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THE SELF-EQUIVALENCES OF AN H-SPACE

DANIEL M. SUNDAY, JR.

This paper studies the group E(X) of self-homotopy-
equivalences of a space X. Under mild (necessary) restrictions,
it is shown that if X is an H-space then E(X) is both finitely
presented and Hopfian.

This paper studies the group of self-equivalences of a C W-complex
X. This group, denoted by E(X), is formed by taking the homotopy
classes of homotopy equivalences from X to itself, and using composi-
tion as the group operation. Thus, categorically, E(X) is the homo-
topy analog of an automorphism group. This group is important in
topology because of its connection with the general problem of finding
a complete set of homotopy invariants. It is known that a Postnikov
system, in general, over-determines the homotopy type of a space.
This happens because of the choices involved in picking the Postnikov
invariants. FE(X) measures the indeterminacy that arises in this
situation.

In addition, knowledge about E(X) is related to the construec-
tion of classifying spaces. Let LF(B) denote the fiber homotopy
equivalence classes of Hurewicz fibrations over B with fibers the
homotopy type of F; H(F') denote the space of homotopy equivalences
of F; and By denote the Dold-Lashof classifying space of H(F').
Then the space By represents the functor LF(—). Since E(F) =
II,(Byr), knowledge about E(F'), such as whether or not it is finitely
generated or presented, is of importance.

Previous investigations of the group E(X) have been made from
a general point of view in [2], [3], [10], [11], [16], and [17]. However,
despite the extensive literature that exists, very little is known about
this group and its properties. In particular, it is not known if E(X)
is finitely generated for finite complexes (in general, it is an infinite
non-abelian group). W. Shih has claimed that, for finite complexes,
E(X) is finitely generated [2, p. 295]. However, no details of his
work have appeared, and we have found objections to his results [18].
The finite generation question is regarded as open.

In studying E(X), there is a natural restriction to place on the
space X being considered. In this paper it is always assumed that
X is either finite-dimensional or has only finitely many nonzero
homotopy groups. Without one of these restrictions there are obvious
counterexamples to the finite generation of E(X). In addition, it s
always assumed that X is simply connected. Modulo these restrictions,
one hopes to show that:
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1. E(X) is finitely presented.
2. FE(X) is Hopfian.

In previous work along these lines, with the exception of [11],
only the finite generation question has been investigated. The best
partial results have been obtained by M. Arkowitz and C. R. Curjel.
Their main theorem [3] is that if X is a homotopy associative
H-space whose rational Pontryagin algebra is commutative, then E(X)
is finitely generated. This is sharpened considerably in:

THEOREM A. If X s an H-space, then E(X) is finitely presented.

No associativity is assumed. Also, the conclusion of finite pre-
sentation is much stronger than that of finite generation. In fact,
there are only a countable number of finitely presented groups,
whereas there are an uncountable number of non-isomorphic groups
with two generators [15]. The weaker conjecture of finite generation
is open when X is not an H-space. (Note: dualization proves finite
presentation for suspensions.)

As a secondary result, we prove a theorem about the ‘size’ of
E(X). Recall that a poly-finite-or-cyclic group is one which can be
obtained from the trivial group by a finite number of finite or cyclic
extensions.

THEOREM B. If X 4s an H-space, then the following are true:

(1) E(X) s a poly-finite-or-cyclic group if and only if
rank (II(X)) < 1, for all 1.

(2) If rank (II(X)) > 1, for some i, then E(X) contains a non-
abelian free subgroup.

The second main concern of this paper is the question of whether
E(X) possesses the Hopfian property or not. This property provides
another strong restriction on the class of groups in which E(X) can
lie, in that there are infinite families of finitely presented groups
which are non-Hopfian [6].

THEOREM C. If X is a space such that E(X) is finitely generated,
then E(X) is Hopfian.

COROLLARY. If X is an H-space, then E(X) is Hopfian.

