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ON THE LATTICE OF PROXIMITIES OF
CECH COMPATIBLE WITH A GIVEN CLOSURE SPACE

W. J. THRON AND R. H. WARREN

Let (X, c) be a Cech closure space. By 9ft we denote the
family of all proximities of Cech on X which induce c. 9ft is
known to be a complete lattice under set inclusion as ordering.
The analogue of the Ro separation axiom as defined for topo-
logical spaces is introduced into closure spaces. ϋ?0-closure
spaces are exactly those spaces for which 9ft Φ φ. Other
characterizations for i?0-closure spaces are presented. The
most interesting one is: every jR0-closure space is a subspace
of a product of a certain number of copies of a fixed i?0-
closure space. A number of techniques for constructing
elements of 9ft are developed. By means of one of these
constructions, all covers of any member of 9ft can be obtained.
Using these constructions the following structural properties
of 9ft are derived: 9ft is strongly atomic, 9ft is distributive,
9ft has no antiatoms, 19ft | = 0,1 or | 9ft | ^ 22*0.

1* Introduction* E. Cech in [2] has studied a basic proximity

structure (see Definition 1.3). The closure operator induced by such
a structure is in general not a Kuratowski closure operator, since it
may fail to satisfy the condition c(c(A)) c c(A), however it satisfies
the other three conditions and thus (X, c) is a closure space (Defini-
tion 1.1). Since Cech called his basic proximity just a "proximity"
and since this term is commonly used to denote a proximity of
Efremovic, we shall refer to the basic proximities of Cech as C-pro-
ximities. We did not wish to use the name "Cech proximity" because
this term already has another meaning in the literature [2, p. 447].

This paper is primarily concerned with a study of the order
structure of the family ffll of all C-proximities which induce the same
closure operator on a given set. Cech [2] proved that Wl is a com-
plete lattice. He characterized least upper bounds in 2R, the least and
greatest elements in 2W, and those closure spaces for which ΪDl Φ φ.

The symbol &{X) denotes the power set of X, | A\ indicates the
cardinal number of the set A, the triple bar = is reserved for defini-
tions and • signals the end of a proof.

DEFINITION 1.1. [2, p. 237] Let Xbe a set. A function c: &>(X)-+
&*(X) is called a Cech closure operator on X iff it satisfies the follow-
ing three axioms:

Cl: Φ = φ;
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C2: for every A c X, A c A;

C3: for all i , ΰ c l , A{jB = A\jB.
In stating these axioms, we have denoted c(A) by A. We shall also
use this notation in the following material, since from the context
one can determine whether A denotes a topological closure or a Cech
closure. The pair (X, c) is called a closure space. We note that Cl,
C2, C3 are three of the four Kuratowski closure axioms. The fourth
is: for every Acz X, Aa A.

DEFINITION 1.2. [2, p. 270] Let (X, c), (Γ, d) be closure spaces
and let / : X—> Y. Then / is continuous iff, given A c X, it follows
that /(A)c/(A).

DEFINITION 1.3. [2, p. 439] A relation & on ^ ( X ) is said to

define a C-proximity on a set X iff it satisfies the conditions:
PI: (A, B)e^ implies (B, A) e &*;
P2: ( A , B u C ) e ^ iff (A, £) e ^ or (A, C) 6 ^»;
P3: (φ, A)£0> for every A c X;
P4: i n ΰ ^ ί implies (A, B)e&*.

We now list a number of basic results about C-proximities which
were established by Cech. Let ^ be a C-proximity on X. The
function c = c(&): &(X)-+&{X) defined by x e A = c(A) iff ([x], A) e ^
is a Cech closure operator which satisfies: #e[?7] implies ye [x]. We
say that & induces c or that & is compatible with c. More gener-
rally, for a relation ^ on ^ ( X ) , we say that S? induces c if for
each Acz X, e(A) = [ar. ([α], A) e <5 ]̂. If (X, c) is a closure space
satisfying xe[y] implies ye[x], then

^ = [(A, JB): (A n £) U (A n B) Φ φ]

is a C-proximity on X compatible with c. Let SJl = 3K(X, c) be the
family of all C-proximities on X which induce c. If [^: i e I] c SDΐ,
then U [^: i 6 /] e 3JΪ. Let SK be partially ordered by set inclusion.
Then 3JZ has a least element & (defined above) and a greatest element

= & u [(A, B): A and 5 are infinite subsets of X] .

It then follows [4, pp. 7-10] that Wl is a complete lattice with the

operator V = U
The following definitions will be useful in describing some of our

results in this paper.

DEFINITION 1.4. Let (L, <;) be a partially ordered set. If α, 6 e L,
we say α covers b or b is covered by a when a > 6 and α > c > & is
not satisfied for any ceL. Moreover, (L, <£) is said to be covered
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iff, given xe L such that there is y e L satisfying y > x, then there
is zeL which covers x and satisfies z ^ y. Also (L, <0 is said to
be anticovered iff the dual of (L, ^ ) is covered.

DEFINITION 1.5. Let (L, <:) be a partially ordered set- If (L, ^ )
has a least element /, then ae L is an αίom iff a covers /. Also ce L
is an antiatom iff c is an atom in the dual of (L, ^) Furthermore,
(L, ίg) is called atomic when each xeL,x not the least element, is
the least upper bound of the atoms <Jα?. Moreover, (L9 <;) is called
strongly atomic iff, given α e L , the partially ordered set [b: a <; 6 e L]
is atomic. Also (L, ^) is antiatomic iff the dual of (L, <Q is atomic.

