CHARACTERIZATIONS OF λ CONNECTED PLANE CONTINUA

Charles L. Hagopian

Abstract

A continuum M is said to be λ connected if any two of its points can be joined by a hereditarily decomposable continuum in M. Here we characterize λ connected plane continua in terms of Jones' functions K and L.

A nondegenerate metric space that is both compact and connected is called a continuum. A continuum M is said to be aposyndetic at a point p of M with respect to a point q of M if there exists an open set U and a continuum H in M such that $p \in U \subset H \subset M-\{q\}$.

In [1], F. Burton Jones defines the functions K and L on a continuum M into the set of subsets of M as follows:

For each point x of M, the set $K(x)(L(x))$ consists of all points y of M such that M is not aposyndetic at $x(y)$ with respect to $y(x)$.

Note that for each point x of M, the set $L(x)$ is connected and closed in M [1, Th. 3]. For any point x of M, the set $K(x)$ is closed [1, Th. 2] but may fail to be connected [2, Ex. 4], [3].

Suppose that M is a plane continuum. In this paper it is proved that the following three statements are equivalent.
I. M is λ connected.
II. For each point x of M, the set $K(x)$ does not contain an indecomposable continuum.
III. For each point x of M, every continuum in $L(x)$ is decomposable.

Throughout this paper E^{2} is the Euclidean plane. For a given set S in E^{2}, we denote the closure and the boundary of S relative to E^{2} by $\mathrm{Cl} S$ and $\mathrm{Bd} S$ respectively.

Definition. Let M be a continuum in E^{2}. A subcontinuum L of M is said to be a link in M if L is either the boundary of a complementary domain of M or the limit of a convergent sequence of complementary domains of M.

It is known that a plane continuum is λ connected if and only if each of its links is hereditarily decomposable [5, Th. 2].

Theorem 1. Suppose that a continuum M in E^{2} contains an indecomposable continuum I, that disjoint circular regions V and Z in E^{2} meet I, that a point x belongs to $M-\mathrm{Cl}(V \cup Z)$, and that ε is a positive real number. Then there exist continua H and F in I, arc-segments R and T in V, and a point y of $I \cap Z$ such that (1)
$H \cup F \cup R \cup T$ separates y from x in E^{2}, and (2) if D is the y-component of $E^{2}-(H \cup F \cup R \cup T)$, then each point of D is within ε of I.

Proof. Define p and q to be points of $V \cap I$ that belong to distinct composants of I. Let $\left\{P_{n}\right\}$ and $\left\{Q_{n}\right\}$ be monotone descending sequences of circular regions in E^{2} centered on and converging to p and q respectively such that $\mathrm{Cl} P_{1} \cap \mathrm{Cl} Q_{1}=\varnothing$ and $\mathrm{Cl}\left(P_{1} \cup Q_{1}\right)$ is in V.

Suppose that for each positive integer n, only finitely many disjoint continua in $I-\left(P_{n} \cup Q_{n}\right)$ intersect $\mathrm{Bd} P_{n}, \mathrm{Bd} Q_{n}$, and Z. Since I has uncountably many composants, there exists a composant C of I such that for each n, no continuum in $C-\left(P_{n} \cup Q_{n}\right)$ meets $\mathrm{Bd} P_{n}$, $\operatorname{Bd} Q_{n}$, and Z. It follows that for each n, there is a continuum L_{n} in $C-\left(P_{n} \cup Q_{n} \cup Z\right)$ that meets both $\mathrm{Bd} P_{n}$ and $\mathrm{Bd} Q_{n}$. The limit of $\left\{L_{n}\right\}$ is a continuum in $I-Z$ that contains $\{p, q\}$. But since p and q belong to different composants of I and Z intersects I, this is a contradiction. Hence for some integer n, there exists an infinite collection W of disjoint continua in $I-\left(P_{n} \cup Q_{n}\right)$ such that each element of W meets $\operatorname{Bd} P_{n}, \operatorname{Bd} Q_{n}$, and Z.

