if $b_{00}=1, b_{n k}=2^{n-k-1}, k \geqq n>0 \quad b_{n k}=0$ otherwise, then B is row infinite and commutes with $D . \quad D$ is factorable, but $A=D+I$ is not. Moreover, since $\operatorname{Com}(I)$ in $\Gamma=\Gamma, \operatorname{Com}(A)$ in $\Gamma=\operatorname{Com}(D)$ in $\Gamma \neq \operatorname{Com}(D)$ in Δ.

Example 1 with $p_{0}=0$ is a nonfactorable matrix with an infinite number of zeros on the main diagonal, and yet $\operatorname{Com}(A)$ in $\Gamma=\operatorname{Com}(A)$ in Δ.

The following examples establish 3.
Example 2. Let H be the Hausdorff matrix generated by $\mu_{n}=$ $-2 n(n-1) /(n+1)(n+2), B=\left(b_{n k}\right)$ with $b_{0 k}=b_{1 k}=1$ for all $k, b_{n k}=0$ otherwise. Then $B \leftrightarrow H$, but $B \notin \Delta$ since $b_{01} \neq 0$.

Example 3. Let H be generated by $\mu_{n}=n(n-1 / 2) /(n+1)(n+2)$. We can regard H as the product of two Hausdorff matrices H_{α} and H_{β}, with generating sequences $\alpha_{n}=(n-1 / 2) /(n+1)$ and $\beta_{n}=n /(n+2)$, respectively. From Theorem 1 of [1], the sequence $t=\left\{t_{n}\right\}$, with $t_{0}=1, t_{n}=(-1)^{n}(1 / 2)(-3 / 2) \cdots(-n+3 / 2) / n!, n>0$ satisfies $t H_{\alpha}=0$. Therefore $t H=0$. Let B be the matrix with the sequence t as each row. Then

$$
(H B)_{n k}=\sum_{j=0}^{n} h_{n j} b_{j k}=t_{k} \sum_{j=0}^{n} h_{n j}=t_{k} \mu_{0}=0
$$

and

$$
(B H)_{n k}=\sum_{j=k}^{\infty} b_{n j} h_{j k}=\sum_{j=k}^{\infty} t_{j} h_{j k}=0, \quad \text { so that } \quad B \longleftrightarrow H .
$$

References

1. B. E. Rhoades, Some Hausdorff matrices not of type M, Proc. Amer. Math., Soc., 15 (1964), 361-365.
2. Commutants of some Hausdorff matrices, Pacific J. Math., 42 (1972), 715-719.

Indiana University

Corrections to

VERSUM SEQUENCES IN THE BINARY SYSTEM

Charles W. Trigg
Volume 47 (1973), 263-275
Line 12 should read "the universal verity of the conjecture [5, 6]". Instead of the universal verity of the conjecture [1, 2].

The first page should be 263 instead of 163.