We note that if (L, <;) is strongly atomic and has a least element,
then (L, <£) is atomic. Also if (L, <*) is strongly atomic, then (L, <Ξ)
is covered. However, if (L, ^) is covered, then (L, ^) may not be
atomic or strongly atomic. To verify the last statement, let N be
the set of natural numbers and define a <̂  b iff a divides 6. To see
that (N, ^) is not atomic, we observe that the only atom ^ 4 is 2.
To see that (N, ^) is covered, let a properly divide b. Then there
is prime p such that ap divides δ. Thus ap covers α.

DEFINITION 1.6. A lattice (L, V, Λ) is infinitely meet distributive
iff, given nonempty BdL and α e L , then a Λ (VB) = V [̂  Λ δ: δ e 5].

DEFINITION 1.7. A lattice (L, V, Λ) with least element / and
greatest element /C is said to be complemented iff, for each xe L,
there is y e L such that x V y — ̂  and x /\ y = s.

2. JS0^closure spaces* Since a closure space {X, c) has a com-
patible C-proximity iff xe[y] implies ye[x], it seems appropriate to
give this condition a name. Moreover, a topological space is Ro iff
this condition is satisfied [3, p. 106].

DEFINITION 2.1. Let (X, c) be a closure space. We say that
(X, c) is Ro iff, given x, y in X such that xe [y], then ye [x].

Clearly, every i20-topological space is an i20-closure space. The
following example of an i^-closure space, which is not a topological
space, will be useful in the sequel.

EXAMPLE 2.1. Let S = [r, s, t] and let d: &(S) — 3»{S) be defined
by:

d{φ) - (φ),
d(lr]) = d(S) = d([r, s)) = d([r, «]) = d([s, t]) = S,
d([s]) = [r, s] and

= [r, t].
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THEOREM 2.1. Let (X, c) be a closure space. Then the following
are equivalent:

(a) (X,c) is Ro.
(b) There is a C-proximity on X which induces c, i.e., SK Φ φ.
(c) There is a semi-uniformity on X which induces c.
(d) Given A c X and x£ A, then [x] Π A = φ; i.e., each subset

of X is separated from the points excluded from its closure.
(e) Given Ad X and xe (X — A), then [x] c (X — A); i.e., each

subset of X contains the closure of the points in its interior.
(f) (X, c) is homeomorphic to a subspace of a product of spaces

(S, d) given in Example 2.1.

Proof. In [2] it is shown that (a), (b), and (c) are equivalent,
although the name RQ is not used. The proof that (a), (d), and (e)
are equivalent is straightforward and therefore is omitted.

(a) =» (f). By Theorem 17 C.17 in [2], it suffices to show that
there is a family [fa:X-+S] such that:

(1) Each fa is continuous.
(2) The family distinguishes points.
( 3) If,x e X and A c X such that x £ A, then there is an a such

that/β(α?)ίΛ(A).
To form such a family, if A, BczX and (A n B) U {A Π B) = φ,

then we define g: X—> S by

ίr if x e X - (A u B)

g(x) = \s if xe A

[t if x e B .

To verify that g is continuous, it suffices to show that if C c X and
g(CJφS, then g(C)czg(C). If #(C) = [s], then CaA and C c l
Since A(λB = φ, it follows that #(C) <= [r, s] = flr(C). Similarly, if

g(C) = [t], then ^
If y,ze X,y Φ z and 2/ e [ϊ], then we define h: X-+ S by

ίr if α? ̂  s

(S if 05 =

To see that h is continuous, it suffices to show that if C c X and
h(C) Φ S, then h(C)(Z~h(C). So we consider Λ(C) = [s]. Then C =
and h(C) = [r, s] =

We define the family [/J to consist of all those maps g, h which
we have specified above.

To verify (2), let y,zeX and y Φ z. If ye[z], then there is
a map h which distinguishes y and z. If y$ [z], then, since (X, c) is
-Bo, s ί [?7] and there is a map # which distinguishes y and 2.
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To verify (3), let x$A. Given aeA, then [a] a A and x£[a\.
Since (X, c) is Ro, ag [x]. Therefore, [x] Π A — φ and there is a map
g such that g(x)£g(A).

(f) ==> (a). Since products (Theorem 23 D.ll in [2]), subspaces
and homeomorphic images of i?0-closure spaces are J?0-closure spaces,
the result follows, Π

It is well known that in a topological space (X, J7~) the i?0-axiom
is equivalent to each of the following statements: given x,yeX, then
[x] = [y] or [x] Π [y] — Φ; or, given xeGe^~, then [x] c G. However,
these statements are not equivalent to the i?0-axiom for closure spaces.

THEOREM 2.2. Let (X, c) be a closure space. If [x] — [y] or
[%] Π [y] = Φ for all x9 y in X, then (X, c) is Ro; but the converse is
false.

Proof. The proof of the positive assertion is straightforward and
therefore is omitted. The converse fails in the iϋ0-closure space given
in Example 2.1.

THEOREM 2.3. Let (X, c) be a closure space. If (X, c) is RQ, then
each open set contains the closure of each of its points; but the con-
verse is false.