The organization of the paper is as follows. Section 1 contains
preliminary material. Section 2 contains technical results needed to
prove Theorems A and B, which are then proved in §3. Section 4
is the proof of Theorem C.
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1. Preliminary material. Throughout this paper it is assumed
that all spaces X are 1l-connected CW-complexes with basepoint =,
and with finitely generated homotopy groups. Where there is no
ambiguity 17, denotes I7,(X). All maps and homotopies are pointed,
and the set of homotopy classes of maps from X to Y is denoted
by [X, Y]. Usually we will not distinguish between a map and its
homotopy class.

The reader is assumed to be familiar with the use of Postnikov
systems [9]. For a space X, {X;, p;, k;} denotes such a system for X,
where the projection p;: X; — X;_, is induced by the jth k-invariant
ki X; ., — K; = K(I;,5+1). If E(—) denotes the group of self-
equivalences, then the projection maps p; induce homomorphisms
p;: B(X;) — E(X;_). This and a simple obstruction theory argument
[2] yield:

LemmA 1.1. If dim (X) < oo, then E(X,) = E(X) for n > dim (X).

Because of this it is always assumed that spaces have only finitely
many nonzero homotopy growps. In particular, all Postnikov systems
are finite in length.

DEFINITION 1.2. Given a space X, put:

Aut (X) = @; Aut (I7)
Hom (X) = @; Hom (/1,, I1,) .

The sums involved in this definition are finite. Also Aut (X) is
naturally embedded in Hom (X), and is precisely the group of units
of the composition structure on Hom (X).

DErINITION 1.3.

(1) o0 [X, X] — Hom (X) is the representation by induced maps.
(2) 4yt E(X)— Aut (X) is the restriction of o, to E(X).

(3) E(X) = ker (yx).

LemmA 1.4. (From [2]): E.(X) is a polycyclic group.

In §§2 and 8 it is assumed that X is an H-space such that the
basepoint = is a two-sided identity. That is, there is a multiplication
map m: X X X— X, such that m(z, ) = 2 = m(x,2) for all xe X.
No generality is lost from the situation in which x is a homotopy
unit. Some properties of H-spaces needed in this paper are recorded
in the following list:
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1.5. If X is an H-space, then

(1) the Postnikov invariants, k;, of X are primitive. That is,
they are H-maps [9, Thm 3.2].

(2) for each j, k; is of finite order in H*Y(X;_; II;), [1].

(3) QX is an H-space via two different natural multiplications;
namely, 2m (where m is the multiplication on X), and loop addition
which we denote by ‘+’. By using the Moore path space for 92X,
and ‘sliding’ paths along each other, one can show that QM and +
are homotopic. This also shows that adding loops in either order
gives homotopic H-structures. Hence, the additive structure induced
on [Y, 2X] is the same for both multiplications, and is abelian.

(4) since 2X is homotopy abelian, the rational Pontryagin algebra
of QX is commutative. In particular, all the results of [3] are valid
for 2X.

Finally, certain properties of finitely presented groups (that is,
ones which can be defined by a finite set of generators and relations)
are summarized (see: [13]).

1.6.

(1) An extension of finitely presented groups is finitely presented
[7].

(2) A subgroup of finite index in a finitely presented group is
finitely presented [13, p. 93].

(38) If G, ---, G, are finitely presented, so is BLi, G;.

(4) If II is a polycyclic group, then Aut (/7) is finitely presented
[4]-

2. Technical results. In this section, technical results needed
for Theorems A and B are proved. Lemma 2.1 is the key lemma of
the paper. A slightly modified form of this lemma holds for the
general case of [2X, 2Y].

LEMMA 2.1. Let X be a 1-connected H-space with a finite Post-
nikov system. Then there exists a positive integer M(X), depending
only on the homotopy type of X, with the following property: given
any fe [RX, 2X], there exists an fe [X, X], such that (2f) and M(X)f
(addition via the loop structure) induce the same maps on the homotopy
groups.

Proof. Recall that X has finitely many nontrivial k-invariants,
all of finite order. Define:
(1L if k; is trivial
" |order (k;), otherwise .
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Put M; = I1i_, m;, (note: X, = *, since I7, = 0), and define M(X) = M.. .
This makes sense, since m; = 1 for large 7. M(X) is a finite positive
integer, and depends only on the homotopy type of X.

