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ON THE MAXIMAL NUMBER OF LINEARLY INDEPENDENT
REAL VECTORS ANNIHILATED SIMULTANEOUSLY
BY TWO REAL QUADRATIC FORMS

FrANK UHLIG

For a nonsingular pair of real symmetric (r.s.) matrices
S and 7 the maximal number m of lin. ind. vectors simul-
taneously annihilated by the associated quadratic forms is
computed as a function of the real Jordan normal form of
S-1T. Conversely one can deduce which real Jordan normal
form ST must have, if a specific m is the maximal number
of such vectors. Furthermore, two new conditions are found
that assure S and 7 to be simultaneously diagonalizable by
a real congruence transformation.

First we introduce the notions of Jordan blocks, real Jordan
normal form and the canonical pair form for pairs of r.s. matrices.

DEFINITION 0.1. A square matrix of the form
A e 0

e
0 N %k

is called a Jordan block of type (A), if for £ = 2 we have e R and
e =1, while for £k =1 we have M = (\) with xe R. Such a matrix
M is called a Jordan block of type (B), if for k =4 we have \ =

(g~3>,a,beR,b¢0 and e=<(1) g),While for £ = 2 we have M =

(‘Z - 3) with @, be R, b # 0. Jordan blocks will also be denoted by

J(\, k) and J(a, b, k), respectively.
Now we can state the real Jordan normal form theorem (see, e.g.,
Kowalski [2], p. 248).

THEOREM 0.1. Ewvery real square matriz A s similar over the
reals to a matriz J = diag (4,, - - -, 4;), n which each square block A;
corresponds to an eigenvalue N; of A. If this eigenvalue \; s real,
the associated A; is a Jordan block of type (A); iof N;=a + bié R,
then A; is a Jordan block of type (B). This J is called the real Jordan
normal form of A. It is uniquely determined by A, except for the
order of its Jordan blocks.

543
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The final result to be quoted will be the canonical pair form
theorem for nonsingular pairs of r.s. matrices, that is pairs S and T
where S is nonsingular.

THEOREM 0.2. Let S and T be a nonsingular pair of r.s. matrices.
Let ST have real Jordan normal form diag (J,, -+, J,, i, =+, Im)s
where J,, - J, are Jordan blocks of type (A) corresponding to real
etgenvalues of ST and J,.,, -+, J,. are Jordan blocks of type (B) for
pairs of complex conjugate roots of ST

Thern S and T are simultaneously congruent by a real congruence
transformation to

dizg (¢, &, ---, &, K., K.\, ---, E,)
and
diag (e, £, -+, e, B J,, By, -+, E,J,.)
0 1
respectively, where ¢; = + 1 and E; denotes the square matric | -
10

of the same size as J; for t =1 ---, m.

Canonical forms for a pair of r.s. matrices go back to Weierstral
and Kronecker. A list of references can be found in Uhlig [3], Theorem
0.4.

NoraTioN. For S symmetric we define Qs = {x € R"|2’Sx = 0}.

We will now state the main theorems that relate m = max {k|
there exist £ lin. ind. vectors in Qs N Q;} to the real Jordan normal
form of S—'7.

THEOREM 1. Let S and T be a nonsingular pair of r.s. . X n
matrices. Let J be the real Jordan normal form of S™T. If

(i) J contains a Jordan block of dimension greater than 3, or

(ii) J contains two Jordawn blocks of dimension 3 each, or

(iii) J contains one Jordan block of dimension 3 and one of
dimension 2, or

(iv) = >3 and J contains a Jordan block of dimension 3 and
1-dimensional blocks else, but not all eigenvalues of S™T are the same,

or
(v) J econtains two 2-dimensional Jordan blocks which correspond

to different eigenvalues of S™'T if both blocks are of type (A), ---,
then Qg N Q, contains n linearly independent vectors.

THEOREM 2. Let S and T be a nonsingular pair of r.s. matrices
of dimension n. Let J be the real Jordan nwormal form of S™T. If
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(vi) n >3, J contains one 3-dimensional Jordan block, linear
blocks else and all eigenvalues of ST are the same while inertia
S#(n—110),@1Q n—1,0); or

(vii) n > 3 and J contains k = 1 identical 2-dimensional Jordan
blocks J(\, 2) of type (A), linear blocks else for eigenvalues (i =
2k + 1, ---, n) and the set

{er, =+, & (s — N)| 0 > 2k}

contains positive as well as negative numbers, where the e; = 1 are the
constants in the canonical pair form of S and T (see Theorem 0.2), or