There exists a sequence of distinct continua $\left\{H_{i}\right\}$ and two sequences of disjoint arc-segments $\left\{R_{i}\right\}$ and $\left\{T_{i}\right\}$ such that for each i,
(1) H_{i} is an element of W,
(2) $\quad R_{i}$ and T_{i} are in $\mathrm{Bd} P_{n}$ and $\mathrm{Bd} Q_{n}$ respectively,
(3) R_{i} and T_{i} each meets $H_{2 i}$ and no other element of $\left\{H_{i}\right\}$, and each has one endpoint in $H_{2 i-1}$ and the other endpoint in $H_{2 i+1}$.

For each positive integer i, let y_{i} be a point of $H_{2 i} \cap Z$ and define D_{i} to be the complementary domain of $H_{2 i-1} \cup H_{2 i+1} \cup R_{i} \cup T_{i}$ that contains y_{i}. Note that the elements of the sequence $\left\{D_{i}\right\}$ are disjoint domains in $E^{2}-\mathrm{Cl}\left(P_{n} \cup Q_{n}\right)$. Since the union of the continuum $I \cup \mathrm{Cl}\left(P_{n} \cup Q_{n}\right)$ with its bounded complementary domains is a compact subset of E^{2}, for some i, every point of D_{i} is within ε of I and $H_{2 i-1} \cup H_{2 i+1} \cup R_{i} \cup T_{i}$ separates y_{i} from x in E^{2}.

Theorem 2. If M is a λ connected continuum in E^{2}, then for each point x of M, every continuum in the set $K(x)$ is decomposable.

Proof. Assume that for some point x of M, the set $K(x)$ contains an indecomposable continuum I. We shall prove that this assumption implies the existence of a link in M that contains I; this will contradict the hypothesis of this theorem [5, Th. 2].

Let v and z be points of $M-\{x\}$ that belong to distinct composants of I. Define $\left\{V_{i}\right\}$ and $\left\{Z_{i}\right\}$ to be monotone descending sequences of circular regions in E^{2} centered on and converging to v and z respectively such that $\mathrm{Cl} V_{1} \cap \mathrm{Cl} Z_{1}=\varnothing$ and $\mathrm{Cl}\left(V_{1} \cup Z_{1}\right)$ is in $E^{2}-\{x\}$.

First we show that for each positive integer i, there exists an
arc A_{i} in $E^{2}-M$ that goes from $\mathrm{Bd} V_{i}$ to $\mathrm{Bd} Z_{i}$ such that each point of A_{i} is within i^{-1} of I. By Theorem 1, for any given positive integer i, there exist continua H and F in I, arc-segments R and T in V_{i}, and a point y of $I \cap Z_{i}$ such that $H \cup F \cup R \cup T$ separates y from x in E^{2} and each point of D (the y-component of $\left.E^{2}-(H \cup F \cup R \cup T)\right)$ is within i^{-1} of I. Let U be a circular region containing x in E^{2} whose closure misses $H \cup F \cup R \cup T$. Let G be a circular region containing y in E^{2} whose closure is in $D \cap Z_{i}$. Since M is not aposyndetic at x with respect to y, the component of $M-G$ that contains x is not open relative to M at x. Hence there exist two components X and Y of $M-G$ that meet U. It follows that a simple closed curve J in $\left(E^{2}-M\right) \cup G$ separates X from Y in $E^{2}[6$, Th. 13, p. 170]. Note that J must intersect both G and U [6, Th. 50, p. 18]. Since $J \cap(M-G)=\varnothing$ and $H \cup F \cup R \cup T$ separates G from U in E^{2}, there is an arc-segment B in $(J \cap D)-M$ that has one endpoint in $\mathrm{Bd} G$ and the other endpoint in $R \cup T$. We define A_{i} to be an arc in $B-\left(V_{i} \cup Z_{i}\right)$ that goes from $\mathrm{Bd} V_{i}$ to $\mathrm{Bd} Z_{i}$. Since A_{i} is in D, each of its points is within i^{-1} of I.

Note that since v and z do not belong to the same composant of I, the limit of each subsequence of $\left\{A_{i}\right\}$ is I. For each i, let Q_{i} be the complementary domain of M that contains A_{i}. If $\left\{Q_{i}\right\}$ does not have infinitely many distinct elements, then for some i, the link $\operatorname{Bd} Q_{i}$ in M contains I. Suppose that $\left\{Q_{i}\right\}$ has infinitely many distinct elements. Then some subsequence of $\left\{Q_{i}\right\}$ converges to a link in M [6, Th. 59, p. 24]. It follows that a link in M contains I. This contradicts the fact that M is λ connected [5, Th. 2]. Hence for each point x of M, every continuum in $K(x)$ is decomposable.

