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ON THE MAXIMAL NUMBER OF LINEARLY INDEPENDENT
REAL VECTORS ANNIHILATED SIMULTANEOUSLY

BY TWO REAL QUADRATIC FORMS

FRANK UHLIG

For a nonsingular pair of real symmetric (r.s.) matrices
S and T the maximal number m of lin. ind. vectors simul-
taneously annihilated by the associated quadratic forms is
computed as a function of the real Jordan normal form of
S~*T. Conversely one can deduce which real Jordan normal
form S"1 T must have, if a specific m is the maximal number
of such vectors. Furthermore, two new conditions are found
that assure S and T to be simultaneously diagonalizable by
a real congruence transformation.

First we introduce the notions of Jordan blocks, real Jordan
normal form and the canonical pair form for pairs of r.s. matrices.

DEFINITION 0.1. A square matrix of the form

ιX e 0

M =

\θ X k x k

is called a Jordan block of type (A), if for k ^ 2 we have λ e R and
e — 1, while for k — 1 we have M — (λ) with XeR. Such a matrix
M is called a Jordan block of type (B), if for k ^ 4 we have X —

(& ~" a)> α' b e R> b φ ° a n d e = (o l ) ' w h i l e f o r k = 2 w e h a v e M ^
~~ ) with a, beR, b Φ 0. Jordan blocks will also be denoted by

J(λ, k) and J(a, b, k)y respectively.
Now we can state the real Jordan normal form theorem (see, e.g.,

Kowalski [2], p. 248).

THEOREM 0.1. Every real square matrix A is similar over the
reals to a matrix J ~ diag (Au , At)> in which each square block Aά

corresponds to an eigenvalue Xj of A. If this eigenvalue Xj is real,
the associated A3- is a Jordan block of type (A); if X3- = a + bi 0 R,
then Aj is a Jordan block of type (B). This J is called the real Jordan
normal form of A. It is uniquely determined by A, except for the
order of its Jordan blocks.
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The final result to be quoted will be the canonical pair form
theorem for nonsingular pairs of r.s. matrices, that is pairs S and T
where S is nonsingular.

THEOREM 0.2. Let S and T be a nonsingular pair o/r.s. matrices.
Let S~ιT have real Jordan normal form diag {Ju - - , Jr, Jr+1, , Jm),
where Jl9 , J r are Jordan blocks of type (A) corresponding to real
eigenvalues of S^T and Jr+1, , Jm are Jordan blocks of type (B) for
pairs of complex conjugate roots of S^T.

Then S and T are simultaneously congruent by a real congruence
transformation to

diag ( ε ^ , , εrEr, Er+1, ••-, Em)
and

diag (s^J,, - , erEJr, ErHJr+1, , EJm) ,
/0 1\

respectively, where ε̂  = ± 1 and E{ denotes the square matrix

\l 0/
of the same size as Ji for i — 1, , m.

Canonical forms for a pair of r.s. matrices go back to Weierstraβ
and Kronecker. A list of references can be found in Uhlig [3], Theorem
0.4.

NOTATION. For S symmetric we define Qs = {xeR*\x'Sx = 0}.

We will now state the main theorems that relate m — max [k \
there exist k lin. ind. vectors in Qs Π Qτ) to the real Jordan normal
form of S-'T.

THEOREM 1. Let S and T be a nonsingular pair o / r . s . n x n
matrices. Let J be the real Jordan normal form of S~ιT. If

( i ) J contains a Jordan block of dimension greater than 3, or
(ii) J contains two Jordan blocks of dimension 3 each, or
(iii) J contains one Jordan block of dimension 3 and one of

dimension 2, or
(iv) n > 3 and J contains a Jordan block of dimension 3 and

1-dimensional blocks else, but not all eigenvalues of S~ιT are the same,
or

( v ) J contains two 2-dimensional Jordan blocks which correspond
to different eigenvalues of S~^T if both blocks are of type (A), •••,
then Qs Π Qτ contains n linearly independent vectors.

THEOREM 2. Let S and T be a nonsingular pair o/r.s. matrices
of dimension n. Let J be the real Jordan normal form of S^T. If
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(vi) n > 3, J contains one ^-dimensional Jordan block, linear
blocks else and all eigenvalues of S~*T are the same while inertia
SΦ{n- 1,1, 0), (1, n - 1, 0); or

(vii) n > 3 and J contains k ^ 1 identical 2-dimensional Jordan
blocks J(λ, 2) of type (A), linear blocks else for eigenvalues μ{(i =
2k + 1, , n) and the set

{elf •• > ε A , e < ( ^ - X)\i>2k}

contains positive as well as negative numbers, where the ε3- = ± 1 are the
constants in the canonical pair form ofS and T (see Theorem 0.2), or