(vili) n > 3, J contains one 2-dimensional block J(a, b, 2) of type
(B) and linear blocks else for eigenvalues p;, where not all p; are the
same or' inertia S + (n — 1,1,0), (1, n — 1, 0),
then Qg N Qr contains n linearly independent vectors. If

(vi) (@) condition (vi) holds, except that imertia S = (n — 1,1, 0)
or (1, n —1,0), or

(viii) (a) condition (viii) holds, except that all real eigenvalues p;
as defined in (viii) are the same and inertia S = (n — 1,1,0) or (1, n —
1,0). Then QsN @ contains a maximum of n—1 lin. indep. vectors
only. If

(vii) (a) condition (vii) holds except that the set {e, «--, &, ;(tt; —
N) |1 > 2k} as defined in (vil) contains r = 0 zeroes My, — N = +++ =
Morir — N = 0 and only positive or only mnegative numbers else, and
Eoppr = = Egpips them Qg N Qrp contains a maximum number of k
lin. ind. vectors. If

(vii) (b) condition (vii) (a) holds except that not all ¢; are the same
for 2k + 1 <1 <X 2k + 7, then QsN Qr contains a maximum of k+r
lin. ind. vectors. If

(ix) n>1and S and T can be simultaneously diagonalized by a
real congruence transformation, then the maximal number k of lin.
ind. vectors in Qs N Qr can be k=0,2, ---,n depending on S and T.

Theorem 3 will treat n-dimensional r.s. matrix pairs for » < 3:
The following lemma is useful for the proofs of Theorems 1 and 2.

LEMMA 1. Let S and T be real symmetric matrices and A be a

real nonsingular matrix.
Then

max {k| there exist k lin. ind. vectors in Qs N Qr}
= max {k| there exist k lin. ind. vectors in Q g, N Qura} -

]

1 This “or” does not mean “either... or
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This is obvious if one observes that Q,s, = A™(®Qs) for nonsingular A.

Proof. (Theorem 1) In view of the above lemma we may assume
without loss of generality that S and T are in canonical pair form:

S = diag (:l—-- Ej., °* 'y i Ery E’r+1, ° ', Em) ’
T = dia’g (i Elle Y i 'E’I‘JT’ ET+1J’I'+ly Tty Eme) ’

where J,, ---,J, are Jordan blocks of type (A) and J,.,, +--, J, are of
type (B).

Having S and T in this form is very advantageous. For then
we have (¢/Se;)? + (e;Te;)* #+ 0 for at most r» + 2(m — r) unit vectors e;.
The reason is as follows:

For the Jordan block J, = J(\, k) of type (A) we have: if k is even:

Carr Heyppiy = 0
and
Cijors BTN, K)epes = N
while for all other ¢ < k: eibie; = e.EJ(\, k)e; = 0;, if k is odd:
g e = 1
and
6 ETOy B)es s =

while for all other ¢ < k: e;Fe; = e;EJ(\, k)e; = 0. For the Jordan block
J, =J(a, b, k)b = 0) of type (B) we have: if k is divisible by 4: ¢}Fe; =
e;EJ(a, b, k)e; = 0 for all ¢ < k; while for a k not divisible by 4 we have

e;cleeklz =0, ;. KJ(a, b, k)eklz =b; e;c/2+lEech2+1 =0,
b BI(a, b, K)esns, = —b and  eiEe; = e.EJ(a, b, k)e; = 0

for all other 7 < k.

The same argument holds for each of the Jordan blocks. So there
are at most » + 2(m — r) unit vectors not simultaneously annihilated
by the two quadratic forms #'Sx and «'Tx if S and T are in canonical
pair form. For all ¢ such that ¢;¢ Qs N Qr we will exhibit lin. ind.
vectors ¥; € Qs N Q@ that have a nonzero 7th component and hence are
also lin. ind. of all e; with ¢;€ Qs N Qr. Then Theorem 1 is proved:
There are n lin. ind. vectors in Qs N Qr.

The remainder of this proof will consist of finding these vectors
9;, one for each Jordan block of type (A), two for each Jordan block
of type (B) of dimension not divisible by 4 in each of the cases (i), - - -,
(v).