Proof. The positive assertion is easily established. To see that
the converse is false, consider the following example: Let X = [a, b, c]
and let c: &*(X)->&*(X) be defined by

I φ if A = φ

[a, c] iί A= [c]

X otherwise. •

Similarly, one shows that if a closure space is Ro, then closed
sets are separated from the points they exclude; but the converse is
false.

V

3* Construction of proximites of Cedbu In this section we
characterize the least member of HR in three ways, describe several
techniques for constructing members of HJΪ and derive some properties
of these constructions.

THEOREM 3.1. Let (X, c) be an R0-closure space, and let S^ be
a relation on &(X). If &<zSf<z ^ 7 then Sf induces c and
satisfies P3 and P4.
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Proof. Obvious.

THEOREM 3.2. Let (X, c) be an RQ-closure space. Let Sf =
[([a?], A):xeA,Ac:X] and let gf == [(C, D): l([x], A) e ̂  such that
(xeC and AaD) or (xeD and Ac C)]. Then gf = gg.

Proof. The proof is an easy verification. •

In order to analyze Theorem 3.2, let 3P e Έt(X, c). Since c is
compatible with ^ , it is necessary that 3f c ^ . Also from that
part of P2 which insures that CZD B and AδB implies AδC and from
PI, it follows that 3f c g7 c £?. What is surprising is that no
further alteration of g*, to accommodate the second part of P2 as
well as P3 and P4, is necessary to obtain &.

THEOREM 3.3. Let (X, c) be an Rύ-closure space and let (S, d) be
the closure space in Example 2.1. Then the least C-proximity έ% in
M(X9 c) is defined by (A, B) £ & iff there is a continuous function
g: (X, c) —> (S, d) such that g(A) c [s] and g(B) c [t].

Proof. Assume (A, B) 0 &. Then (A Π B) U (A[j B) = φ and the
existence of a suitable function g was shown in the proof of Theorem
2.1.

Conversely, assume there is a continuous function g such that
g(A) c [s] and g{B) c [i\. Then g(A) c g(A) c [r, s], and thus Af]B = φ.
Similarly A Π B = φ. Hence (A, B) £ &.

DEFINITION 3.1. [2, 25 A.7] A mapping / from a C-proximity
space (X, &) to a C-proximity space (Y, &*) is said to be p-con-
tinuous iff (A, B) e 0> implies (/(A),/(J5)) e ̂ * .

An equivalent formulation of this definition is: / is p-continuous
iff for all (C, J 9 ) £ ^ * with C , ΰ c 7 , it is true that (/"'(C),

It is known [2, 25 A. 10] that every ^-continuous function is
a continuous function with respect to the induced closure operators.
It is easily verified that there is only one-proximity &d on S com-
patible with d (the space (S, d) is defined in Example 2.1) and that

~<%* = [(φ, A): A c S] U [(B, φ):Bc:S][j [([s], [t])] .

In this context the following theorem may be of interest.

THEOREM 3.4. Let & e Wl(X, c). Then & = ̂  iff all functions
which are continuous from (X, c) to (S, d) are p-continuous from
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(X, 3?) to (S, &d). Here & is the least C-proximity in ffl(X, c), (S, d)

is the space in Example 2.1 and &d is the unique C-proximity in

, d).

Proof. Assume & = &. Let / : (X, c) —> (S, d) be continuous and

let {A, B) e &. Then A Π B Φ φ or A Π B Φ φ; say A f] B Φ φ. Choose
a in A (J B. Since / is continuous, f(a)ef(B)czf(B). Thus f(A) Π
/(J5) ^ ^ and (f(A),f(B)) e &d. Therefore, / is p-continuous.

Conversely, assume & Φ &. Then there is (A, B) e & — ̂
So ( ϊ n ί ) U ( 4 n ΰ ) = (i. We define g: X-> S by

r if # G X — (A (J -B)

s if # G A

t if a? G J? .

In the proof of Theorem 2.1 we verified that g is continuous. However,
g is not p-continuous since (g(A), g(B)) g ^? d .

THEOREM 3.5 Let (X, c) be an R^-closure space and let ^ ==

[(A, B):AΓ)BΦφ]. Then ^ G M iff, given AdX and xeX such

that A Π [x] Φ φ, it follows that xe A.

Proof. The proof is a straightforward verification. •

It is easily shown that if (X, c) is a closure space, then ^ =
[(A, B): A, Bcz X and if / : (X, c) -> {X, c) is continuous, then f(AJ 0

DEFINITION 3.2. Let (X, c) be an J50-closure space, let EaX,
let m be an infinite cardinal number and let & e Eft. We introduce
the following notations.

( i ) &>(E, m) = WC\{^\J [(A, B):\Af)E\^ m o r \Bf]E\^ m]).
( i i ) &*{E, m} = &> U [(A, J5): | A Π ΐ / | ^ m and | J B Π JS| ^ m ] .

THEOREM 3.6. ΓΛe relation ^{Ey m) is in M and has the follow-
ing properties:

( i ) If EczF.m^m, and &' c ^ , then &*'{E, mj c ^ { F , m}
(ii) ί / I F K m , ί^eπ &»{E, m} = ^{E\jF,m} - ^{E - Fy m}
(iii) ^{£7, m} Λ ^ { F , m} = ^ { F n F, m}.
(iv) ^{E, m) U ̂ { F , m J c ^ S U ί 7 , m} and, in general, equality

does not hold.
(v) If m^m, and \F-E\^m19 then {^{E, m}){Ff raj =
, m}.

