a dense subset, in the fine C^{0} topology, of the set of topological imbeddings of U into l_{2}.

The proof of this theorem, which requires the alternative form of Theorem 1, is similar to the proof of Theorem 2 and is therefore omitted. The principal modification needed consists in allowing the maps $F_{c, r, i, j, m}$, (which are now defined on l_{2} in the obvious way using (9)-(9)'"'), to act now on the left of the imbeddings via a suitably defined infinite left composition, and where the positive integer j is not subject to the condition $j \leqq n$ of Theorem 2 .

Correction to

DIMENSION THEORY IN POWER SERIES RINGS

David E. Fields

Volume 35 (1970), 601-611
While recently answering a letter of inquiry of T. Wilhelm, I discovered an error in Corollary 4.6. The result, as originally stated, clearly requires that $P \cdot V[[X]] \subset P[[X]]$. However, if P is not branched, it is possible that $P \cdot V[[X]]=P[[X]]$; a counterexample can be obtained from Proposition A.

The following modification of Corollary 4.6 is sufficient for the proof of Theorem 4.7.

Corollary 4.6'. Let V be a valuation ring having a proper prime ideal P which is branched. If P is idempotent, then there is a prime ideal Q of $V[[X]]$ which satisfies $P \cdot V[[X]] \subseteq Q \subset P[[X]]$.

Proof. Since P is branched, there is a prime ideal \bar{P} of V with $\bar{P} \subset P$ and such that there are no prime ideals of V properly between \bar{P} and $P[1 ; 173]$. By passing to $V[[X]] / \bar{P}[[X]](\cong(V / \bar{P})[[X]])$, we may assume that P is a minimal prime ideal of V.

Since P is idempotent, $P V_{P}$ is idempotent by Lemma 4.1; hence V_{P} is a rank one nondiscrete valuation ring. By Theorem 3.4, there is a prime ideal Q of $V_{P}[[X]]$ such that $\left(P V_{P}\right) \cdot V_{P}[[X]] \subseteq Q \subset\left(P V_{P}\right)[[X]]$. But then we see that $Q \subset\left(P V_{P}\right)[[X]]=P[[X]] \subseteq V[[X]]$. Hence $Q \cap V[[X]]=Q$ and Q is a prime ideal of $V[[X]]$ with $P \cdot V[[X]] \subseteq$ $Q \subset P[[X]]$.

The following result is now of interest.

Proposition A. Let V be a valuation ring having a proper prime ideal P which is not branched; then $P=\bigcup_{\lambda \in A} M_{\lambda}$, where $\left\{M_{\lambda}\right\}_{\lambda \in A}$ is the collection of prime ideals of V which are properly contained in P. In this case, $P \cdot V[[X]]=P[[X]]$ if and only if $\left({ }^{*}\right)$ given any countable subcollection $\left\{M_{\lambda_{i}}\right\}$ of $\left\{M_{\lambda}\right\}, \bigcup_{i=1}^{\infty} M_{\lambda_{i}} \subset P$.

Proof. Assuming (*), let $f(X)=\sum_{i=0}^{\infty} f_{i} X^{i} \in P[[X]]$. For each i, $f_{i} \in M_{\bar{\lambda}_{i}}$ for some $\bar{\lambda}_{i} \in \Lambda$. Let $p \in P, p \notin \bigcup_{i=0}^{\infty} M_{\bar{\lambda}_{i}}$; since $p \notin M_{\bar{\lambda}_{i}}$, it follows that $f_{i} \in M_{\bar{\lambda}_{i}} \subseteq(p) V$ for each i and $f(X) \in(p) V[[X]] \cong P \cdot V[[X]]$.

Conversely, assuming that (*) fails, let $\left\{M_{\lambda_{i}}\right\}_{i=1}^{\infty}$ be a countable subcollection of $\left\{M_{\lambda}\right\}_{\lambda \in 1}$ such that $\bigcup_{i=1}^{\infty} M_{\lambda_{i}}=P$. By extracting a subsequence of $\left\{M_{\lambda_{i}}\right\}$, we may assume that $M_{\lambda_{i}} \subset M_{\lambda_{i+1}}$ for each i. Let $f_{i} \in M_{\lambda_{i+1}}, f_{i} \notin M_{\lambda_{i}}$ and let $f(X)=\sum_{i=1}^{\infty} f_{i} X^{i}$; then $f(X) \in P[[X]]$ but $f(X) \notin P \cdot V[[X]]$.

Marshall University

Correction to

COHOMOLOGY OF FINITELY PRESENTED GROUPS

P. M. Curran

Volume 42 (1972), 615-620
In the second paragraph of the abstract, p. 615, the first sentence, "If G is generated by n elements, ..." should read "If G is a residually finite group generated by n elements, ...".

Correction to

COMMUTANTS OF SOME HAUSDORFF MATRICES

B. E. Rhoades

Volume 42 (1973), 715-719
In [2] it is shown that, for A a conservative triangle, B a matrix with finite norm commuting with A, B is triangular if and only if
(1) for each $t \in l$ and each $n, t\left(A-a_{n n} I\right)=0$ implies t belongs to the linear span of $\left(e_{0}, e_{1}, \cdots, e_{n}\right)$. On page 716 of [2] it is asserted that
(2) $\left(U^{*}\right)^{n+1}\left(A-a_{n n} I\right) U^{n+1}$ of type M for each n is equivalent to