From now on we will in general assume that the Jordan blocks
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of S7'T mentioned in (i), -- -, (v) appear in the first diagonal positions.
Before starting on the individual cases we express the quadratic forms
corresponding to S and T by only singling out the first block here:
If a Jordan block J(\, k) = J, of type (A) appears first, let us look at
the two quadratic forms F(») = 2’Sx and G(x) = ' Tx:

For

S:dlag(i El’ Tt iEm) and x:(mly Y xn)
we have
F(z) = = h(») + f(2),
where
Mz) = o’ diag (£, 0, ---, 0z = >, x2;
i+j=k+1
and
f(x) =o' diag (0, = E,, ---, = E,)&

is a quadratic form involving x,.,, ---, ©, only.
For

T = diag (= EJ,, --+, + E,J..)
we have

G(z) = £ (M) + e(2)) + g(x)
where % is as above,

e(x) = 3>, wpx; for 4,7 =k
i+j=k+2

and
g(x) = o' diag (0, + EJ,, -+, = E,J,)x

involves w;.,, ---, o, only.
Now F(x) =0 iff f(») = F h(=). And by definition xc Qs N Qr
iff F(z) = G(z) = 0 hence iff

(1) +e(®) + g(x) — Af(x) =0 and F(x)=0.

If a Jordan block J(a, b, k) = J,(b == 0) of type (B) appears first in
S™'T, then we define F(z) = 2’'Sx = h(x) + f(x) with ~ and f as above
and G(z) = 2’ Tx = ah(z) + bi(x) + w(x) + 9(x), where h and g are as
above and
w(®) = >, w5, while t) = 3 xx; — >, 4.
i+i=k+3 =y i+i=kte

1,75k 1,7 odd 7,4 even
1,55k

Thus in this case x € Qs N Q iff F(x) = G(x) = 0, hence iff
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(2) bt(x) + w(x) + g(®) — af(x) =0 and F(x) =0.

(i): Assume (i) holds with a Jordan block J(\, k) of type (A)
for £ = 4. Then from above there is an 4,2 < ¢ < k, such that e;¢
Qs N Q. For this index ¢ we define a;, 8;€ R and y; = e, + Bse, +
¢ + ¢, such that (1) holds: =+ e(y:) + g(v:) — Mf(y:) = + (26; + e(e))) = 0
determines B; and F(y;) = 0 determines «;.

For 4> k such that ¢; ¢ Qs N Q, and g(e;) — A f(e;) = 0, we define the
vector y; = e, + ¢, + ¢;, where «; is such that F(y;)=0. In the case
that g(e;) — N f(e;) # 0 we define y; = a,e, + B;¢. + ¢, + e;, where «;, B;€ R
are such that (1) holds: + 28; + g(e;)) — ANf(e;) = 0 defines B; and
F(y;) = 0 defines «a;.

Next assume (i) holds for a Jordan block J(a, b, k) of type (B)
for k = 2] = 4.

First assume k& = 2] is divisible by 4. Then ¢;¢ Qs N @, implies
1 > k as pointed out above. For such an 7 define y; = a,e,, + Be +
e+, + e; where a;, 8;€ R are such that (2) holds. When checking (2),
note that [ is even, if k is divisible by 4. 2ba; + g(e;) — af(e) = 0
defines «; and 28; + h(e;) = 0 defines gG;.

Now assume k = 2! is not divisible by 4. Then [ is odd and we
know that both e, ¢, ¢ Qs N @, from the above. If we define

b b
Y= ¢ — 'é‘el-H) and ¥, = ey + —2—@L+2 ’

then (2) holds for these two vectors. For ¢ > k such that ¢;¢ Qs N Q-
we define as before for the real case y; = a.e, + e, + ¢; if g(e;) — M f(e) =
0 and y; = a;e, + Be. + e, + e; otherwise. This proves (i) of Theorem 1.

(ii): Assume J contains two Jordan block of dimensions 3 each.
Then these must be Jordan blocks of type (A); J(n, 3) and J(z, 3) for
N, € R. Define for ¢ = (x, -+ -, x,):

F(x) = o'Sx = e(2u,x, + @3 + 02w, + 23) + f(x)
and

(3) G(x) = o' Tw = e(M20,05 + 23) + 20,05)
+ 5(#(974906 + @) + 2w2,) + 9(x) ,

where f and ¢ are quadratic forms not involving , ---, 2, and
¢, 0 = + 1, independently from the canonical pair form.

Now e, ¢;¢ Qs N Q,. And for these indices define the vectors
Y, = — 1/2e, — dee, + e; — 1/2¢, + €5 + ¢; and y; = — 1/2¢, — dce, + €5 +
1/2¢, — ¢; — ¢;,. They are lin. ind. and satisfy F'(y;) = G(y;) = 0 in (3).
For 7 > 6 such that ¢;¢ Qs N @, we define
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Y; = oe + Bie, + e+ ¢,

where B; is chosen such that

2eB; + gle:) — Mfle) =0,

and «; is such that
F(y) = e2a; + 8) + fle) = 0.

Then G(y;) = 0, too.
This completes (ii).

