MULTIPLIERS AND THE GROUP L_p-ALGEBRAS

JOHN GRIFFIN AND KELLY MCKENNON

Let G be a locally compact group, p a number in $[1, \infty]$, and L_p the usual L_p -space with respect to left Haar measure on G. The space L_p^t consists of those functions f in L_p^t such that g*f is well-defined and in L_p for each g in L_p . Since each function in L_p^t may be identified with a linear operator on L_p which, as it turns out, is bounded; the operator norm may be super-imposed on L_p^t and, under this norm $\|\|_p^t$, L_p^t is a normed algebra. The family of right multipliers (i.e., bounded linear operators which commute with left multiplication operators) on any normed algebra A will be written as $m_r(A)$ and the family of left multipliers as $m_1(A)$. The family of all bounded linear operators on L_p which commute with left translations will be written as \mathfrak{M}_p .

It was shown in a previous issue of this journal that the Banach algebra \mathfrak{M}_p is linearly isomorphic to the normed algebra $\mathfrak{M}_r(L_p^t)$, whenever the group G is either Abelian or compact. This fact is shown, in the present paper, to hold for general locally compact G. The norm $\| \|_p^t$ is defective in that, unless $p = 1, (L_p^t, \| \|_p^t)$ is never complete.

An attempt will be made in the sequel to supply this deficiency by the introduction of a second norm $\|\|\|_p^t$ on L_p^t under which L_p^t is always a Banach algebra. It will be seen that, for p=2 (and of course for p=1), the Banach algebra $\mathfrak{m}_r(L_p^t, \|\|\|_p^t)$ is linearly isometric to \mathfrak{M}_p .

Let G be a fixed, but arbitrary, locally compact topological group with left Haar measure λ . Write C_{00} for the family of continuous, complex-valued functions on G with compact support.

Let p be a fixed, but arbitrary, number in $[1, \infty]$ and write $|| ||_p$ for the norm on the Banach space $L_p = L_p(G, \lambda)$. The group L_p algebra L_p^t is the set

$$\{f \in L_p: g * f \in L_p \text{ for all } g \in L_p\}$$
.

A function $f \in L_p$ is said to be *p*-tempered and, as shown in [3], the number

$$(1) ||f||_p^t = \sup \{||g*f||_p; g \in C_{00} ||g||_p \leq 1\}$$

is finite. Conversely, if $||f||_p^t$ is finite for some $f \in L_p$, then—as proved in [3]—f is *p*-tempered and there exists precisely one operator W_f in \mathfrak{M}_p such that

$$||W_f|| = ||f||_p^t \hspace{0.2cm} ext{and} \hspace{0.2cm} W_f(g) = g*f$$

for all $g \in L_p$.

Let \varDelta be the modular function for G and let

$$L_{{}_{1,\,p'}}=\{farDelta^{{}_{1/p'}}:f\in L_{{}_{1}}\}\ \ (p'=p/(p-1))$$

which is linearly isometric to L_1 when it bears the norm $|| ||_{1,p'}$ defined by

(2)
$$||h||_{1,p'} = \int_{G} |h| \Delta^{-1/p'} d\lambda$$

for each $h \in L_{1,p'}$. As in [1], 20.13 and [2], 32.45, we see that L_p may be viewed as a right Banach $L_{1,p'}$ -module and

$$(3) ||g*h||_{p} \leq ||h||_{1,p'} ||g||_{p}$$

for all $h \in L_{1,p'}$ and $g \in L_p$. Consequently, for each $f \in L_{1,p'}$, there exists precisely one bounded linear operator W_f on L_p such that, for all $g \in L_p$,

(4)
$$W_f(g) = g * f \text{ and } ||W_f|| \leq ||f||_{1,p'}.$$

It is clear that C_{00} is a dense subset of $L_{1,p'}$ and so, since $\{W_f: f \in C_{00}\}$ is a subset of the Banach space \mathfrak{M}_p , we have

$$(5) \qquad \qquad \{W_f: f \in L_{1,p'}\} \subset \mathfrak{M}_p .$$

We define the space of *p*-well tempered functions to be

$$L_{p}^{wt} = \{h*f: h \in L_{p}^{t}, f \in L_{1,p'}\}$$
 .