(viii) n > 3, J contains one 2-dimensional block J{a, δ, 2) of type
(B) and linear blocks else for eigenvalues μi9 where not all μt are the
same or1 inertia S Φ (n — 1, 1, 0), (1, n — 1,0),
then Qs Π Qτ contains n linearly independent vectors. If

(vi) (a) condition (vi) holds, except that inertia S = (n — 1, 1, 0)
or (1, n — 1, 0), or

(viii) (a) condition (viii) holds, except that all real eigenvalues fa
as defined in (viii) are the same and inertia S = (n — 1, 1, 0) or (1, % —
1, 0). Then Qs Π QΓ contains a maximum of n—1 lin. indep. vectors
only. If

(vii) (a) condition (vii) holds except that the set {εl9 , εk9 £*(//$ —
λ) I i > 2&} as defined in (vii) contains r ^ 0 zeroes /Wi — λ = =
μ2fc+r — λ — 0 a^ώ ô fo/ positive or only negative numbers else, and
£2&+i = = ε2k+r, then Qs Π Qτ contains a maximum number of k
lin. ind. vectors. If

(vii) (b) condition (vii) (a) holds except that not all εt are the same
for 2k + 1 ^ i g 2k + r, £Ae% $# Π Qτ contains a maximum of k + r
lin. ind. vectors. If

(ix) n > 1 and S and T can be simultaneously diagonalized by a
real congruence transformation, then the maximal number k of lin.
ind. vectors in Qs Π Qτ can be k = 0, 2, , n depending on S and T.

Theorem 3 will treat ^-dimensional r.s. matrix pairs for n ^ 3:
The following lemma is useful for the proofs of Theorems 1 and 2.

LEMMA 1. Let S and T be real symmetric matrices and A be a
real nonsingular matrix.

Then

max {k I there exist k lin. ind. vectors in Qs Π Qτ)

= max {k I there exist k lin. ind. vectors in QA,SA Π QA'TA}

1 This "or" does not mean "either... or".
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This is obvious if one observes that QA,SA — A~ι(Qs) for nonsingular A.

Proof. (Theorem 1) In view of the above lemma we may assume
without loss of generality that S and T are in canonical pair form:

S = diag(± Eu , ± Er, Er+ί, , Em) ,

T = diag (± EJU , ± ErJr, Er+ιJr+u , EJm) ,

where Ju ,Jr are Jordan blocks of type (A) and / r + 1, , Jm are of
type (B).

Having S and T in this form is very advantageous. For then
we have (e'S^)2 + (e\Te>? Φ 0 for at most r + 2(m — r) unit vectors e{.
The reason is as follows:

For the Jordan block Jx = J(λ, k) of type (A) we have: if k is even:

0L/2+1 Eekj2+ι = 0

and

βfc/2+1 £ 7 J ( λ , k)ekJ2+1 — X ,

while for all other i ^ k: e\Eei = elEJ(X, k)e{ = 0 ,̂ if fc is odd:

^ + 1 / 2 - 2 ^ + 1/2 = 1

and

e'k+1}2EJ(X, k)ek+1}2 = λ ,

while for all other i ^ A:: e JS'ei = elEJ(Xf k)βi = 0. For the Jordan block
jrχ r= J(α, 6, Λ)(6 9̂  0) of type (B) we have: if k is divisible by 4: elEβi =
e'iEJ(a, b, k)βi — 0 for all i ^ k; while for a fc not divisible by 4 we have

e'k!2Eek/2 = 0, e'kj2EJ(a, 6, &K / 2 = 6; ekj2+1Eekj2+1 = 0 ,

e'kl2+1EJ(a, b, k)ekl2+1 = - 6 and e j ^ = e\EJ{a, 6, fc)e< = 0

for all other i ^ k.
The same argument holds for each of the Jordan blocks. So there

are at most r + 2(m — r) unit vectors not simultaneously annihilated
by the two quadratic forms x'Sx and x'Tx if S and Tare in canonical
pair form. For all ί such that e< £ ζ><? Π QΓ we will exhibit lin. ind.
vectors ^ e Qs Π QΓ that have a nonzero ΐth component and hence are
also lin. ind. of all et with e4 6 ζ^ Π QΓ. Then Theorem 1 is proved:
There are n lin. ind. vectors in Qs Π QΓ

The remainder of this proof will consist of finding these vectors
yif one for each Jordan block of type (A), two for each Jordan block
of type (B) of dimension not divisible by 4 in each of the cases (i), ,
(v).