(iii): Here again the 3-dimensional Jordan block has to be of type
(A): J(\, 3), while the 2-dimensional block can be of either type. Let
for = (2, + -, ®,),

F(x) = 'Sz = (22,25 + 22) + 0Qxa2;) + f(2)
and

G(x) = o' Te = e(M2u; + 23) + 2w,2,)
2p 22 in f (A
B(#ﬂ%“’" 2 + g(2) 1 case of (A)
QCax,ms + bz — 22)) in case of (B)
where 0, & = 4 1 from the canonical pair form and f and g do not
involve the first five components. If the 2-dimensional Jordan block
in question is of type (A), then for ¢ < 5 we have ¢; ¢ Qs N @, exactly
for ¢ = 2, 5, while for a Jordan block of type (B) those indices are
t=24,5.
In case of (A) define

Y, = Oce, + €, — —55—33 + e;
Ys = Oce, + € — —526—63— e

and one has ¥, ¥;€ Qs N Qy.
In case of a 2-dimensional block J(a, b, 2), b = 0 of type (B), define

yz::~%el+ez+§se3+e5

y(,=—Fiel—l—ez——b—eseg—l—e4
b 2

%:———e—el—i-ez—i—ﬁees—eﬁ.
b 2

Then y,, ¥, ¥s € Qs N Q.
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For 7 > 5 such that e;¢ Qs N Qr, define y;, = e, + Bie, + e; + e,
where «;, 8;€ R are such that 2¢3; + g(e;) — M f(e;)) = 0 and F(y;) = 0.
This concludes part (iii).

(iv): Here we have F(zx) = 2/Sx = e(2x,2; + 22) + f(x) and G(x) =
o' Tw = e(M2x,@; + ) + 22,2.) + g(x) and F(x) = G(») = 0 iff

(4) e2w,®5 + g(x) — Nf(x) =0 and F(x) =0.

By assumption all but the first Jordan block J(\,8) in S™'T are 1-
dimensional blocks J(y;, 1). We assume 7 > 8, so there exists an
i, > 3 such that g(e;) — N f(e;,) # 0, for g(e;) — Mf(e) = = (1t: — 1) =0
for all < > 3 contradicts our assumption.

Now e, ¢ Qs N Q@ and we define y, = aye, + Bye, + €, + €;, where
B # 0 is such that 2¢8, + g(e;) — M f(e;) = 0 and «, is such that
F(y,) = 0. For all © >3 we have ¢;¢ Qs N Q, and we define y; = —
e, — B, — e + e, and y; = ae, + [0, + e + e; for all other 7> 8,
where the a’s and B’s are chosen such that (4) holds for all ;. These
n vectors y; are lin. ind.

(v): Now only (v) remains to be proved. Let us first assume
that the two 2-dimensional Jordan blocks in question are both of type
(A): J(, 2), J(1, 2), where by assumption » # . Then F(x) = «'Sx =
e2x,@, + 02x,x, + f(x) and G(x) = o' Tx = e(2 e, + x2) + 0 2pasm, + %) +
g(x) where ¢,6 = =1 and f and g do not involve the first four com-
ponents of x. Then F(z) = G(x) = 0 is equivalent to

(5) F(z) =0 and 26(x¢ — Naxx, + ex: + o2 + glx) — ©f(x) =0.
Now if ¢;€ Qs N Q,, then © = 2 or 7 = 4, unless ¢ > 4. We define

Y, = e, + 2e, + Be; — e,
Y, = e, + 2e, + Be; + e,

and
Y; = e + Vil + Bies + e+ ¢

for all ¢ >4 with e,¢QsN Q,. Here v, 0 are chosen such that
ev? 4 0 + g(e;) — Mf(e;) = 0 while the a’s and 3’s are chosen such that

(5) holds.
Next assume, the two 2-dimensional blocks are both of type (B):

J(a, b, 2), J(c, d, 2) where b, ¢ + 0.
Then F(x) is as above with ¢ = ¢ = 1 while

G(») = o' Tx = 2ax,2, + 2¢cx2, + b(x} — %) + d(&; — 23) + g(®) ,

and F(x) = G(x) = 0 is equivalent to
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Fx) =0 and 2(c — a)xx, + b(x? — a2)
+ d(x: — 22 + g@) — af(x) =0.