(vi) If m^mι and \E - F\ <m, then (&*{E, m}){F, mj =
, raj.
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(vii) If &>, &*' e Wl and & (J &' Si <0*{E, m}, then there exists
^ * e Wl such that &' £ ^ * g ^{E, m}.

Proof. Clearly &*{E, m} c W~. Since & c &* c ^{£7, m}, it
follows from Theorem 3.1 that ^{E, m} induces c and satisfies P3,
P4 Clearly PI holds in ^{E, m} The verification of P2 is straight-
forward.

( i ) Let (A, B) e ^*'{E, mj. If (A, B) e ^ ' , then (A, 5) e ^ c
^ { F , m). If (A, B) £ &*', then | A Π # | ^ mx and | J5 Π E | ^ mx.
Since Ec:F and m ^ m1? it follows that | A f] F\ ^ m and |B Π ί7] ^ m.
Thus {A, B) e ^{Fy m}.

(ii) Since | F \ < m and m is an infinite cardinal number, it is
known from set theory that | A Π E \ ̂  m iff \AΓ)(EuF)\^mi&
\AΓ\(E~ F)\^m.

(iii) Let (A, B) e ^{E, m} A ^{F, m}. If {A, B) e &>, then
(A, 5) e ^{E Π F, m} So we assume that {A, B) g ^ . Suppose that
\BΓ)Ef)F\<m. Since (A, £) e ^ , P2 implies that (A, BΠ^Πi^ ί ^ .
Thus (A, ^ Π ΐ n i O ί ^{^, m} Λ ^{ί7, m}. Because B= (Bf)EnF){J
(B - (EΠ F))9 it follows from P2 that (A, B - (E Π F)) e &*{E, m) A
^{F, m}. In as much as B - (E Γ) F) = (B - E) U (B - J?7), P2
implies that:

Case 1. (A, B- E)e ^»{E, m} A &*{F, m). Then (A, B - E) e
, m). Again, since (A, B) £ &*> P2 implies that (A, B - E)£&>.

Therefore, | (B — E) Π E \ ̂  m which is a contradiction.

Case 2. (A, B - F)e ^{E, m) A <^{F, m}. An argument similar
to Case 1 leads to t h e contradiction | (B — F) Π F \ ^ m

As a result of t h e contradictions, \B Γι EΓ) F\^ m. Similarly,

\Af]Ef]F\^m. Therefore, (A, B) e ^{E Π F, m}, and &*{E, m] A
, m} c &*{Έ Π F, m).

By (i), ^ { ^ ΠF,m}c: ^{E9 m) n ^ ί ^ , m}. Since ^ { S , m} Λ
, m) is the union of all members of SJί contained in ^{E, m) Π
, m}, it follows that ^{E nF,m}(Z ^{Ey m] A ^{F, m).

(iv) By (i), ^{E, m}a^{E{jF, m} and ^*{F, m}c:^{E\jF, m).
Therefore, ^{E9 m} U ̂ {F, m} c ^{E U F, m}.

Next we give an example where ^{i?U F, m}(£^{E, m) U
, m}. Let X be the set of real numbers, ^~ the usual topology on

Then (E, F) e ^{E U F, m) but (ί/, F) ί ^{£7, m} U ̂ {i^, m}.
(v) Clearly &*{E, m) c ^{£7, m} U [(A, 5): | A Π JP| ^ m1 and

15 n FI ^ mj - {&>{E, m}){F, mj .
Let I AΠ-PI ^ mlβ We write A n ί 7 ^ (Af](F - E))\J(AΓ\EΓiF).

Since | A n (F- E) \ ̂  \F-E\ < m19 it follows that
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So IA Π E\ ̂  m^m. Therefore, we have shown that [(A, B); \ A Π F\ ^
and IB Π î 71 ^ mj c [(A, 5): | A Π # | ^ m and | J3 Π E| ^ m] Thus
[(A, B): I A n E | ^ m and | B Π JS71 ̂  m] c ^ { # , m} implies (^{£7, m})

(vi) The proof is similar to (v) and therefore is omitted,
(vii) Let (C, D) e ^{E, m) - (&* U &*'). Thus | C Π £71 ̂  m and

I D Π J571 ̂  m. We partition D into two disjoint sets A, A such that
\DίnE\ = \DtnE\ = \DΓlE\. Then D, Π E = D, Π (E - D2). So

! A n (# - A) I ̂  w.
We write CΠE = (Cn^Π A) U (Cn^Π A) U ((CΠJE) - (AίΊ A))

Since | C Π ̂  I έ m, it follows that | (C Π E f] A) U ((C Π JS) - (A Π
A)) I ̂  m or I (C Π ̂  ΓΊ A) U ((C Π E) - (A n A)) I ̂  m; say the former
is true. Let F - C - (E Π A). Then ί7 Π (£7 - A) = (C Π E Π A) U
((C ΠE)- (A U A)) and \Fn(E - A) I ̂  m.

Let ^ * = ^ ' {E- D2, m}. Then (ί7, A) e ^ * by the above work.
Since (C, D) ί ^ ' , FaC and A ^ J D , PI and P2 imply that (ί7, A) £ ̂ '
Thus ^ ' ^ ^ * .