The closure \mathfrak{A}_p of the set $\{W_f: f \in L_p^{wt}\}$ in \mathfrak{M}_p was studied in [3]. Its Banach algebra of left multipliers can be identified with \mathfrak{M}_p ([3], Th. 6) and it possesses a minimal left approximate identity $\{W_{h_{\gamma}}\}$ such that $\{h_{\gamma}\} \subset C_{00} * C_{00}$ and

(6)
$$\lim_{Y} || W_{h_{\gamma}} \circ T \circ W_{h_{\gamma}}(g) - T(g) ||_{p}^{t} = 0$$

for each $g \in L_p^{wt}$ and $T \in \mathfrak{M}_p$ (see [3], proofs to Theorem 3 and Lemma 1).

LEMMA 1. Let $T \in \mathfrak{m}_r(L_p^t, || ||_p^t)$ be such that T(g) = 0 for all $g \in L_p^{wt}$. Then T = 0.

Proof. Assume that $T \neq 0$. Then there exists some $h \in L_p^t$ such that $T(h) \neq 0$ and some $g \in C_{00}$ such that $g * T(h) \neq 0$. Let $\{h_{\tau}\}$ be the net in $C_{00} * C_{00}$ which appears in (6). It follows from (6) that

$$egin{aligned} 0 &= & \lim_{r} \, || \, W_{h_{\gamma}} \circ W_{h} \circ W_{h_{\gamma}}(g) \, - \, W_{h}(g) \, ||_{p}^{t} \ &= & \lim_{\gamma} \, || \, g * h_{\gamma} * h * h_{\gamma} \, - \, g * h \, ||_{p}^{t} \; . \end{aligned}$$

366

Note that $g * h_{\gamma} * h * h_{\gamma}$ is in L_p^{wt} for each γ and so

$$egin{aligned} &||g*T(h)||_{p}^{t}=||T(g*h)||_{p}^{t}\ &=\lim_{r}||T(g*h_{r}*h*h_{r})||_{p}^{t}=0: \ \end{aligned}$$

an absurdity. Thus, T = 0.

THEOREM 1. Define $\omega | \mathfrak{M}_p \to \mathfrak{m}_r(L_p^t, || ||_p^t)$ by letting $\omega_T(f) = T(f)$ for each $T \in \mathfrak{M}_p$ and $f \in L_p^t$. Then ω is a surjective, isometric, algebra isomorphism.

Proof. Assume false. By [4], Theorem 1, there exists some $T \in \mathfrak{m}_r(L_{p}^t \mid\mid \mid\mid_p^t)$ such that $T \neq 0$ and

$$T(V(f)) = 0$$
 for all $V \in \mathfrak{A}_p$ and $f \in L_p^t$.

Since \mathfrak{A}_p possesses a left minimal approximate identity, it is clear that the set $\{V(f): f \in L_p^t, V \in \mathfrak{A}_p\} \cap L_p^{wt}$ is dense in $(L_p^{wt}, || ||_p^t)$. This implies that

$$T(g) = 0$$
 for all $g \in L_p^{wt}$.

By Lemma 1, T = 0: an absurdity.

For each $f \in L_{p}^{t}$, let

(7)
$$|||f|||_p^t = ||f||_p^t + ||f||_p$$
.

We have used the symbol || || to represent the operator norm on \mathfrak{M}_p . The map ω defined in Theorem 1 shows that || || also is the operator norm on \mathfrak{M}_p when \mathfrak{M}_p is regarded as a family of operators on (L_p^t) , $|| ||_p^t)$. We may regard \mathfrak{M}_p as a family of operators on the normed space $(L_p^t, ||| |||_p^t)$ and, in this case, we shall write ||| ||| for the operator norm.

LEMMA 2. For each $T \in \mathfrak{M}_p$, we have

$$|||T||| \leq ||T||.$$

Proof. For $g \in L_p^t$, we have

$$||| T(g) |||_{p}^{t} = || T(g) ||_{p}^{t} + || T(g) ||_{p}$$
$$\leq || T || \cdot || g ||_{p}^{t} + || T || \cdot || g ||_{p} = || T || \cdot || g |||_{p}^{t}.$$

THEOREM 2. The algebra $(L_p^t, ||| |||_p^t)$ is a Banach algebra. The set L_p^{wt} is a closed two-sided ideal in $(L_p^t, ||| |||_p^t)$.