Here we have e;¢ Qs N Q, for all ¢+ < 4.
If bd > 0 we define the following four lin. ind. vectors

(6)

Y, = «e, + Be,, Y. = e, — Be,,
Ys = ae, + Be, Yo = e, — Be; ,

where «a, 8 # 0 are such that ba* — dB* = 0 and thus (6) holds for all
Y, T = 4.
In bd < 0, we define y; as follows:

Y = ae + Be;, Y = e, — (e,
Ys = ae, + Ge,, Y = ae; — ey,

where «, B # 0 satisfy ba® + dg* = 0 such that all four y; satisfy (6)
again.

For indices ¢ > 4 such that ¢; ¢ Qs N Q, we define the corresponding
vector y; as follows:

If f(e;) =0 and bd > 0, let y; = aie, + Bie, + e;, where a;, B; are
chosen such that ba; — dBi = — g(e;). If f(e;) = 0and dd < 0, let y; =
e + Bie, + e, where «; B;¢ R such that bat + dgi= — g(e). If
f(e;) =0 and g(e;) — af(e;) =0, then let y;, = ae, + Bie, + e; where
|a;| = | B;] such that y; satisfies (6). If f(e;) = 0 and (g(e;) — af (e))d >
0, let y; = e, + Bie; + vie, + ¢;, where |a;] = |B;| and v, are chosen
such that (6) holds. If f(e;) = 0 and (g(e;) — af(e))d <0, let y; = ae, +
Bie. + vies + e, with a,, B;, 7; chosen to satisfy (6).

Finally we prove (v) for a Jordan block of type (A) and one of
type (B): J(\, 2),J(a, b, 2). Then F(x) is as above with ¢ = & 1,
0 =1 while G(x) = o'Te = e(@\a.x, + 23) + 20@x, + b(x2 — x) + g(®)
where g(x) does not involve z,, ---, 2. And F(z) = G(x) = 0 is equi-
valent to:

F(.’l?) =0 and 2(a - 8>")9(73374 + ewl + b(xg — xf)
+ g(®) — Af(@) =0.
If ¢,2QsN Qr, then 1 =2,3 4 or i >4. We define y, and y, first:

(7)

Y, = € + Be; + e,

yszez‘_ﬁ%—')’&,
where 8 =1"—¢/b,v =0, if e-b <0 and g =0, v = V&/b, if ¢b > 0.
Then e, ¥, and y; are all lin. ind. and satisfy (7).

If y, has all of its first four components nonzero it will be lin.
ind. of e, ¥, ¥; and all ¢; for ¢ > 4. So let y, = ae, + Be, + ve; +
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ne, where «, B, v, 7 are chosen as follows:

Ifa—en=0,take vy=1,7=2 8=1"3bs, if ¢b >0 and a = 0
such that F(y,) = 0; but if ¢b<0, choose v =2,7 =1 8= 1= 3be
and « as above, and y, satisfies (7).

If @ — exn 5 0, choose 7 = 0, v = 1/7 such that

2(a—ex)+b<%—772)<o fe=1

and

2(a-—e)»)+b(%—7)2>>0 fe=—1.

Then choose @ # 0 such that the second equation in (7) holds and
after letting @« = — ¢/B the vector y, again satisfies (7). For ¢ >4
define y; = ae, + ¢, + Be; + ve, + e; where o€ R and either 8 =0 or
v = 0 as before in such a way that (7) holds for each y,, © > 4. This
completes the proof of Theorem 1.

We now go on to prove Theorem 2
Proof. (Theorem 2) We use the notation of the previous proof

(vi), (vi)(a): Let (vi) or (vi)(a) hold. Then the 3 dimensional
Jordan block is of type (A):J(n, 8). And we have with z = (2,
ceey, xn)

F(x) = /Sx = ¢,2x,2; + 22) + i‘, &2
1=4
and
Gx) = o’ Tx = 6,222, + x2) + 2m,%5) + zn‘, N,
=4

where ¢; = == 1. Hence F(x) = G(x) = 0 is equivalent to F(x) = 0 and
x,%5 = 0.

If all ¢; are the same, then, since inertia E;,, = (2, 1, 0), we have
inertia S=(m® —1,1,0) or (1, » — 1,0) and (vi)(a) would hold. But
let us first assume (vi) holds. Then for some ! >4 we must have
€€, < 0. Clearly e, e;€ Qs N Q, and for the other indices we define:

Y =€ 1+ ¢

€:&;

Y = e — e + ¢ for 1 =4.
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Then e, e, ¥, and y;(¢ = 4) are in QN @, and are lin. ind.

If (vi) (a) holds, then F(x) = 0 and x,x; = 0 implies «, = 0, such
that we cannot find a vector ¥, ¢ Qs N @, with a nonzero second com-
ponent. Hence QsN Q, contains at most (n — 1) lin. ind. vectors.
But e, e, y:(¢ = 4) defined above are linearly independent and belong
to Qs N Q,. This proves (vi) and (vi)(a).