Clearly (C, A) e &*{E, m) and ^ * c &*{E, m). Since (C, A) 6 ^ '
implies by P2 that (C, D) e ^ ' , contrary to assumption, we must have
(C, A) £ ̂ ' Also D2f)(E - A) = ^ implies that (C, A) £ ̂ * Thus

, m}.

THEOREM 3.7. Γ/̂ e relation &*(E, m) is in 3K and has the follow-
ing properties:

( i ) // EaF, m^mx and ^f c ^ , ίΛe^ ^'(£?, m:) c &*{F, m).
(ii) 1/ I FI < m, then &*(E, m) = 3*{E {jF,m) = ^{E - F, m).
(iii) ^(£7, m) Λ ^ ( ί 7 , m)z)^(£ r Πi Γ , m) α̂ cZ, m general, equality

does not hold.
(iv) &*{E, m) U ̂ ( ί 7 , m) = ^(E U ί7, m).
(v) If m<*mι and \F - E\ < m1? ίλew (^(.δ7, m))^, raj =
, m).

(vi) // m^mι and \E - F\<m, then {^{E, m))(F, mλ) =

(vii) If &*> &' e M and & (J &' £ ^{E, m), then there exists
e Wl such that 0>' £ ^ * g ^(£7, m).

Proof. The proof is similar to Theorem 3.6 and therefore is
omitted.

THEOREM 3.8.

( i ) ^{E, m}a^{E, m).
(ii) In general, [&(E,m): EaX,m an infinite cardinal] neither

contains nor is contained in [&{E,m): EczX,m an infinite cardinal].
(iii) In general, 3ft Φ [&(Ey m), &{E, m}: Ed X,m an infinite

cardinal].
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Proof. ( i ) The result is immediate by comparing the definitions
of ^{E, m) and &*(E, m).

(ii) Let X be the set of real numbers, ^Γ the usual topology on
X, F= [ a ; 6 l : 0 ^ ^ 4 ] and £ = \X\. Then ^?{F, t}ί [&e(E, m): Ed

X, m an infinite cardinal] and &(Fy t) $ [&{E, m}\ EczX, m an infinite
cardinal].

(iii) Let X be the set of real numbers, let ^~ be the usual
topology on X and let ^ = [(A, B):Άf)B Φ φ]. Then ^ e 2ft by
Theorem 3.5. However, ^ $ \&(E, m), &{E, m}: EczX, m an in-
finite cardinal].

THEOREM 3.9. If & Φ &{E, m}, then &{E, m) covers no ele-
ment of 3ft. If & Φ &(E,m), then &{E, m) covers no element
of 3ft.

Proof. Suppose &> e SW and & £ &{E, m}. Since & U & = ^ ,
we appeal to Theorem 3.6 (vii) to see that &{E, m) does not cover
^ . The second statement follows from Theorem 3.7 (vii).

THEOREM 3.10. Let (X, c) be a closure space such that | 3ft | > 1.
In addition, let ^eWl and & Φ <W". Let (C, D) e 2T~ - & and let
JFΊ'S? be nonprincipal ultrafilters on X containing C, D respectively.
Then &' = & U (^~ x ^ ) U ( ^ x *^r) is in 2ft and 0" covers &.

Proof. Clearly ^ c & c &\ Since each member of a non-
principal ultrafilter is an infinite set, ^ x ^ c <W. Hence ^ ' c ytΊ
By Theorem 3.1, &' induces c and satisfies P3, P4.

Clearly &*' satisfies PI. To verify P2, let ( i ^ U Q e / ' x ? .
Hence B\jCe^. Since & is an ultrafilter, it is known [4, p. 84]
that 5 e ^ or Ce gf. Thus (A,B)e^~ x gf or (A, C) e ̂  x ^ .

Conversely, let (A, B)e^~ x ^ and C c X Since ^ is a filter
a n d ΰ G ^ , 5 u C i s in gf. Thus ( A ^ U Q G . T X gf.

We have shown that &*' e Sft.
Suppose there exists ^ * e Sft and & £ ^ * c ^ ' . We will show

that ^ * = &». Let (î 7, (?) belong to ^ * - ^ . Then (F, G) is in
&' - &* and (F, G) belongs to &~ x gf or gf x j ^ ~ , say j ^ ~ x ^ .
To verify that ^ x ^ c ^ * , we let (A, J5) be in _^~ x ^ . Then
G = (G Π B) U (G - £). By P2, (F, G n S ) e ^ * o r (î 7, G- B)e &>*.
Since the assumption that (F, G — B) e ̂ * leads to a contradiction,
we conclude that {F, G Π B) e &**.

Because ^~ and & are filters, a similar argument shows (F Γϊ
A,G(λB)e&**. PI and P2 imply that (A,B)e&**. Therefore,
&~ x gf c ^ * . PI implies that gf x J ^ c ^ * . Hence ^ ' c ^ *
and ^ * = ^ ' .
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THEOREM 3.11. Let (X, c) be a closure space such that | SK | > 1.
Let ^ eWl, let & Φ & and let (C, D) belong to & - &. Then
there exist nonprincipal ultrafilters J^, ̂  on X such that (C, D) e

X <& C &.

