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MULTIPLIERS AND THE GROUP L^ALGEBRAS

JOHN GRIFFIN AND KELLY MCKENNON

Let G be a locally compact group, p a number in [1, oo[,
and Lp the usual Lp-space with respect to left Haar measure
on G. The space Lp consists of those functions / in Lp such
that g*f is well-defined and in Lp for each g in Lp. Since
each function in Lp may be identified with a linear operator
on Lp which, as it turns out, is bounded; the operator norm
may be super-imposed on Lp and, under this norm || \\p, L%
is a normed algebra. The family of right multipliers (i.e.,
bounded linear operators which commute with left multiplica-
tion operators) on any normed algebra A will be written as
mr(A) and the family of left multipliers as tnι(A). The family
of all bounded linear operators on Lp which commute with left
translations will be written as Tlp.

It was shown in a previous issue of this journal that the
Banach algebra 5Jlp is linearly isomorphic to the normed algebra
mr(Lρ), whenever the group G is either Abelian or compact.
This fact is shown, in the present paper, to hold for general
locally compact G. The norm || \\ρ is defective in that, unless
p = 1, (Lp, || Up) is never complete.

An attempt will be made in the sequel to supply this
deficiency by the introduction of a second norm ||| \\\p on Lp

under which Lp is always a Banach algebra. It will be seen
that, for p = 2 (and of course for p — 1), the Banach algebra
mr(Z^, HI \\\p) is linearly isometric to %RP.

Let G be a fixed, but arbitrary, locally compact topological
group with left Haar measure λ. Write Coo for the family of continuous,
complex-valued functions on G with compact support.

Let p be a fixed, but arbitrary, number in [1, oo[ and write || 1̂
for the norm on the Banach space Lp = LP(G, λ). The group Lp-
algebra Lp is the set

{/ e Lp: g*f e Lp for all g e Lp} .

A function f e Lp is said to be p-tempered and, as shown in [3], the
number

(1) ll/ll^supdl^/llpiflreCoollflrllp^l}

is finite. Conversely, if | |/ | |p is finite for some / 6 Lp, then—as proved
in [3]—/ is ^-tempered and there exists precisely one operator Wf

in Wp such that

and Wf(g) = g*f
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for all g e Lp.
Let Δ be the modular function for G and let

LUP' = {fΔllp/: f e L J (p' = p/(p — 1))

which is linearly isometric to L1 when it bears the norm || \\upf defined

by

( 2 ) P I L P ' = ( \h\Δ~llP'dX
JG

for each he Lup,. As in [1], 20.13 and [2], 32.45, we see that Lp may
be viewed as a right Banach L1>23,-module and

(3) II^II^PIUII^IL

for all heLup, and geLp. Consequently, for each feLup,, there
exists precisely one bounded linear operator Wf on Lp such that, for
all geLp,

It is clear that Coo is a dense subset of Lup, and so, since {Wf: f e
Coo} is a subset of the Banach space fΰlp, we have

( 5 )

We define t h e space of p-well tempered functions to be

LT = {h*f:heLl,feLup,}.

The closure 2tp of the set {Wf: f e Lf} in 2K, was studied in [3].
Its Banach algebra of left multipliers can be identified with Wlp ([3],
Th. 6) and it possesses a minimal left approximate identity {Wh} such
t h a t {hr} c CQQ*CQ0 and

( 6 ) Km || Whγ o To Wkγ(g) - T(g) |β = 0

for each g e Lf and Te Wlp (see [3], proofs to Theorem 3 and Lemma 1).

LEMMA 1. Let T e m r ( Z 4 || \\ρ) be such that T(g) = 0 for all ge
Lf. Then T = 0.f

Proof. Assume that T Φ 0. Then there exists some h e Lρ such
that T(h) Φ 0 and some g e Coo such that g*T{h) Φ 0. Let {hr} be the
net in C00*CQ0 which appears in (6). It follows from (6) that

0 - lim \\Whγ o Wh o Wh(g) - Wh(g) \\p

= lim \\g*hγ*h*hr — g*h\\p .
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Note that g*hr*h*hr is in L"' for each 7 and so

an absurdity. Thus, T = 0.