(vii), (vii)(@), (vii)(b): We define

k n
F(x) = a'Se = 23, 600120 + >, &}
=1 3

i=2k+1

and

n

k &
G@) = o' Tw = 2N 3, 65y @0 + D, 8:%5 + >, &;4%%
2=1 3=1

1=2k+1

where ¢; = +1. Thus F(x) = G(x) =0 is equivalent to F(x) =0
and

(8) Seal + 3 et — Mai=0.
2=1 =2k +1

Assuming (vii) holds, then the quadratic form in (8) is inde-
finite, so there must exist an index ! such that

ety — V) <0 for some [ =2k + 1
or such that

€€y < 0 for even [ < 2k .

We define
Y =6 )
Yy = A8, + B8 + ¢ for B: # 0,
Y= e, + Loy — €

and

Y; = e, + Bie, + Vie + e for e #1,2,1,8,#0,

where B; and v; are chosen such that y; satisfies (8), while «; are
chosen such that F(y;) = 0. This proves (vii).

To prove (vii)(a) and (vii)(b) assume now that the quadratic form
in (8) is semidefinite and that the symmetric matrix corresponding to
the quadratic form in (8) has rank » — k& — », where the r zeroes
among the &;(¢; — \) occur for the indices ¢ =2k + 1, .-, 2k + 7.
Then the only unit vectors satisfying (8) are e, e, « -+, €y, Coas, ** s
ew+r And clearly e, e, -+, ey, € Qs N Qr in either of the cases (vii)(a)
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or (vii)(b).
In case of (vii)(a) exactly e, e, -+, €n_, € Qs N @, because the
quadratic form in » variables

2k+7r

>, €%

1=2k+1

appearing in F' is definite and F'(x) == 0 for all # with «; == 0 for 2k <
©t =<2k +r. So in this case we conclude that @, N @, contains a
maximum of k£ lin. ind. vectors.

In case of (vii)(b)

2k+r

(9) >, &t

1=2k+1

is an indefinite quadratic form and besides e, ¢, - - -, €y,  more lin.
indep. vectors v, -+, ¥, can be found that satisfy F(z) = 0 and (8):
Choose y; as follows. Since (9) is indefinite, there are indices 2k <
l,j <2k + r with ¢, =1,¢; = — 1. Then define for 2k < ¢ < 2k + r,
ECR A F

Y; = e; + ¢; if F(@,,):]_
and
yizel+e,; ifF(eJ::-.]_
while we set
Y= ¢€; + €
and
yi = e] - el .
This proves (vii)(b).
(viii): Here we define
F(x) = «’'Se = 2,2, + 5‘: et
1=3
and
G(x) =Ty = Zaxlxz + b(x’z. . xg) + f.&#.;x% )
i=3

So F(z) = G(x) = 0 is equivalent to

(10) F@)=0 and bt — ) + > et — a)ut =0 .
=3
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Now unless (viii)(a) holds, not all #; or®* not all ¢; are the same
for 1= 3. So for some pair of indices ¢, = 3 we must have p; =
Ui or® g, # ¢;. After a suitable index permutation we may start the
proof assuming that g, == f, or® ¢, # ¢, already.

We define y, = aze, + B¢, — €5, ¥ = e, + B, — €, and y; = aze, +
Bie; + e; for © = 3, where the a;, B; are chosen to satisfy

A1) blaz — B +e(tt; —a) =0 and 2a;8; +¢; =0 for each 7.

Then the vectors y; for 7 < » are lin. ind. iff

a; B3 — 1 0 2a, 2,83 0 0
a, B, 0 —0 20, 2B, 0 O

det (¥, <+ +, Yo) = = +0.
W 8=l s 1 0T | s 10
a, B, 0 1 o, Be 0 1

So the n vectors ¥; are lin. dep. iff for the 2-vectors we have

(12) (CK3, 183) = d(au 184)
for some real coefficient d. Now (12) holds only if d = + 1, for (12)
implies «,8, = d*a,B, and we know .8, = — &,/2, since F(y;) = 0 and

o,B, = — e4/2, since F(y,) = 0 and thus d = + 1.

If d =1, then by (11) we have ¢; = ¢, and hence by assumption
My %= tt, which contradicts (11). If d = — 1, thene, = — ¢, and a8, = —
a8, by (11), contradicting (12).

Thus we found that the n vectors y; in @y N @, are lin. ind. in
case of (viii).