The assertion of the lemma is demonstrated by induction on
Postnikov systems of X and 2X. Fix a Postnikov system for X, and
then loop it to obtain the system used for 2X. Assume that at the
(j — 1)th stage of the argument it has been shown that there exists
a map f;_.: X;., — X;_,, such that:

(1) (Rf;_) and M;f;_, induce the same maps on the homotopy
groups,

(2) the following diagram homotopy commutes (in fact, both
compositions are null-homotopic):

X, "‘f];—l'—_’ X

S"

K, —L K, = K(l;,j + 1)

where «; is induced by (M;f;). on I1;.

For j = 2, X, = *, and the above two conditions are trivial.

Now, because the above diagram homotopy commutes, f,_, lifts
to some map fi: X;— X;, [9, p. 442]. Put f; = m;.. f;. (Note: this
means that f; is added to itself m,,,-times via the H-space structure
on X;. Since this structure may be nonassociative, insert parentheses
so that the formula makes sense. This can be done arbitrarily since
we are only interested in how Qf; behaves, and looping recovers as-
sociativity.) Computation shows that f; satisfies the induction hypo-
thesis:

(1) On I;:

(ij)* = (Q(mjﬂfj))x = (2Q(M;1. ;) = (M;,Q;):
= (M M;f5)y = (M;sif3)s -
On I7;, for © < j:
(Qf D = QM f)s = (mj—l-lg(‘fj—-l))ﬁ
= (M. M;f ;) = (M fic)e = (M f s -
Hence, the first condition of the induction hypothesis holds.
( 2 )_( a ) ki+1 °fj = ki+1 ° (mj+1f/\j)
= (Mjskjp) o Sy,
since k;., is primitive,

—"—’*ofAj::*.
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_(b) &jy,0 kj+1 = (mj+1&j+1) °k.7'+1’ ajﬂ induced by (Mjfj+1)$ )
@;ir0 (Mjk;y), since @;,, is primitive,

A 0% = % .

N

Hence, the appropriate diagram homotopy commutes, and the second
condition of the induction hypothesis is satisfied. This completes the
proof of the lemma.

We now set up the framework to which the above lemma applies.
Because of 1.5 (3), [2X, 2X] has a near-ring structure with an abelian
addition (multiplication is composition of maps, and left distribution
fails).

DEFINITION 2.2. [2X, 2X], denotes the subset of [2X, 2X] re-
presented by H-maps, and [2X, 2X], denotes the subset of classes
represented by loop maps.

LEMMA 2.3. [QX, 2X], and [2X, 2X], are subrings of [2X, 2X].

Proof. Since these two sets are closed under composition, and
H-maps distribute on the left, we just need to show that they are
closed under addition. This is an easy exercise.

Now, consider the following diagram of (near-)rings and homo-
morphisms, where Hom (2X) is as in 1.2, and the maps involved are
natural representations by induced maps.

[@X, 9X] |
U o
[2X, 2X], —=—— Hom (2X)
U 72
[2X, 2X],

LEMMA 2.4. When we view the above diagram as consisting of
additive abelian groups, them (1) o, 04, and o, have finite cokernels,
(2) oy and o, have finite kernels.

Proof. According to [3, Lemma 5], 5 has a finite kernel and
cokernel. This implies that ker (¢,) and coker (¢) are finite. We just
need to show that coker (¢,) is finite.

By Lemma 2.1, there exists a positive integer M(X) such that
M(X)(im o) C im (0,). Since these are finitely generated abelian groups,
im (0,) has finite index in im (¢). Also, im (6) has finite index in
Hom (2X). Hence, coker (o,) is finite.
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COROLLARY 2.5. [QX, 2X], has finite index in [RX, 2X]y. Further,
their rank = >; v}, where r; = rank (II,).

Proof. The first statement is clear. The rank formula is obtained
by noting that everything is equal to the rank of Hom (2X).

REMARK. Analogues of the above results hold for the more
general case of [2X, 2Y]. In this situation, it is assumed that Y is
an H-space, and that X has Postnikov invariants of finite order.
Further, these results can be generalized to spaces which have been
looped n-times.

DEFINITION 2.6. Let A(2X) denote group of units of [2X, 2X],
with the composition structure; and let E,(2X) denote the group of
units of [RX, 2X],.