Proof. Fix (C, D) in & - &. Let Sίf = [E: E c D and (C, E) e
& - &\. Let @ be the family of all subsets ^ * of ^ίf having
the property: A^ΈtSί?* implies 4 Π ΰ G ^ * . We partially order
@ by set inclusion. By Zorn's lemma, @ has a maximal element Sflβ

Ŝ i is a filter base on X due to the formation of ^f and @.
Hence, there exists an ultrafilter S7 on X containing g^ [4, pp. 78,
79, 83]. Furthermore, De^7ι and 2^ is a nonprincipal ultrafilter.
Also, if G e 57, then ( C , G n ΰ ) e ^ - ^ .

Let £? = [LiLczC and (L,Gf)D)e^ - & for all G e 2^].
Let $5 be the family of all subsets Jyf* of ^S^ having the property:
S, Te£f* implies S Π Te^f*. We partially order $ by set inclusion.
By Zorn's lemma, $ has a maximal element J?\ which is a filter base
on X Hence there exists an ultrafilter J^ on X containing j^~[.

Moreover, Cejβ\ and S^ is a nonprincipal ultrafilter. Finally,
if (F, G) is in S^ x .^, then (F f] C, G Π D) e ̂ . Thus PI, P2 imply
that (î 7, G)e&*. S o ^ x g ' c ^ .

THEOREM 3.12. Let (X, c) be α closure space such that &, &' e 3K.
Then .ζ^r covers 3? iff, given (C, D) in ^ r — ̂ , there exist non-
principal ultrafilters ^ 7 %? on X containing C, D respectively such
that 3" = & U ( J ^ x ^ ) U (2^ x ^).

Proof. Assume &>' covers ^ . Let (C, JD) belong to &" — ̂ .
Since ^ c .^, (C, 2)) is in &>' - &. By Theorem 3.11, there are
nonprincipal ultrafilters ^ 7 gf on X such that (C, I>) 6 ̂  x gf c ̂ ' .
PI implies ^ x / " c ^ ' . Thus ^ S ^ U ( ^ x g 7 ) U ( ^ x ^ " ) c ^ r .
By Theorem 3.10, ^ U (^" x Ŝ ) U ( ^ x ^ ) is in SK. Since ^ '
covers .^, ^ ' = ̂  U (^" x Ŝ 7) U (S^ x ̂ ) .

The converse is a direct application of Theorem 3.10.

4* The structure of the lattice of C-proximities compatible
with a given jβ0-closure space* In this section we first characterize
greatest lower bound in 3DΪ. Then it is shown that 2ft is strongly
atomic and distributive. Finally, we prove that SK has no antiatoms
and that if | 2TC | > 1, then | SK [ ̂  22*0.

LEMMA 4.1. [2, p. 441] Let & be a C-proximity on X and let
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(A, B)e&>. If A = U [A,: 1 ̂  i ^ n] and B = \J [B3: 1 ̂  j ^ m]
where n and m are integers, then there exists i, j such that (Ai9 B3) e &.

THEOREM 4.1. Let (X, c) be an RQ-closure space. Let K be a
nonempty index set and ^ = Λ [ ^ « : ^ « £ ^ and aeK]. Then
(A, B)e^ iff, given A = \J [A^ iel] and B = \J [B3: j e J] where I
and J are finite sets, it follows that there exists i9 j such that (Ai9 B3) e
^a for each aeK.

Proof. Let (A, B) e^,letA = \J [A,: i e I] and let B= \J [Bό: j e J]
where /, J are finite sets. We appeal to Lemma 4.1 to obtain ϊ, j
such that (Ai9 B3) e &. Since & c &>a for each a e K, (Aiy B3) e &a.

Conversely, let &' - [(A, B): if A=\J[Ai:ieI] and B = \J
[Bj: j e /] where I, J are finite sets, then 3ΐ, j such that (Aif B3) e 0>a

for each ae K]. Cech has proved [2, p. 470] that &' is a C-proximity
on X, &*' a&*a for each aeK and if ^** is any C-proximity on X
such that ^ * c ^ a for each ae K, then ^ * c ^ \ We shall prove
that &» induces c. It then follows that & e Έl and &*' = A[^V ^ β e S R
and ae K].

Let (C, Z?) e & and suppose C - (J [d'- < e I] and Z> - U [J5y: j e J]
where J, J are finite sets. By Lemma 4.1 there exist i and j such
that (C<, Dj) e &. Since ^ c ^ a for each α e ί , (Ci9 D3) e ̂ β . Con-
sequently (C, J?) e ̂ ' . Thus & c ^ ' . Since &>' c ^ α c ^ 7 we
have ^ c ^ ' c ̂ 7 By Theorem 3.1, ̂ ' induces c. •

We observe that the operation of meet in HJl(X, c) is the restric-
tion of the operation of meet in the family of all C-proximities on X
(no compatibility requirement). This follows from Theorem 4.1 and
[2, p. 470]. Cech has established the analogous conclusion for the
operation of join in these two lattices [2, p. 448]. Therefore, W(X9 c)
is a sublattice of the lattice of all C-proximities on X.

THEOREM 4.2. If 3? e Wl and &> Φ W~, then there exists ^*eWl
such that & §Ξ ̂ * gi W~. Therefore, the lattice SPΪ has no antiatoms.
Also, Wl is not antiatomic and is not anticovered iff \ Wl | > 1,

Proof. Since <%r = &{X, fcU and « ^ U ^ = ̂ £ ^ w e appeal
to Theorem 3.6 (vii) to obtain ^ * satisfying the theorem. The last
two statements follow from the appropriate definitions.