If (viii)(a) holds, p; = ¢ and ¢; = ¢ for all 2. We define for = =
(T + =+, )

(13) F(x) = 2’'Se = 20, + ¢ éxi
and

G(z) = o' Tw = 20,2, + b(x} — 23) + e g; x?.
And F(x) = G(z) = 0 is equivalent to
(14) Fz) =0 and bz — 23 + e(¢t — a) z @ =0.
We define the following % — 1 lin. ind. vectors

yi=ae + RBe,+e  for i =3,
Y, = ae, + Be, — e,

2 This “or” does not mean “either... or”.
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where «, 8 are chosen such that F(y;) = G(y;) = 0 for all 4. Such
numbers «, B exist, since they can be chosen as the intersection of the
following two hyperbolas

2a8 + ¢ =0; az—Bzz——Z—(y—a).

Now any w = (B8, - -+, B.) € Qs N @ satisfies (14). We are going to
show that if 0 == we Qs N Q, then the 2-vector (B, B.) can be written
as =+ ||Z||(a, B) with «, 8 as chosen above and Z = (0,0, B, - -, B.)-
Now if ||Z|| = 0, i.e., 8; =0 for all + =3, then by (14) 88, =0 =
B2 — B2 so that w =0. If g, =0, then by (13) we get w = 0.

So if w %= 0 belongs to Qs N @, then ||Z]] = 0 and we define d as
d = B,/a with a as introduced above. Using the equations F'(w) =
F(y) = 0 we get 2aB = — ¢ = 2B8,8,/||%||* and hence B, = ||Z|[’5/d.
The second equation in (14), written out for y; and w, reads like

bl — £ + e(¢t — a) = 0 = b(d’a® — ||Z|'8°/d") + e(1t — a)[| B,
and hence
at — g = d'e?/|| 2] — || 2 |6/d*
or
d'a’ + &||Z|}p* — a’) — B[Z][' = 0.

This last equation in d has only two real roots, namely d = + || Z]|.
Hence 8, = +|2]|8, while 8, = x [|Z] a.

So the equation w = (8, -+, B.) = d(ae, + Be) + (0, 0, By, -+,
Ba) = 2, M:y; can be solved for real coefficients 7;, namely by 7; =
B; for ¢ > 3,

n=(d- 3 6)2
1=3 /
and 7, = B; + 7, where

as we have seen above.

So every we QsN Qp is lin. dep. of %, ---, ¥, and in this case
n — 1 is the maximal number of lin. ind. vectors in Q¢ N Q. This
proves (viii)(a).

(ix): It only remains to show (ix): Let S and T be simultaneously
diagonalizable.

Assume S is positive definite, then Qg = {0} and hence for any
symmetric 7 we have Qs N @ = {0}, hence the case k¥ = 0 occurs.
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If S=diag(1,—-1,---,—1,1,---,1) and T =diag(, — », -~ -,
-0, ---,0) with (! — 1) numbers — 1 and — A appearing on the
diagonals of S and T, then Qg N Q, contains a maximum of [ lin.
indep. vectors for A 20,2 <1 <n as can be seen by inspection.
Finally if € Qs N @, then 2 can be written as ¢ = ae, + Be, + y for
two indices [, k, nonzero constants «, B, and y orthogonal to ¢, and e,
because x has to satisfy

F(x) = o’'Sx = isiwﬁ =0
and
G@) =2'Tx = i gl =0, with ¢; = + 1.

But then Z = ae, — Be, + yeQsN Q- as well and x and Z are lin.
ind. So in case (ix) Qs N @, cannot contain just one vector and its
multiples.

This proves Theorem 2.

Next we treat nonsingular pairs of real symmetric matrices that
have dimensions 2 or 3.

THEOREM 3. Let S, T be a nonsingular pair of r.s. matrices of
dimension m. Assume that n =2 or 3. Let the Roman numerals
(vi), - -, (viii) denote the various cases of Theorem 2.

If (vii) holds, them Qs N Qr contains wm lin. ind. wvectors.

In (vi)(a) or (viii)(a) (with n = 3) holds, then QsN T, contains a
maximum of n — 1 lin. ind. wvectors.

If (vii)(a) holds, then Qg N Qr contains a maximum of k lin. ind.
vectors, where k is defined as in Theorem 2.

If (viii)(a) holds with n = 2, then Qs N Qr = {0}.

Proof. In view of Lemma 2 we can again assume that S and
T are already in canonical pair form.