From now on we will in general assume that the Jordan blocks
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of S~λT mentioned in (i), , (v) appear in the first diagonal positions.
Before starting on the individual cases we express the quadratic forms
corresponding to S and T by only singling out the first block here:
If a Jordan block J(λ, k) = Jγ of type (A) appears first, let us look at
the two quadratic forms F(x) = xrSx and G(x) = x'Tx:
For

S = diag (± Eu , ± Em) and x = (xu , xn)

we have

F(x) = ± h(x) + f(x) ,

where

h{x) = x' diag (El9 0, -, 0)x = Σ ^ %

and

= x' diag (0, ± E2, . , ± J£m)a>

is a quadratic form involving xk+l9 , xn only.
For

..., ±EJm)

we have

G(a ) = ± (Xh(x) + e(x)) + g(x)

where h is as above,

and

flf(a ) - α?' diag (0, ± E2J2, , ± JS7«/.)aί

involves α?A+1, , α;Λ only.
Now F(α;) = 0 iff / ( » ) = + Λ(α?). And by definition

iff ^(a?) = G(x) = 0 hence iff

{ 1) ± e(x) + g(x) - λ/(x) = 0 and F(x) = 0 .

If a Jordan block J(a, b, k) = JΊ(6 Φ 0) of type (B) appears first in
S^Ty then we define F(x) = x'Sx = h(x) + f(x) with h and / as above
and G(x) — x'Tx — ah(x) + bt(x) + u(x) + g{x), where h and g are as
above and

i,j^k i,j odd i,j" even

Thus in this case x e Qs Π Qτ iff •ίΓ'(̂ ) = G(«) = 0, hence iff
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( 2 ) bt(x) + u(x) + g(x) - af{x) = 0 and F(x) = 0 .

( i ): Assume (i) holds with a Jordan block «/(λ, k) of type (A)
for k >̂ 4. Then from above there is an i, 2 < i < k, such that ^ £
Qs Π Qτ> For this index i we define ai9 βieR and yi — α ^ + ^ β 2 +
βi + efc such that (1) holds: ± efa) + gfa) - \f(yt) = ± (2/S< + β(β,)) - 0
determines βt and i*7^) = 0 determines aζ.

For i > k such that et <£ Qs Π QΓ and #(e;) — λ/(^) = 0, we define the
vector y€ = a^ + ek + ei9 where a{ is such that F(y{) = 0. In the case
that g(ei) — λ/(β<) Φ 0 we define yi = a^ + β^ + ek + ei9 where ^ , /S* e ϋί
are such that (1) holds: + 2βt + flr^) — λ/(^) = 0 defines ^ and
Ftyi) = 0 defines at.

Next assume (i) holds for a Jordan block J(α, &, fc) of type (B)
for k = 2l^4.

First assume & = 21 is divisible by 4. Then e< 0 ©<? Π Qτ implies
i > k as pointed out above. For such an i define y{ = ^ 6 ^ ! + /Siβz +
eι+1 + e< where ai9 βiSR are such that (2) holds. When checking (2),
note that { is even, if k is divisible by 4. 2bat + g(e{) — af(e{) — 0
defines at and 2β4 + h{e^) = 0 defines /9, .

Now assume k = 2Z is not divisible by 4. Then Z is odd and we
know that both eh eι+1 & Qs Π QT from the above. If we define

Vι = ez — — ez+3 and ^/ί+1 = et+1 + — βz+2 ,
Δ Δ

then (2) holds for these two vectors. For i > k such that e^ Qs f] Qτ

we define as before for the real case yt — <*& + ek + β« if flf(βi) — λ/(βi) =
0 and τ/ί = a% + /Sίe2 + ek + e* otherwise. This proves (i) of Theorem 1.

(ii): Assume J contains two Jordan block of dimensions 3 each.
Then these must be Jordan blocks of type (A); J(λ, 3) and J{μ, 3) for
λ, μ e R. Define for x — (xl9 , xn):

F(x) = x'Sx = e(2a?1a?3 + xl) + δ(2x4x6 + x*) + f(x)

and

( 3 ) G(x) = x'Tx = ε(λ(2a?1α?8 + α;2
2) + 2x2xz)

α;6 + xf) + 2xδx6) + flf(a?) ,

where / and g are quadratic forms not involving xu , #6 and
ε, δ — ± 1, independently from the canonical pair form.

Now β2, eδ&Qs Γ) Qτ. And for these indices define the vectors
y2 = - 1/26! - <5εe2 + e3 - l/2e4 + e5 + e6 and τ/5 = - l/2eL - δεe2 + e3 +
l/2β4 — e5 — ββ. They are lin. ind. and satisfy F{y{) = G(^) = 0 in (3).
For i > 6 such that e< g Q5 Π Qr we define
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yζ = (X& + βιβ2 + e3 + e{ ,

where & is chosen such that

2e& + flr(β4) - λ/(e4) - 0 ,

and α4 is such that

F{y%) = ε(2a, + $ ) + /(e<) - 0 .

Then G(Vi) = 0, too.
This completes (ii).