Proof. From Lemma 2, we have

$$\begin{split} |||f * g|||_{p}^{t} &= |||W_{g}(f)|||_{p}^{t} \leq |||W_{g}||| \cdot |||f|||_{p}^{t} \leq ||W_{g}|| \cdot |||f|||_{p}^{t} \\ &= ||g||_{p}^{t} \cdot |||f|||_{p}^{t} \leq |||g|||_{p}^{t} \cdot |||f|||_{p}^{t} \end{split}$$

for all f and g in L_p^t . Hence $(L_p^t, ||| |||_p^t)$ is a normed algebra.

Let $\{f_n\}$ be a Cauchy sequence in $(L_p^t, ||| |||_p^t)$. There exists a function $f \in L_p$ and a bounded linear operator W on L_p such that

$$\lim_{n} ||f_{n} - f|| = 0 = \lim_{n} ||W_{f_{n}} - W||.$$

For all $g \in C_{00}$ such that $||g|| \leq 1$, we have

$$||g*f||_p = \lim ||g*f_n||_p \leq \overline{\lim} ||f_n||_p^t ||g||_p \leq \overline{\lim} ||f_n||_p^t.$$

This implies via (1) that f is in L_p^t For all $h \in C_{00}$, we have

$$W(h) = \lim_{f \to 0} W_{f_n}(h) = \lim_{h \to 0} h * f_n = h * f = W_f(h)$$
,

all the limits being taken in L_p . Since C_{00} is dense in L_p , this yields that $W = W_f$. We have shown that

$$\lim |||f_n - f|||_p^t = 0.$$

Thus, $(L_p^t, ||| |||_p^t)$ is complete.

Evidently $(L_p^t, ||| |||_p^t)$ is a right $L_{1,p'}$ -module and so by [2], 32.22, $L_p^{t*}L_{1,p'}$ is a closed linear subspace. But this is just L_p^{wt} .

That L_p^{wt} is a left ideal of L_p^t is clear. Let g and h be in L_p^{wt} and L_p^t respectively. Choose the net $\{h_{\gamma}\}$ so that (6) holds. We have

$$egin{aligned} 0 &= \lim_n ||W_{k_{7}} \circ W_k \circ W_{k_{7}}(g) - W_k(g)||_p^t \ &= \lim_n ||g*h_{7}*h*h_{7} - h*h||_p^t \ . \end{aligned}$$

From Lemma 2 of [3] we see that the nets $\{W_{k_{\gamma}}\}$ and $\{W_{k^*k_{\gamma}}\}$ converge to the identity operator and to W_k , respectively, in the strong operator topology (as operators on L_p). Consequently,

$$\begin{split} \overline{\lim_{\tau}} & ||g*h_{\tau}*h*h_{\tau} - g*h||_{p} \\ & \leq \overline{\lim_{\tau}} ||g*h_{\tau}*h*h_{\tau} - g*h*h_{\tau}||_{p} + \overline{\lim_{\tau}} ||g*h*h_{\tau} - g*h||_{p} \\ & \leq \overline{\lim_{\tau}} ||g*h_{\tau} - g|| ||h*h_{\tau}||_{p}^{t} + \overline{\lim_{\tau}} ||g*h*h_{\tau} - g*h||_{p} \\ & \leq \overline{\lim_{\tau}} ||W_{h_{\tau}}(g) - g||_{p} ||h||_{p}^{t} + \overline{\lim_{\tau}} ||W_{h*h_{\tau}} - W_{h}(g)||_{p} = 0 . \end{split}$$

Thus, we have proved

$$\lim ||| g * h_r * h * h_r - g * h |||_p^t = 0$$

and so, since each $g * h_{\tau} * h * h_{\tau}$ is in the closed set L_p^{wt} , it follows that g * h is there as well. This shows that L_p^{wt} is a right ideal.

COROLLARY 1. The subspace L_p^{wt} of L_p is \mathfrak{M}_p -invariant.

Proof. Let T be in \mathfrak{M}_p and $f \in L_p^{wt}$. It follows from Lemmas 1 and 2 of [3] that there exists a net $\{f_{\alpha}\}$ in L_p^{wt} such that

$$\lim_{\alpha} || T(f) - W_{f_{\alpha}}(f) || = 0 = \lim_{\alpha} || T(f) - W_{f_{\alpha}}(f) ||_{p}.$$

But this just means

$$\lim_{\alpha} || T(f) - f * f_{\alpha} ||_{p}^{t} = 0 = \lim_{\alpha} || T(f) - f * f_{\alpha} ||_{p}$$

and so

$$\lim_{\alpha} ||| T(f) - f * f_{\alpha} |||_p^t = 0.$$

But, by Theorem 2, each $f * f_{\alpha}$ is in L_p^{wt} and so T(f) is as well.