(a) Let » =3: If J = S'T contains just one 3-dimensional block
J(A, 8), then inertia S =(2,1,0) or (1,2, 0) and we have condition
(vi)(@). Then F(z) = o’Sx = (2,2, + 2%) and G(x) = o' Tx = e(M2x,25 +
28 + 2mx,%,) with ¢ = £ 1. Hence the only vectors x satisfying Fi(x) =
G(x) = 0 are multiples of ¢, and of ¢,, Hence there are at most 2 lin.
ind. vectors in Qs N Q.

If S™'T has a complex root, then we have case (viii)(a) and the
proof of Theorem 2 (viii)(a) carries over.
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If S™'T satisfies condition (vii), then we have for¢; = + 1, F(2) =
'Sy = €,(2x,%,) + €23 and G(X) = &' Tw = ¢, (\2x,x, + #2) + &txd and
thus F(x) = G(x) = 0 is equivalent to

(15) F(x) =0 and ea?+ e(pt— N3 =0.

If x = ¢, then only multiples of ¢, are in Qs N @, and if A\ = #, but
ges(t — \) > 0, then again only multiples of ¢, are in Qs N Q;. Now
condition (vii)(a) encompasses exactly these two cases, hence if (vii)(a)
holds, then Q; N @, is just a one dimensional space.

If (vii) holds, i.e., A # ¢ and eyt — ) < 0, then we define

Y =6
Y = e, + Be, — e

and
Yy = ae, + Be, + e where a, 8 # 0

are such that vy, y, satisfy (15).

(b) If n =2, we have in case of just one Jordan block J(x, 2)
inJ = S7'T: F(x) = 'Sz = e(2x,2,) and G(z) = &' Tx = e(2\nx,x, + 23) for
e=+1. 8o F(x) = G(z) =0 holds iff z = ae,, Hence (vii)(a) is
proved. In case of (viii)(a) for a Jordan block J(a, b, 2) of type (B),
we have F(x) = 22,2, and G(2) + 2ax,x, + b(x} — 22). And hence F(x) =
G(x) = 0 holds iff z = 0.

Let S and T be a nonsingular pair of r.s. matrices of dimension
greater than 2. In Theorems 1, 2, and 3 we have seen how the real
Jordan normal form of S™'T determines the maximal number of lin.
ind. vectors in Q¢N Q,. Since we have dealt with all possible real
Jordan normal forms, we can reverse the argument and get the
following:

THEOREM 4. Let S and T be a nonsingular pair of r.s. n X n
matrices where n > 2.

Let m = max {l| there exist | lin. ind. vectors in QsN Qr}. Let
the Roman numerals (i), ---, (viil) derote the various conditions in
Theorem 2.

If m =0, then S and T can be simultaneously diagonalized by a
real congruence transformation.

If m =1, then (vii)(a) holds with k = 1.

If 2 < m < [n/2], then (vii)(a) holds with k = m or (vii)(b) holds
with r =m — k for S and T, or S and T can be diagonalized simul-
taneously.



REAL VECTORS ANNIHILATED BY TWO QUADRATIC FORMS 559

If [n)2] < m < n — 1, then (vii)(b) holds with r = m — k where
k =< [n/2] for Sand T, or S and T can be diagonalized simultaneously.

If m =n — 1, then (vi)a) or (viii)(a) or (vii}b) holds with r =
m — k, where k < [n/2] for S and T, or S and T can be diagonalized
simultaneously.

If m = n, then (i), - - or (viii) holds for S and T, or S and T can
be diagonalized simultaneously by a real congruence transformation.

Here [ ] denotes the greatest integer function.

If m, the maximal number of lin. ind. vectors simultaneously
annihilated by two quadratic forms a’Sz, ' T, lies properly between
1 and n — 1, and if we can rule out the cases (vii)(a) or (vii)(b), then
we can conclude that S and T are simultaneously diagonalizable. For
example, here are two such conditions that make (vii)(a) or (vii)(b)
impossible to happen:

COROLLARY 1. Let S and T be a nonsingular part of r.8. n X n
matrices. Let m = max {l| there exist [ lin. ind. vectors in Qs N Qr}.

Assume 1 < m < n — 1.

If (a) S7'T is nonderogatory, or

(b) for every eigenvalue N of S™'T the number of associated lin.
ind. etgenvectors is smaller than half the algebraic multiplicity of \,
unless both are the same, then S and T can be diagonalized simul-
taneously by a real congruence transformation.

Nonderogators matrices are those that have only one Jordan block
for each different eigenvalue.

As a further corollary to Theorem 4 (m = Q) we get a result due
to Greub and Milnor [1, p. 256]:

COROLLARY 2. Let S and T be a nonsingular pair of r.s. matrices.
If QsN Qr = {0}, then S and T can be diagonalized simultaneously
be a real congruence transformation.
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