COROLLARY 4.1 If \ Wl \ > 1, then 2K is not lattice isomorphic
to a power set lattice.

Proof. Every power set lattice with more than one element has
antiatoms.
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THEOREM 4.3. The lattice 3ft is strongly atomic and consequently,
atomic and covered.

Proof. Let & e 3ft and ^ c ^ * e S K . If (C, D ) e ^ * - ^ ,
then, by Theorem 3.11, there exist nonprincipal ultraίilters _^, &
on X such that (C, D) e &~ x gf c ^ * . PI implies gf x J ^ c ^ * .
Thus ^%)jD = ̂  U (^~ x 5 )̂ U (5^ x ^ 1 c ^ * . By Theorem 3.10,
«̂ *(7,D is an atom in the lattice ( [ ^ ' e 3ft: ̂ ' 3 ^ ] , c ) . Since
Ul<0*c,DmΛC,D) is in ̂ * - ^ ] = ̂ * , the lattice ( [ ^ ' G STί: ̂ ' = ) ^ ] , c )
is atomic.

3ft is atomic because every strongly atomic lattice with a least
element is atomic. 3ft is covered since every strongly atomic lattice
is covered.

COROLLARY 4.2. If \ 3ft | > 1, then 3ft is not infinitely meet
distributive.

Proof. Suppose 3ft is infinitely meet distributive. Since it is
well known that a complete, infinitely meet distributive lattice is a
complete Boolean algebra, 3ft is a complete, atomic Boolean algebra.
Consequently 9ft is isomorphic to a power set lattice which contradicts
Corollary 4.1.

LEMMA 4.2. The lattice 3ft is modular.

Proof. It suffices [1, p. 13] to show that 3ft does not contain
a sublattice of the form:

Suppose 3ft does contain such a sublattice. Let (S1 — [atoms of
3ft which are contained in ^ 3 but are not contained in ^ 2 ] and @2 =
[atoms of 3ft which are contained in ^ but are not contained in
If Θ, Π @2 Φ Φ, then ^ £ ^ U (U (@i Π @2)) c ^ 3 Λ ^ Since
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(U(©i Π ©2)) we have contradicted = ^ 3 Λ ^ . Thus ΘL Π

Since 2W is atomic, there exists &' e ©:. Because ^ ' ςz! ^ and
^ ' ί ©2, ̂ ' <Z ̂ 4. Hence there exists (A, B)e&*' — &*4. Since
^'ς£^2, there exists (C, £>) e ^ ' — ̂ 2 . Because ^ ' is an atom in 2ft,
we appeal to Theorem 3.12 to obtain nonprίncίpal ultrafilters ^ 7 <&
on X containing C, D respectively such that &' = ^ (j ( c ^ x 5 )̂ U
(5T x ^ ^ ) . Now (A, B) in ^ ' - ^ 4 implies (A, B) belongs to ^ x <&
or g^ x ^ say ^ " x ^ . Thus ( i n C , B ί l ΰ ) e t / ' x gf c ^ ' c ^ 5 .

Since (C, Z>) g ^ 2 , PI and P2 imply ( 4 n C , ΰ n ΰ ) ί ^ a . Having
seen (A, B) $ &*„ PI and P2 imply (A f) C, B f) D) £ &„ Thus (A n
C j ί n f l j ί ^ U ^ - ^ 5 , which is a contradiction.

THEOREM 4.4. Γfce lattice SK is distributive.

Proof. In view of Lemma 4.2, it suffices [1, p. 39] to show that
does not contain a sublattice of the form:

Suppose Wl does contain such a sublattice. Let ©< = [atoms of SW
which are contained in ^ but are not contained in ^ J (ΐ = 2, 3, 4).
If @2 n Θ3 ^ ?S then ^ £ ^ U (U (©2 Π @3)) c ^ 2 Λ &>*. Since ^ U
( U (©2 Π @3))

©2 Π ©3 = ^

Since 9K

is in 9ft, we have contradicted
Similarly, @2 Π ©4 = ^.
is atomic, there exists ^ ' e @ 2

Hence there exists

A Thus

Because
, J5) e

^ and
Similarly,

there exists (C, D) e ^ ' — ̂ 4 Because ^ ' is an atom in 3K, we
appeal to Theorem 3.12 to obtain nonprincipal ultrafilters ^ , ^ on
X containing C, D respectively such that &f = ^ (J (^" x ^ ) U
(g7 x &"). (A, B) e ^f - ^ 3 implies (A, B) is in ^ x gf or ^ x ^
say ^ x ^ . Therefore, ( 4 n C , B n D ) e ^ x ^ c ^ ' c ^ 5 ,

Since (C, D) g ^ 4 , PI and P2 imply ( i n C , δ n f l ) ί ^ϋ Having
seen (A, J5) ? ^ 3 , PI and P2 imply ( A n C , ΰ Π ΰ ) ί ^ 3 . Thus (A Π
C, JB Π D) 0 ^ 3 U ̂ 4 = ^ β , which is a contradiction.
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COROLLARY 4.3. If | 3ft | > 1, then 2ft is not complemented.

Proof. If 2ft is complemented, then 3ft is a complete Boolean
algebra, and thus is infinitely meet distributive [1, p. 118]. This con-
tradicts Corollary 4.2.