(iii): Here again the 3-dimensional Jordan block has to be of type
(A): J(λ, 3), while the 2-dimensional block can be of either type. Let
for x = (xl9 •••, O ,

F(x) = x'Sx = ε(2x1x3 + xi) + d(2xAx5) + f(x)

and

G(x) = x'Tx = e(X(2x1x3 + xl) + 2x2x3)

J(2μx4x5 + xl) ) in case of (A)

°\(2ax4x5 + b(xl - xl))\ gKX) in case of (B)

where <?, ε = ± 1 from the canonical pair form and / and g do not
involve the first five components. If the 2-dimensional Jordan block
in question is of type (A), then for i ^ 5 we have e{ $ Qs Π Qτ exactly
for i = 2, 5, while for a Jordan block of type (B) those indices are
i = 2, 4, 5.

In case of (A) define

y2 = δεe, + e2 — -£-e3 + e5

y5 = δεe, + e2 - JLe3 - eδ
Δ

and one has y2, yδ€QsnQτ-
In case of a 2-dimensional block J(a, b, 2), δ Φ 0 of type (B), define

y2 = ~ -|-ei + e2 + — εe3 + e5

0 Δ

V*= + \eλ + e2- —εe3 + e,
0 Δ

ε b
—ex + e2 + — εe3 - e5

Then y2, yiy y5eQsΠ Qτ-
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For i > 5 such that e{ 6 Qs Π Qτ, define yi = α% + /^e, + e3 + e<,
where α:*, fteΛ are such that 2εβi + g(βi) — λ/(e<) = 0 and F(yt) = 0.
This concludes part (iii).

(iv): Here we have Fix) = x'Sx = ε(2£c1ί»3 + αφ + fix) and GO) =
a;'Tic = ε(X(2xLxB + αφ + 2x2x3) + #0) and jP(a;) = G(x) = 0 iff

(4 ) s2x2x3 + flr(.τ) - Xf(x) = 0 and F(x) = 0 .

By assumption all but the first Jordan block J(λ, 3) in S^T are 1-
dimensional blocks J(μif 1). We assume π > 3, so there exists an
iQ > 3 such that g(eiQ) - λf(eiQ) Φ 0, for g(et) - λ/(e,) - ± (μi - λ) - 0
for all i > 3 contradicts our assumption.

Now e2gQs Γ) Qτ and we define y2 = ^ ^ + β2e2 + e3 + e<0, where
β2 φ 0 is such that 2ε/92 + ^(eίo) — λ/(eίo) = 0 and α2 is such that
•̂ (2/2) = 0. For all i > 3 we have e€ g Qs Π QΓ and we define yiQ — —
2̂̂ 1 - β2e2 - e3 + % and y^ = a ^ + /9^2 + e3 + -̂ for all other i > 3,

where the #'s and /S's are chosen such that (4) holds for all yζ. These
n vectors y{ are lin. ind.

(v) : Now only (v) remains to be proved. Let us first assume
that the two 2-dimensional Jordan blocks in question are both of type
(A): J(λ, 2), J(μ, 2), where by assumption λ Φ μ. Then F{%) = x'Sx =
ε2x1x2 + 82x3x4c + f{x) and G(x) = ^'Γα; = e(2λa?1a;2 + ^) + δ(2^^3a;4 + a;4

2) +
gr(ίu) where ε, δ — ± 1 and / and # do not involve the first four com-
ponents of α?. Then F(x) — G(x) — 0 is equivalent to

( 5 ) F{x) = 0 and 2δ(μ - X)x3x4 + ex2

2 + δx4

2 + r̂(a?) - Xf(x) = 0 .

Now if βi 6 Q5 Π QΓJ then i = 2 or i = 4, unless i > 4. We define

2/2 = αβi + 2β2 + βe3 — e4

y4 — aeι + 2e2 + βe3 + e4

and

for all i > 4 with e< £ Q5 Γ) Qr Here τ< ^ 0 are chosen such that
SΎI + δ + flr(βi) — λ/(βi) ^ 0 while the a's and /S's are chosen such that
(5) holds.

Next assume, the two 2-dimensional blocks are both of type (B):
J(a, 6, 2), J(c, d, 2) where b, c Φ 0.

Then î (α ) is as above with ε = δ — 1 while

G(α ) = x'Tx = 2αa?1a?2 + 2eα^4 + 6(α?J — a i) + ^01 - α;4
2) + g(x) ,

and F(.τ) = G(E) = 0 is equivalent to
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F{x) = 0 and 2(c - a)x3x4 + b{x\ - xξ)

+ d{x\ - xf) + g(x) - af(x) = 0 .

Here we have e{ ί Qs n Qτ for all i ^ 4.
If 6d > 0 we define the following four lin. ind. vectors

yx = αβx + /2e4, #2 = ae1 - βe, ,

where α, /S =£ 0 are such that ba2 — dβ2 = 0 and thus (6) holds for all
yi9 i ^ 4.

In bd < 0, we define τ/{ as follows:

^ = ae1 + /Sβ3 , 2/2 = aeι - βe3 ,

Vz = ^ e 2 + /3e4 , 1/4 = ^ β 2 - βe, ,

where a, /3 Φ 0 satisfy 6α2 + dβ2 = 0 such that all four y< satisfy (6)
again.