THEOREM 1. Zte/me α> | Wlp -> mr(Z4 || \\ρ) δy letting ωτ{f) =
/or eαcfc T e 3KP α^ώ / e L*, TΛen ω is a surjective, isometric, algebra
isomorphism.

Proof. Assume false. By [4], Theorem 1, there exists some Te
mr(Lp, !| H5,) such that TΦ 0 and

T(V(f)) = 0 for all Ve%9 and feL*9.

Since %p possesses a left minimal approximate identity, it is clear
that the set {V(f): f e LPf Ve%} Π Lf is dense in (Lf, \\ \\p). This
implies that

T(g) = 0 for all g e Lf .

By Lemma 1, T = 0: an absurdity.

For each feUp, let

(7) HI/HI; = ιι/ιι;+ H/II, •
We have used the symbol || || to represent the operator norm on Έlp.
The map ω defined in Theorem 1 shows that || || also is the operator
norm on Έip when %Jlp is regarded as a family of operators on (Lpf

|| 111). We may regard $Jlp as a family of operators on the normed
space (Lρ, \\\ \\\ρ) and, in this case, we shall write ||| ||| for the operator
norm.

L E M M A 2. For each T e Wlp, we have

\\\T\\\^\\T\\.

Proof. For g e Lp, we have

t
p

THEOREM 2. The algebra (Lp, \\\ \\\p) is a Banach algebra. The set

Lf is a closed two-sided ideal in (Lp, \\\ \\\ρ).
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Proof. From Lemma 2, we have

; ^ nielli.in/111^ ^ IIΪΓ,

for all / and g in Lρ. Hence (Lρ, \\\ ||β) is a normed algebra.
Let {fn} be a Cauchy sequence in (L*Pf | | | |||p). There exists a

function feLp and a bounded linear operator W on JLP such that

\im\\fn - f\\ = 0 = \im\\Wu - W\\ .
n n

For all ge Cm such t h a t \\g\\ £Ξ 1, we have

\\g*f\\, = lim \\g*f%\\v ^ Π E \\fn\\U\g\l ^ I S HI/JH', .

This implies via (1) that / is in L*p For all h e Cm, we have

W{h) = lim TΓ/.(A) = lim A*/. - h*f = Wf(h) ,
n n

all the limits being taken in Lp. Since Coo is dense in Lp, this yields
that W — Wf. We have shown that

Thus, (14 HI my is complete.
Evidently (Lp, | | | |||5,) is a right 1/^,-module and so by [2], 32.22,

Lt

p^Lupf is a closed linear subspace. But this is just Lw

p.
That Lf is a left ideal of Lρ is clear. Let g and A be in Lf

and 14 respectively. Choose the net {hr} so that (6) holds. We
have

0 - lim II Wh o T7,o T7 (0) - TFA(flr) \\l

— l im \\g*hr*h*hr — h*h\\ρ .

From Lemma 2 of [3] we see that the nets {Whr\ and {Wh*hj} converge
to the identity operator and to Wh, respectively, in the strong operator
topology (as operaters on Lp). Consequently,

lim \\g*hr*h*hr — g*h\\p

r
^ lim \\g*hr*h*hr — g*h*hr\\p + lim \\g*h*hr — g*h\L

r r
^ ί ϊ m \\g*hr - g\\ \\h*hr\\p + Πϊn \\g*h*hr - g*h\\pr r

^ Έm\\Whf(g) - glUWhWl + l im | | T F W _ - Wh(g)\\p = 0 .
ΐ ϊ

Thus, we have proved
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lim \\\g*hr*h*hr — βr*Λ|||i = 0
r

and so, since each g*hr*h*hr is in the closed set Lf, it follows that
g*h is there as well. This shows that Lf is a right ideal.