COROLLARY 2. The Banach algebra \mathfrak{M}_p is linearly isometric to $\mathfrak{m}_r(L_p^{wt}, || ||_p^t)$.

Proof. It is known that \mathfrak{M}_p is linearly isometric to $\mathfrak{m}_1(\mathfrak{A}_p, || ||)$. Each element of $\mathfrak{m}_r(L_p^{wt}, || ||_p^t)$ clearly may be identified with an element of $\mathfrak{m}_r(\mathfrak{A}_p, || ||)$. Thus, to prove this corollary, it will suffice to show that each element of $\mathfrak{m}_1(\mathfrak{A}_p, || ||)$ can be identified with an element of $\mathfrak{m}_r(L_p^{wt}, || ||_p^t)$. But this follows from Corollary 1.

LEMMA 3. Let $T \in \mathfrak{m}_r(L_p^t, ||| |||_p^t)$ be such that T(g) = 0 for all $g \in L_q^{wt}$. Then T = 0.

Proof. Repeat the proof for Lemma 1, noticing that, as in the proof to Theorem 2,

$$\lim_{r} |||g*h_{r}*h*h_{r} - g*h|||_{p}^{t} = 0.$$

It follows form Lemma 2 that the natural restriction mapping of \mathfrak{M}_p into $\mathfrak{m}_r(L_p^t, ||| |||_p^t)$ is a norm non-increasing algebra isomorphism. There arise natural questions:

- (i) when is the mapping onto?
- (ii) when is the mapping a homeomorphism?
- (iii) when is the mapping an isometry?

Question (iii) clearly implies (ii).

PROPOSITION 1. The restriction mapping of \mathfrak{M}_p into $\mathfrak{m}_r(L_p^t, ||| |||_p^t)$ is surjective if and only if it is a homeomorphism.

Proof. Let Ψ denote the restriction mapping. If Ψ is onto, the open mapping theorem implies that it is a homeomorphism.

Now suppose that Ψ is a homeomorphism. Let T be an element of $\mathfrak{m}_r(L_p^t, ||| |||_p^t)$. In view of Lemma 3, T is completely determined by its restriction to L_p^{wt} . Thus, T may be identified with a multiplier on $\{\Psi(W_f): f \in L_p^{wt}\}$, and so with a multiplier on its closure $\Psi(\mathfrak{A}_p)$ in $\Psi(\mathfrak{M}_p)$ as well. It follows that T may be identified with a multiplier on \mathfrak{A}_p , which, in view of [3], Theorem 6, may be identified with some $V \in \mathfrak{M}_p$. It follows that $\Psi(V) = T$. Hence, Ψ is surjective.

When p = 1, then $L_p^t = L_p^{wt} = L_p$ and $|| ||_1 = || ||_1^t = 1/2 ||| |||_1^t$. When p = 2, we have the following:

THEOREM 3. The algebra $\mathfrak{m}_r(L_2^t, ||| |||_2^t)$ is linearly isometric and isomorphic with \mathfrak{M}_2 .

Proof. In view of the fact that \mathfrak{M}_2 is a C^* -algebra, it follows from [5], 4.8.4 that $||T||^2 \leq |||T^*||| \cdot |||T|||$ for all $T \in \mathfrak{M}_2$. But Lemma 2 implies

 $|||T^*||| \le ||T^*|| = ||T||$ and $|||T||| \le ||T||$

for $T \in \mathfrak{M}_2$ and so |||T||| = ||T||. Thus, Ψ is an isometry and Theorem 3 now follows from Proposition 1.

REFERENCES

1. Edwin Hewitt and Kenneth A. Ross, *Abstract Harmonic Analysis*, Vol. I. Berlin, Springer-Verlag, 1963.

2. ____, Abstract Harmonic Analysis, Vol. II. Berlin, Springer-Verlag, 1963.

3. Kelly McKennon, Multipliers of type (p, p), To be published in Pacific J. Math.

4. _____, Multipliers of type (p, p) and multipliers of the group L_p -algebras, Pacific J. Math., 45 (1973), 297-302.

5. Charles Rickert, General Theory of Banach Algebras, Princeton, N. J., Van Nostrand Company, Inc., 1960.

Received July 24, 1972.

WASHINGTON STATE UNIVERSITY