Consider the following diagram of groups and homomorphisms,
where Aut (2X) is as in 1.2, and the maps are the obvious ones.

E@X) -,
U
AQX) Y (@X)
U e
EJQX)

LEMMA 2.7. In the above diagram:
(1) Ay and v, have finite kernels,
(2) im (¥),im () and im (yg) have finite index in Aut (2X).

Proof. According to [3, pp. 144-146], the above is true for 5.
Hence, 4, has finite kernel, and im (y) has finite index in Aut (2X).
We just need to show that im (y,) has finite index in Aut (2X). The
proof of this is exactly parallel to the one given in [3] for im (y).
The only replacements needed are the fact that coker (g,) is finite
(Lemma 2.4), and the fact that [2X, 2X], is closed under addition
(Lemma 2.3).

COROLLARY 2.8. E,(2X) has finite index in A(RX).

3. The finite presentation of F(X). In this section, Theorems
A and B as stated in the paper’s introduction are proved. These
results follow directly from the next proposition.

ProrosiTION 3.1. If X 4s a l-comnected H-space with o finite
Postnikov system, then E (2X) is:
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(1) finitely presented.

(2) finite if and only if rank (II;) < 1, for all 4.

(3) contains a monabelian free subgroup if rank (II,) > 1, for
some 1.

Proof. Aut (/1;) is finitely presented for each ¢ (by 1.6 (4)), im-
plying that Aut (2X) is finitely presented (by 1.6(3)). Since a sub-
group of finite index in a finitely presented group is itself finitely
presented (by 1.6(2)), Lemma 2.7 implies that im (y,) is finitely pres-
ented. Further, by Lemma 2.7, ker (v,) is finite, and hence finitely
presented. Statement (1) now follows from the fact that an extension
of finitely presented groups is finitely presented (by 1.6 (1)).

For statement (2), the ‘if’ follows because Aut (2X) is finite when
the condition holds. The ‘only if’ is implied by statement (3).

Finally, statement (3) follows from the observation that the proof
of Lemma 2.7 also shows that, whenever rank (/7;) > 1 for some ¢,
im (yrp) contains a free nonabelian subgroup. Pull this subgroup back.

Proof of Theorem A. By Lemma 1.1, assume that X has a finite
Postnikov system. Hence, Prop. 3.1 is valid. Consider the diagram:

ker (9) = ker(Q)—— 0
N N N

Ker(yy) — E(X) 25 Aut(X)

b

Ker (yro) — E,(2X) —5Aut (2X)

where @ is the loop functor restricted to E(X), ¥, is the natural
representation, and 6 is the identity modulo a dimension shift. It is
easy to see that the diagram commutes and that £ is onto. In par-
ticular, ker (2) c ker (v,). By Lemma 1.4 (taken from [2]), ker (v-5)
is polycyclic. This implies that ker (4;) and all of its subgroups are
finitely presented. Hence, the same is true of ker (?). By Prop. 3.1,
E,(2X) is finitely presented. Thus, E(X) is an extension of finitely
presented groups; and, by 1.6 (1), F(X) is finitely presented.

Proof of Theorem B. The condition of statement (1) implies that
Aut (X) is finite; hence, im (yy) is finite. Also, ker (4x) is polyeyclic
(Lemma 1.4). This proves the ‘if’ part. The ‘only if’ part follows
from statement (2).

By Prop. 3.1, the condition of statement (2) implies that E,(RX)
has a nonabelian free subgroup. Since £2:E(X)— E,(2X) is onto,
pull the subgroup back.
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REMARK. In Theorem B, the ‘if’ part of (1) holds in general for
1-connected spaces. The ‘only if’ of (1), and statement (2) fail in
general, since E(S* x S* is finite [12, Prop. 2], whereas II,(S* x S?
has rank 2 for 7 = 2, 3.

4. The Hopfian property. In this section, Theorem C of the
introduction is proved. Before doing so, however, some group theoretic
results need proof.

DEFINITION 4.1.

(1) A group G is said to be an H-group (Hopfian group) if it is
not isomorphic to a proper quotient of itself.