Theorem 3. Suppose that M is a continuum in E^{2} and for each point x of M, every continuum in $K(x)$ is decomposable. Then for each point x of M, every continuum in $L(x)$ is decomposable.

Proof. Assume that for some point x of M, there is an indecomposable continuum I in $L(x)$. We shall prove that from this assumption it follows that M is not aposyndetic at any point of I with respect to any other point of I. Hence for each point z of I, the set $K(z)$ in M contains I. This will contradict our hypothesis.

Suppose there exists a continuum E in M that does not contain I whose interior relative to M contains a point of I. There exist mutually exclusive circular regions V and Z in E^{2} such that
(1) x does not belong to $\mathrm{Cl}(V \cup Z)$,
(2) V and Z each meets I,
(3) E and V are disjoint,
(4) $M \cap Z$ is contained in E.

According to Theorem 1, there exist continua H and F in I, arc-segments R and T in V, and a point y of $I \cap Z$ such that $H \cup$ $F \cup R \cup T$ separates y from x in E^{2}. Define D to be the y-component of $E^{2}-(H \cup F \cup R \cup T)$. There exists a circular region G in E^{2} containing y such that $\mathrm{Cl} G$ is in $D \cap Z$. Let U be a circular region in E^{2} containing x whose closure misses $H \cup F \cup R \cup T$.

Since M is not aposyndetic at y with respect to x, the y-component of $M-U$ is not open relative to M at y. Hence $\mathrm{Bd} G-M$ contains an arc-segment A whose endpoints, p and q, lie in different components of $M-U$. There exists a simple closed curve J in $\left(E^{2}-M\right) \cup U$ that separates p from q in E^{2} such that $J \cap A$ is connected. Let B denote the component of $J-U$ that contains $J \cap A$. Since $H \cup F \cup R \cup T$ separates G from U in E^{2} and B does not intersect $H \cup F$, it follows that both components of $B-A$ meet $R \cup T$. Evidently $B \cup V$ separates p from q in E^{2} [6, Th. 32, p. 181]. But since E is a continuum in $E^{2}-(B \cup V)$ that contains $\{p, q\}$, this is a contradiction. Hence each subcontinuum of M that contains a point of I in its interior relative to M contains I. This implies that for any point z of I, the set $K(z)$ in M contains I, which contradicts the hypothesis of this theorem. Hence for each point x of M, every continuum in $L(x)$ is decomposable.

Theorem 4. Suppose that for each point x of a plane continuum M, every continuum in $L(x)$ is decomposable. Then M is λ connected.

Proof. Assume that M is not λ connected. It follows that some link in M contains an indecomposable continuum I [5, Th. 2]. By Theorem 1 in [4], each subcontinuum of M that contains a nonempty open subset of I contains I. But this implies that for each point x of I, the set $L(x)$ contains I, which is impossible. Hence M is λ connected.

Theorem 5. Suppose that M is a plane continuum. The following three statements are equivalent.
I. M is λ connected.
II. For each point x of M, every continuum in the set $K(x)$ is decomposable.
III. For each point x of M, every continuum in $L(x)$ is decomposable.

Proof. This follows directly from Theorems 2, 3, and 4.

References

1. F. B. Jones, Concerning non-aposyndetic continua, Amer. J. Math., 70 (1948), 403-413.
2. C. L. Hagopian, Concerning arcwise connectedness and the existence of simple closed curves in plane continua, Trans. Amer. Math. Soc., 147 (1970), 389-402.
3. ——, A cut point theorem for plane continua, Duke Math. J., 38 (1971), 509-512.
4. —, λ connected plane continua, Trans. Amer. Math. Soc., 191 (1974).
5. ——, Planar λ connected continua, Proc. Amer. Math. Soc., 39 (1973), 190-194.
6. R. L. Moore, Foundations of point set theory, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 13, Amer. Math. Soc., Providence, R.I., 1962.

Received November 13, 1972.
California State University, Sacramento