For indices i > 4 such that e{ S Q5 Π Qr we define the corresponding
vector y4 as follows:

If /(β<) = 0 and bd > 0, let yt — ̂ βi + β^ + e4, where ai9 βt are
chosen such that ba\ — dβ\ = — 0(e4). If /(β*) = 0 and bd < 0, let yt =
«*βi + /3<eβ + eί> where ^ , β{ e R such that ba\ + dβ\ = — g{ex). If
/(βi) Φ 0 and ff(e<) - α/(^) = 0, then let yt = CC& + /Ŝ a + β* where
α, I = I ft I such that ^ satisfies (6). If /fa) ^ 0 and (fffa) - α/ fa))d >

0, let y{ = ^βi + ftβa + 7iβ4 + e<, where \a^ — | f t | and 7* are chosen
such that (6) holds. If /fa) ^ 0 and (gfa) - α/fa))d < 0, let i/< = α ^ +
ftβj + ΊiBft + e<, with α, , ft, 7. chosen to satisfy (6).

Finally we prove (v) for a Jordan block of type (A) and one of
type (B): J(X, 2), J(α, b, 2). Then F(x) is as above with ε = ± 1,
5 = 1 while G(x) = x'Tx = ε(2Xx1x2 + xl) + 2ax&ι + b{x\ - x\) + g(x)
where g(x) does not involve xi9 , a?4. And F(x) = G(α ) = 0 is equi-
valent to:

F{x) = 0 and 2(α - eX)xzxi + εa i + b{x\ - xί)

+ g(x)-\f(x) = 0.

If e4 $ Qs Π Qj-, then i = 2, 3, 4 or i > 4. We define y2 and y8 first:

where β = V- ε/b, 7 = 0, if ε δ < 0 and β = 0, 7 = l/i/6, if ε& > 0.
Then el9 y29 and y8 are all lin. ind. and satisfy (7).

If y4 has all of its first four components nonzero it will be lin.
ind. of elf y2, y3 and all β< for i > 4. So let y± — aex + βe2 + ΎeB +
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ηe4 where a, β, 7, v) are chosen as follows:

If α - ελ = 0, take 7 = 1, η = 2, β = τ/36s, if eb > 0 and α Φ 0
such that i^ί^) = 0; but if εδ < 0, choose 7 = 2, ^ = 1, /S = 1/— 3δε
and α as above, and y4 satisfies (7).

If a — ελ Φ 0, choose 37 ̂  0, 7 = I/37 such that

2(α - ελ) + &(-i — 572) < 0 if ε = 1

and

2(α - ελ) + &(•! - rf^ > 0 if ε = - 1 .

Then choose β Φ 0 such that the second equation in (7) holds and
after letting a = — ε//3 the vector /̂4 again satisfies (7). For i > 4
define ^ = aeγ + e2 + βe3 + 7̂ 4 + e* where α: e i? and either /3 = 0 or
7 = 0 as before in such a way that (7) holds for each yiy ί > 4. This
completes the proof of Theorem 1.

We now go on to prove Theorem 2

Proof. (Theorem 2) We use the notation of the previous proof

(vi), (vi)(a): Let (vi) or (vi)(a) hold. Then the 3 dimensional
Jordan block is of type (A):J(λ, 3). And we have with x — (xl9

•• , O

F(x) = x'Sx = ε1(2α;1^3 + xξ) + Σ ε&\

and

G(x) = x'Tx = e1(X(2x1x3 + xξ) + 2x2x3) + Σ e<λ«i,

where ε4 = ± 1. Hence F(x) = G(x) = 0 is equivalent to F(x) = 0 and
^2^3 — 0 .

If all Si are the same, then, since inertia i?3X3 = (2, 1, 0), we have
inertia S = (n — 1, 1, 0) or (1, n — 1, 0) and (vi)(a) would hold. But
let us first assume (vi) holds. Then for some ί ^ 4 we must have
βi ε, < 0. Clearly e19 e3e Qs Π Qτ and for the other indices we define:

y2 = e2 + βz

2/ί == - ^ r - β i — ^3 + et for i ^ 4 .
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Then el9 β8, y2 and y^i ^ 4) are in Qs n Qτ and are lin. ind.
If (vi) (a) holds, then F(x) = 0 and x2xz — 0 implies x2 = 0, such

that we cannot find a vector y2 e Qs Π Qτ with a nonzero second com-
ponent. Hence Qs (Ί Qτ contains at most (n — 1) lin. ind. vectors.
But el9 e3, yi(ί ^ 4) defined above are linearly independent and belong
to Qs Π QΓ This proves (vi) and (vi)(a).

(vii), (vii)(a), (vii)(b): We define

and

F(x) =

= x'Tx = 2λ

= 2
i=2fc+l

Σ
i

Σ
i=2k+l

where ε< = ± 1. Thus .F(a;) = G(α ) = 0 is equivalent to F(x) = 0
and

8 = 0 .