COROLLARY 1. The subspace Lf of Lp is Wlp-ίnvariant.

Proof. Let T be in ϊ£flp and feLf. It follows from Lemmas 1
and 2 of [3] that there exists a net {fa} in Lf such that

lim || T(f) - Wfa{f) 11 = 0 = lim || Γ(/) - Wfa{f) II,.

But this just means

lim || T{f) - f*fa\\l = 0 = lim ]| T(f) - f*fa\\,
a a

and so

But, by Theorem 2, each /*/„ is in Lf and so T(f) is as well.

COROLLARY 2. The Banach algebra $Jlp is linearly isometric to

Proof. It is known that ?ΰt9 is linearly isometric to mιi^ίP9 \\ | |).
Each element of mr(Lf, \\ \\p) clearly may be identified with an element
of mr(Stp, || | |). Thus, to prove this corollary, it will suffice to show
that each element of m^Stp, || ||) can be identified with an element of
mr{Lf, || ||i). But this follows from Corollary 1.

LEMMA 3. Let Temr{Up, \\\ \\\p) be such that T(g) = 0 for all ge
Lf. Then T = 0.

Proof. Repeat the proof for Lemma 1, noticing that, as in the
proof to Theorem 2,

lim \\\g*hr*h*hr — flr*Λ|||i = 0 .
r

It follows form Lemma 2 that the natural restriction mapping
of 3ftp into mr(Lρ, \\\ |||i) is a norm non-increasing algebra isomorphism.
There arise natural questions:

( i ) when is the mapping onto?
(ii) when is the mapping a homeomorphism?
(iii) when is the mapping an isometry?
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Question (iii) clearly implies (ii).

PROPOSITION 1. The restriction mapping of Έlp into mr(Lρ, \\\ \\\%)

is surjective if and only if it is a homeomorphism.

Proof. Let Ψ denote the restriction mapping. If Ψ is onto, the
open mapping theorem implies that it is a homeomorphism.

Now suppose that Ψ is a homeomorphism. Let T be an element
of mr(Lρ, HI \\\p). In view of Lemma 3, T is completely determined
by its restriction to Lp\ Thus, T may be identified with a multiplier
on {Ψ(Wf): fe Lf], and so with a multiplier on its closure Ψ($lp) in
Ψ{^Jlp) as well. It follows that T may be identified with a multiplier
on 2tp, which, in view of [3], Theorem 6, may be identified with some
VeWlp. It follows that Ψ(V) = T. Hence, Ψ is surjective.

Whenp = 1, then j^ = Lf = L.and || ||, - || ||J = 1/2 ||| |||*. When
p = 2, we have the following:

THEOREM 3. The algebra mr(L\, \\\ | | |0 is linearly isometric and
isomorphic with 2K2.

Proof. In view of the fact that SK2 is a C*-algebra, it follows
from [5], 4.8.4 that | | Γ | | 2 ^ | | |T* | | | ||| Γ| | | for all TeSK2. But Lemma
2 implies

| | | Γ * | | | ^ | | Γ * | | = | |Γ | | and ||| Γ|| | ^ | | Γ | |

for Te HJΪ2 and so ||| Γ| | | = || T\\. Thus, Ψ is an isometry and Theorem
3 now follows from Proposition 1.

REFERENCES

1. Edwin Hewitt and Kenneth A. Ross, Abstract Harmonic Analysis, Vol. I. Berlin,
Springer- Verlag, 1963.
2. , Abstract Harmonic Analysis, Vol. II. Berlin, Springer-Verlag, 1963.
3. Kelly McKennon, Multipliers of type (p, p), To be published in Pacific J. Math.
4. , Multipliers of type (p, p) and multipliers of the group Lp-algebras, Pacific
J. Math., 45 (1973), 297-302.
5. Charles Rickert, General Theory of Banach Algebras, Princeton, N. J., Van Nostrand
Company, Inc., 1960.

Received July 24, 1972.

WASHINGTON STATE UNIVERSITY