THEOREM 4.5. Let (X, c) be an Enclosure space. Then [ Sft | = 1
W> given two infinite subsets of X> at least one of them contains a
point in the closure of the other.

Proof. Assume | 2ft | = 1. Let A, B be two infinite subsets of X.
Then ( A , B ) e ^ | 2ft ( - 1 implies & = <%Γ. Thus (A Π B) U {A n
B)Φφ.

The converse is true because the assumption says <% = W.
Therefore, | 2ft | ^ 1. Since (X, c) is BOf | 2ft | ^ 1 by Theorem 2.1. •

We note that | 2ft | = 1 for each of the following topological spaces:
any EQ topology on a finite set, any set with the indiscrete topology,
any set with the minimum Tx topology and any atom in the lattice
of 2\ topologies on a fixed set. We also note that the characteriza-
tion given in Theorem 4.5 can be expressed as: | 2ft | = 1 iff any two
infinite subsets of X are not separated.

THEOREM 4.6. Let (X9 c) be an Enclosure space. Then | 2ft | = 1
or 22*0 £ I 2ft I ̂  22lX|. Furthermore, if \ X\ ^ ^ 0 and m is a cardinal
number such that y$0 ^ m :g | X\, then there is a Tι topology J7~ on X
such that I 2ft(X, jT") | = 22W.

Proof. Theorem 2.1 implies | 2ft | ^ 1. If | Sft | > 1, then there
exists (C, D) e <W - &* Thus C, D are infinite and C Π D = φ. We
appeal to Theorem 3.11 to obtain nonprincipal ultrafilters ^ , f1 on I
containing C, D respectively. Then & (j ( ^ x T)\J {T* x <&) is in
2ft by Theorem 3.10. We note that if ^ , ^" are distinct nonprincipal
ultrafilters on X containing C, then & (J ( ^ x T) U (T x <2S) and
& U G^~ x T) U {T x ^~) are distinct. From [2, p. 212] there are
22|C71 distinct ultrafilters on X containining C. Since there are | C \
principal ultrafilters on X containg C, there are 22m distinct non-
principal ultrafilters on X containing C, and it follows that 22*0 <̂
22lσl ^ |2ft|.

On the other hand, since there are 22lxi families of ordered pairs of
subsets of X, and since each C-proxίmity is such a family, | 2ft | <^22lX|.

To form ^ T choose subsets S, T of X such that S Π T = ψ and
I s I = I TI = m. Then [φ, X - S, X - T,X- any finite subset of X]
is a subbase for the desired topology ^~. Since (S, T) e Ύ/^ —



534 W. J. THRON AND R. H. WARREN

P, I Wl(X, JT~) I > 1. By the above argument, | Wl(X, jT~) | ^ 22]sι.
Let J^~' be the relative topology o n S u Γ . Then / : Wt(X, ̂ ) ->
U T, JT~') defined by / ( ^ ) = ^ n ( ^ ( S u Γ ) x ^ ( S u T ) ) is

a 1:1, onto map. Thus | 2»(X, J Π | = | SK(S U Γ, jT"*') |. By the
argument above | m(S U Γ, J^"') | ^ 22l5UΓI, which establishes our result
since \S\J T\ = m.

THEOREM 4.7 Lei (Z, c), (X, d) δe R0-closure spaces. Let &Cf &d

be the least members of fΰl(X, c), 30ΐ(X, d) respectively. If c(A) c d(A)
for each i d , then &ea&d.

Proof. The verification is straightforward.

THEOREM 4.8. Let (X, c), (X, d) be Enclosure spaces. Let &c, &d

be the least members of 3K(X, c), 2K(X, d) respectively. If &ca &d,
then I 2R(JSΓ, d)\^\ Wt(X, c) |.

Proo/ Let SI be the family of atoms of Wl(X, d). By Theorems
3.11 and 3.10, if S? € SI, then there are nonprincipal ultrafilters ^ , 3^
on X such that y = ^ U ( ^ x Γ j U ί Γ x ^ ) . Since ^ c c ^ ,
by Theorem 3.10 ^ c U ( ^ x ^ ) U ( ^ x ^ ) is an atom in SK(JC, c)

Define / : SI-> 2»(JSΓ, c) by /(^Pd U ( ^ x 3̂ ) U {T x ^ ) ) = ^ c U
x 3̂ ) U (T x ^ ) . Also, define g: Wl(X, d) -> 3K(X, c) by

) ^ e S C and ^ a ^ ] if 0* Φ &d

if ^ = ^ d .

To verify that ^ is 1:1, let ^ , ^ * ' 6 STί(X, d) and & Φ &\
Since 2K(X, d) is atomic, there exists &" e 2t such that (£" c ^ and
Sf' (£ &") or ( ^ ' c &' and £" φ &)\ say the former is true. Then
f(Sf') c flr(^) by the definition of g. Let (A, B) belong to ^ ' - &'.
Since ^ c ^ ' , (A, β) g ^ d . By Theorems 3-11 and 3.10 there are
nonprincipal ultrafilters ^ , f o n l such that {A, B) e ^/ x T and
&» = 3Bd U ( ^ x r ) U (T x ^ ) . Hence (A, 5) e / ( ^ ' ) c ^ ( ^ ) .

On the other hand, (A, B) £ &' implies that (A, B) is not a mem-
ber of any atom contained in &'. Therefore, {A, B) 0 g(^r), and

Φ g{&»).
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