Assuming (vii) holds, then the quadratic form in (8) is inde-
finite, so there must exist an index I such that

or such that

We define

i — λ) < 0 for some I ̂  2k + 1

z/2 < 0 for even I ̂  2k .

for 0

- et

and

- α ^ + βiβ2 + + for i ^ 1, 2, 0 ,

where βt and τ4 are chosen such that yi satisfies (8), while at are
chosen such that F(y{) = 0. This proves (vii).

To prove (vii)(a) and (vii)(b) assume now that the quadratic form
in (8) is semidefinite and that the symmetric matrix corresponding to
the quadratic form in (8) has rank n — k — r, where the r zeroes
among the ε ^ — λ) occur for the indices % = 2k + 1, , 2k + r.
Then the only unit vectors satisfying (8) are el9 e3, , e2k_l9 e2k+1, ,
e2k+r. And clearly ely e8, , e2k-x eQsΓ\ Qτ in either of the cases (vii)(a)
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or (vii)(b).

In case of (vii)(a) exactly ely e8, , e2k^ e Qs n Qτ> because the
quadratic form in r variables

2k + r

Σ ê f

appearing in F is definite and F(x) Φ 0 for all x with xi Φ 0 for 2& <
i ^2k + r. So in this case we conclude that Qs Γ) Qτ contains a
maximum of k lin. ind. vectors.

In case of (vii)(b)

2k+r

(9) Σ ε^|

is an indefinite quadratic form and besides el9 e3, , e2k^l9 r more lin.
indep. vectors ylf —-,yr can be found that satisfy F(x) = 0 and (8):
Choose Vi as follows. Since (9) is indefinite, there are indices 2k <
I, j ^ 2k + r with εz = 1, ε, = — 1. Then define for 2k < i <^ 2k + r,
ί Φ I, j :

Vi = es Hr et if F(e{) = 1

and

yt = eι + et if F(βt) = - 1

while we set

Vι = βy + β«

and

yy = ey - eι .

This proves (vii)(b).

(viii): Here we define

F(x) =

and

G(ίc) = x'Tx = 1 2

So JP(X) = G(#) = 0 is equivalent to

(10) F(x) = 0 and 6(a?J - a?9 + Σ ^(Λ - a)x\ = 0
i=3
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det (yl9 , yn) = 0 .

Now unless (viii)(a) holds, not all /i< or2 not all ε< are the same
for i ^ 3. So for some pair of indices i, j ^ 3 we m u s t have μt Φ
μ5 or2 6i Φ βj. After a suitable index permutat ion we may s t a r t t h e
proof assuming t h a t μ3 Φ μ4 or2 ε3 φ ε4 already.

We define yγ = a3ex + β3e2 — e8, i/2 = a& + /94e2 — e4 and # { = < % -f
βφ2 + e€ for i ^ 3, where the aiy βi are chosen to satisfy

(11) b{a\ — β ) + Siiμt — a) = 0 and 2^/3* + ε< = 0 for each i .

Then t h e vectors y{ for i ^ n are lin. ind. iff

β3 - 1 0 2α 3 2/S3 0 0

/54 0 - 0 _ 2α:4 2/34 0 0

A 1 0 ~ a3 β5 1 0

α 4 /34 0 1 a, β, 0 1

So the w vectors ^ are lin. dep. iff for the 2-vectors we have

(12) (α8, βs) = d(«4, A )

for some real coefficient ώ. Now (12) holds only if d = ± 1 , for (12)
implies α3/33 = d2α4/54 and we know α3/33 = — ε3/2, since F(yz) — 0 and
a4β4 = — ε4/2, since F(τ/4) = 0 and thus d = ± 1.

If d = 1, then by (11) we have ε3 = ε4 and hence by assumption
μ3 φ μ4 which contradicts (11). If d — — 1, then ε3 = — ε4 and a3β3 — —
&Sι by (11), contradicting (12).

Thus we found that the n vectors y{ in Qs f) Qτ are lin. ind. in
case of (viii).

If (viii)(a) holds, μi = μ and ε4 = ε for all i. We define for x =
(rγ . . . γ \

F{x) = x'Sx = 2^(13)

and

UΓ t̂ί/y — tV !•(/ — _

i= i

And î (α;) = G(α ) = 0 is equivalent to

(14) F(x) = 0 and b{x\ - x2

2) + ε(Λ - α) Σ a? = 0 .
t=3

We define the following w — 1 lin. ind. vectors

yi — aeι + βe2 + e4 for i ^ 3 ,

2 This "or" does not mean "either .. . or".
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where a, β are chosen such that F{y{) = G{y^) — 0 for all i. Such
numbers a, β exist, since they can be chosen as the intersection of the
following two hyperbolas

2aβ + ε = 0; a2 - β2 = - -f-G" - a) .
b

Now any w = (ft, , ft») e Qs Γ) QΓ satisfies (14). We are going to
show that if 0 ^ w e Qs ΓΪ Qτ then the 2-vector (ft, β2) can be written
as ± \\x\\(a, β) with α, /3 as chosen above and x = (0, 0, ft, , ft,).
Now if | | ί | | = 0, i.e., ft = 0 for all i :> 3, then by (14) ftft = 0 =
iS5 - βl so that w = 0. If ft = 0, then by (13) we get w = 0.