(2) A group G is said to be an RF-group (residually finite group)
if given any g€ G there exists a normal subgroup K of finite index
in G such that g¢ K.

LEMMA 4.2. (Mal’cev: [14]). A finitely generated RF-group is an
H-group.

LEMMA 4.3. (G. Baumslag: [5]). If G is a finitely generated RF-
group, then Aut (G) is an RF-group.

DEFINITION 4.4.

(1) Given a group G, let {H,},.; be the set of all normal sub-
groups of finite index in G. Define: Ggzpr = Nues H,.

(2) The RF-series of a group G is the sequence of subgroups:
G=G">2G@Y>D..+DG¥>D... defined inductively by the rule:
GUH) = GY).

LEMMA 4.5.

(1) G/Ggy is an RF-group.

(2) If f:G— G is an endomorphism, then f(Grr) C Ggp. Further,
iof f is onto and G finitely generated, then f(Gzp) = Ggp.

Proof. Statement (1) is obvious from the definition.

The first part of (2) follows from the fact that, for each ac I,
S7Y(H,) has finite index in G. Hence, Gpr C f(Gzp)-

Now, suppose that f is onto and that G is finitely generated.
Let S, be the set of all normal subgroups of index < n. By [8,
Thm. 5.2], S, is a finite set. Hence, f~ is a one-to-one correspondence
between S, and itself; and, given any H, e S,, there exists an H,e S,
such that f~'(H,) = H,. This implies:

£HGa) = () = 0 fH) = N H. = Gar -

b
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PROPOSITION 4.6. If, in the RF-series of the group G,GY is
finitely generated for all j, and N; G =1, then G is an H-group.

Proof. Suppose G is not an H-group. Then there is a proper
quotient of G, given by f: G— G, and an isomorphism ¢: G — G.
Let N = ker (f). We prove by induction that Nc GY for all j.
Hence, by hypothesis, N is forced to be trivial.

For the induction hypothesis, assume that Nc GY, and that
f(G?) = ¢(G?). This is trivially true for j = 0. Now, by assump-
tion, (¢7'o f) restricted to G'¥ is an epimorphism. Since GY is finitely
generated, and GY*" = GY, by definition, Lemma 4.5 implies that
(710 F)(GUHY) = GU+Y; that is f(GYH)) = ¢(GY+Y).

This gives induced maps f: G?/GY*) — GG+, and ¢: GP/GU+ —
G9|G9*), where G = f(G%). Clearly ¢ is an isomorphism. Also,
GYP/GY+Y ig finitely generated, and (by Lemma 4.5) is an RF-group.
Thus, by Lemma 4.2, it is an H-group and ker (f) is trivial. However,
since Nc G, ker (f) = N/(N N G¥*Y), implying that Nc GY+Y as
required.

COROLLARY 4.7. If G s an extension of a poly-finite-or-cyclic
group by a finitely generated RF-group, then G is an H-group.

Proof. Let K be the group of which G is an extension. K and
all of its subgroups are finitely generated. Also, G® = G,rC K.
The corollary now follows from Prop. 4.6 (in fact, G® = 1).

Proof of Theorem C. By Lemma 1.1, assume that I7,(X) =0
for 2 > M, M a finite integer. Since //; is a finitely generated RF-
group (this is easy to check) for all 7, Lemma 4.3 implies that Aut (I7,)
is an RF'-group for all 7. Furthermore, RF-groups are closed under
direct products. Thus, Aut(X) is an RF-group. Let +;: E(X)—
Aut (X) be the natural representation. Since subgroups of RF-groups
are also RF-groups, im (vx) is an RF-group. In addition, im (y5) is
finitely generated by hypothesis. Further, by Lemma 1.4, ker (yy)
is polyeyelic. Thus, by Corollary 4.7, E(X) is an H-group.

COROLLARY 4.8. If X s an H-space, then E(X) is an H-group.
Proof. By Theorem A, E(X) is finitely presented.
Question. Is E(X) an RF-group?

The answer to this is complicated by the fact that there exists
an example, shown to me by G. Baumslag, of an extension of Z, by
a finitely generated RF-group which is not an RF-group.
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