So if w ^ 0 belongs to Q̂  Π Qr> then || x \\ Φ 0 and we define d as
d = βja with α as introduced above. Using the equations F{w) =
F(τ/.) = o we get 2aβ = - s = 2ft/S2/p||2 and hence ft = \\x\\2β/d.
The second equation in (14), written out for yi and w, reads like

b(a2 - β2) + ε(μ-a) = 0 = b(d2a2 - \\x\\4β2!d2) + e(μ - a)\\x\\2,

and hence

a* - β2 = d2a2/\\x\\2 - \\x\\2β2/d2

or

d V + d2\\x\\2(β2 - α 2 ) - β 2 \ \ x \ \ 4 = 0 .

This last equation in d has only two real roots, namely d = ±\\x\\.
Hence ft = ± p | | f t while ft = ± \\x\\a.

So the equation w = (ft, , /3%) = d(aex + βe2) + (0, 0, ft, ,
βn) — Έiΐ=2 ViVi c a n be solved for real coefficients ηi9 namely by rji —
βi for i > 3,

and ηz = β3 + Ύ]2, where

,1/2

as we have seen above.
So every w e Qs Π Qτ is lin. dep. of y2, , |/Λ and in this case

n — 1 is the maximal number of lin. ind. vectors in Qs f] Qτ. This
proves (viii)(a).

(ix): It only remains to show (ix): Let S and T be simultaneously
diagonalizable.

Assume S is positive definite, then Qs = {0} and hence for any
symmetric T we have Qs Π Qτ = {0}, hence the case k — 0 occurs.
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If S = diag (1, - 1, , - 1, 1, , 1) and T = diag (λ, - λ, ,
— λ, 0, , 0) with (I — 1) numbers — 1 and — λ appearing on the
diagonals of S and T, then Qs Ω Qτ contains a maximum of I lin.
indep. vectors for λ ^ O , 2 <^l <^ n as can be seen by inspection.
Finally if x e Qs Ω Qτ> then x can be written as x — aet + βek + y for
two indices I, k, nonzero constants a, β, and y orthogonal to et and ek,
because x has to satisfy

F{x) = x'Sx = Σ e*a?! = 0
* = 1

and

G(x) = a 'Tα; = Σ ε ^ I = 0 , with e« = ± 1 .

But then ί — αβz — /3βfc + ?/ e Qs Ω Qr as well and α? and ί are lin.
ind. So in case (ix) Qs Ω QΓ cannot contain just one vector and its
multiples.

This proves Theorem 2.

Next we treat nonsingular pairs of real symmetric matrices that
have dimensions 2 or 3.

THEOREM 3. Let S, T be a nonsingular pair of r.s. matrices of
dimension n. Assume that n = 2 or 3. Let the Roman numerals
(vi), •••, (viii) denote the various cases of Theorem 2.

If (vii) holds, then Qs Ω Qτ contains n lin. ind. vectors.
In (vi)(a) or (viii) (a) {with n = 3) holds, then Qs Ω Tτ contains a

maximum ofn — 1 lin. ind. vectors.
If (vii)(a) holds, then Qs Ω Qτ contains a maximum of k lin. ind.

vectors, where k is defined as in Theorem 2.
If (viii)(a) holds with n = 2, then Qs Ω Qτ — {0}.

Proof. In view of Lemma 2 we can again assume that S and
T are already in canonical pair form.

(a) Let n = 3: If J = S"1?7 contains just one 3-dimensional block
J(λ, 3), then inertia S = (2, 1, 0) or (1, 2, 0) and we have condition
(vi)(a). Then F(x) = x'Sx = e(2a?1a?8 + xϊ) and G(α ) = α 'Tα; = ε(λ(2α;1̂ 3 +
xi) + 2x2x3) with ε = ± 1. Hence the only vectors x satisfying F(x) =
G(α ) = 0 are multiples of et and of e3. Hence there are at most 2 lin.
ind. vectors in Qs Ω Qτ»

If /S-1Γ has a complex root, then we have case (viii)(a) and the
proof of Theorem 2 (viii)(a) carries over.
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If S~XT satisfies condition (vii), then we have for e< = ± 1, F(x) =
x'Sx = ε1(2a?1α;2) + ezx\ and G(X) = x'Tx = ε1(X2xίx2 + χ\) + ε3μxl and
thus F{x) — G(x) — 0 is equivalent to

(15) F(x) = 0 and ε,x\ + ε3(μ - λ)^2 = 0 .

If λ = μ, then only multiples of et are in Qs Π QΓ

 a i*d it X Φ μ, but
SiS8(μ — λ) > 0, then again only multiples of eί are in Qs Π QΓ. Now
condition (vii)(a) encompasses exactly these two cases, hence if (vii)(a)
holds, then Qs Π Qτ is just a one dimensional space.

If (vii) holds, i.e., X Φ μ and ελε^μ — X) < 0, then we define

Vl = βl

y2 = ae1 + /Se2 — ed

and

y8 = (xβi + /Sβ2 + β3 where a, β Φ 0

are such that ί/2, τ/3 satisfy (15).
(b) If % = 2, we have in case of just one Jordan block J(λ, 2)

in J = S-Ύ: F{x) = x'Sx = ε(2x1x2) and G(x) = x'Tx = ε(2Xx,x2 + xξ) for
ε = ± 1. So .P(α ) = G(x) = 0 holds iff α? = aex. Hence (vii)(a) is
proved. In case of (viii)(a) for a Jordan block J(a, b, 2) of type (B),
we have F(x) = 2xλx2 and G(x) + 2axλx2 + δ(^i — α?l). And hence F(x) =
G(α?) = 0 holds iff α? = 0.

Let S and Γ be a nonsingular pair of r.s. matrices of dimension
greater than 2. In Theorems 1, 2, and 3 we have seen how the real
Jordan normal form of S^T determines the maximal number of lin.
ind. vectors in Qs Π Qτ. Since we have dealt with all possible real
Jordan normal forms, we can reverse the argument and get the
following:

THEOREM 4. Let S and T be a nonsingular pair of r.s. n x n
matrices where n > 2.

Let m = max{i] there exist I lin. ind. vectors in Qsf] Qτ}. Let
the Roman numerals (i), , (viii) denote the various conditions in
Theorem 2.

If m ~ 0, then S and T can be simultaneously diagonalized by a
real congruence transformation.

If m = 1, then (vii)(a) holds with k = 1 .
If 2 ^ m ^ [n/2], then (vii)(a) holds with k — m or (vii)(b) holds

with r = m — k for S and T, or S and T can be diagonalized simul-
taneously.
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If [n/2] < m < n — 1, then (vii)(b) holds with r — m — k where
k ^ [n/2] for S and T, or S and T can be diagonalized simultaneously.

If m = n — 1, then (vi)(a) or (viii)(a) or (vii)(b) holds with r =
m — k, where k ^ [n/2] for S and T, or S and T can be diagonalized
simultaneously.

If m — n, then (i), or (viii) holds for S and T, or S and T can
be diagonalized simultaneously by a real congruence transformation.

Here [ ] denotes the greatest integer function.

If m, the maximal number of lin. ind. vectors simultaneously
annihilated by two quadratic forms x'Sx, x'Tx, lies properly between
1 and n — 1, and if we can rule out the cases (vii)(a) or (vii)(b), then
we can conclude that S and T are simultaneously diagonalizable. For
example, here are two such conditions that make (vii)(a) or (vii)(b)
impossible to happen:

COROLLARY 1. Let S and T be a nonsingular part of r.s. n x n
matrices. Let m = max {I \ there exist I lin. ind. vectors in Qs Π Qτ}>

Assume 1 < m < n — 1.
If (a) S~*T is nonderogatory, or
(b) for every eigenvalue λ of S~XT the number of associated lin.

ind. eigenvectors is smaller than half the algebraic multiplicity of λ,
unless both are the same, then S and T can be diagonalized simul-
taneously by a real congruence transformation.

Nonderogators matrices are those that have only one Jordan block
for each different eigenvalue.

As a further corollary to Theorem 4 (m = 0) we get a result due
to Greub and Milnor [1, p. 256]:

COROLLARY 2. Let S and T be a nonsingular pair o/r.s. matrices.
If Qs Π Qτ — {0}, then S and T can be diagonalized simultaneously
be a real congruence transformation.

ACKNOWLEDGMENT. This paper in essence constitutes Chapter 4
of my Ph. D. Thesis at the California Institute of Technology, 1971.
I am indebted to my advisor Dr. Olga Taussky-Todd and to Dr. H. F.
Bohnenblust for their guidance and advice. Dr. Olga Taussky-Todd
suggested that in order to generalize the theorems known about
simultaneous diagonalization of symmetric matrices one ought to study
the set Qs Π QΓ



560 FRANK UHLIG

REFERENCES

1. W. Greub, Linear Algebra, Springer, Berlin, 3 r d edition, 1967.
2. H. J. Kowalski, Lineare Algebra, Gδschens Lehrbϋcherei 27, Berlin, 1963.
3. F. Uhlig, Simultaneous block diagonalization of two real symmetric matrices, Linear
Algebra and Appl., 7 (1973), 281-289.

Received July 12, 1972.

UNIVERSITAT WURZBURG




