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ANALYTIC STRUCTURE IN THE SPECTRUM
OF A NATURAL SYSTEM

R. M. BRrooOKs

Let [ X, A] be a natural system such that X is locally compact
and every copen subset of X is o-compact. Let .7 be the
sheaf on X generated by the presheaf {U— A, =AU} If
pe X, V is a subvariety of an open set in C* which contains
0 and if there exists an algebra homoemorphism ¢: %, =
having rank greater than one, then there exists a neighborhood
U of p in X, a neighborhood «w of 0 in C" and a continuous
map : V N o— U such that 1) «(0)=1p, (2) if fe Ay, then for is
holomorphic on V N w, and (3) if fe Ay, then (for), = o((f)n)s
where (for), is the germ at 0 of for and (f), is the element
of &7, (the stalk of &7 above p) determined by f.

The theorem quoted above is the main result of the paper. The
crucial steps leading to it are Theorems 1.6, 1.7, and 1.8, successive
generalizations of a theorem of B. E. Johnson [9, Theorem 9.3], who
considered the n = 1 case of Theorem 1.6, and Theorem 2.12. Previous
work closely related to the results of this paper has been done by
Carpenter [2] (F-algebras and » = 1), Clayton [3, 4] (B-algebras and
maps into %), and Loy [10] (F-algebras and special maps into
o(n =1)). Each of the three used a sheaf somewhat different from
the one used in this paper. We shall discuss the guestion of “which
sheaf to use” at the end of §3.

1. On the continuity of certain linear maps. In this section
we obtain the crucial results of the paper, to be applied in the next
section to the problem under study. We begin with some notation
and basic results on spaces of formal power series.

We denote by ,F the algebra of formal power series (over C) in
% variables X, ---, X,. A typical element of ,F' is a formal series
> a; X7, where J runs through N* J = (j, ---, 7, with each j; e N,
and X/ = X% ... Xi». TFor each Je N" we define g linear functional
ps: W —C by 0,30, X)) = a;. We endow ,F with the coarsest locally
convex topology with respect to which each p, is continuous; i.e.,
the one determined by the family {|p,|:J e N"} of seminorms. This
topology will be referred to below as the ,F-topology.

Let F' be a subspace of ,F equipped with the ,F-topology and
let M be a (relatively) closed subspace of F. Then (F/M, quot (,F))
is a separated locally convex LTS (see [8, p. 105]). The quotient
topology on F/M is determined by the family {p;:J < N"} as follows.
For each Je N* we define |p,|" on F/M by |»,"(y]) = inf {|v,| (v +
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m): me M} = inf {{p,(y + m)|: me M} = inf {|p;(y) + p;(m)|: m e M}.
Thus, unless p, = 0 on M the seminorm |p,;|" is identically zero on
F/M. Hence, the topology quot (,F') is determined by the subfamily
{p;:J e (N")y} consisting of those linear functionals which can be
defined on F/M, (N*), being the set of those Je& N"”such that p, =0
on M and P, being the induced map on F/M to C.

DEFINITION. A locally convex TVS (F, 77) is called an LC-K”*
space provided that F = ,F' and each of the maps p, | F is .7 -continu-
ous. An LC-K" space F will be called an LC(Eq)-K" space if there
exists a family {C;:Je N*} & R* such that the family {C;*p,: J e N"}
is equicontinuous (relative to the topology .7~ on F'). If F is an
LC-K" space we shall refer to the two topologies on F' as the “F-
topology” and the “,F-topology”.

DEFINITION. Let Fand F'be LCTVS’s. We shall say that “[E, F']
is a CG-pair” provided that every linear map from E to F which has
a closed graph is continuous.

REMARK. If F is an inductive limit of F-spaces and F is a
countable inductive limit of F-spaces, then [E, F'] is a CG-pair (see
[5, Theorem 6.7.1]).

DEFINITION. Let F be an LC-K* space. If T: F— F js a linear
map, then for each yec¢ ¥ we have Tye FF < ,F; hence, px(Ty) =
>y Axsps;(y) for some family (ax;) of complex numbers. If ax, # 0
only whenJ <K (4§, <k, -+, 7. < k,), we shall call T a lower triangu-
lar operator on F.

LeEmMA 1.1. Let E be an LCTVS and F an LC-K" space such that
[E, F] s a CG-patr. If u: E— (F, ,F-topology) is continuous, then
u: B — (F, F-topology) is continuous.

Proof. Since the ,F-topology is separated it is easily proved that
the graph of u is closed.

LeMmA 1.2. If F is an LC-K" space such that [F, F'] is a CG-
pair, then every lower triangular operator on F' is continuous.

Proof. 1t suffices to show that if T is a lower triangular operator
on F, then pioT is continuous for each Ke N" (Lemma 1.1). Now
0o T(Y) = Dyex @xy0;(y). This is clearly continuous, since each p; is
continuous and the sum is finite.

LemMMA 1.3. (Johnson [9, Theorem 7.3].) Suppose [E, F] is a
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CG-pair of LCTVS’s {G}ie; 1s a family of LCTVS’s, u: E—F is a
linear map and for each i w;: F— G; is a continuous linear map.
If for each i€l the map w;ou 1is continuous, then wou: K — F/N 1is
continuous, where N = N {Ker w;:i¢€ I} and 7 F— F/N is the natural
projection.

Proof. See [9].
A useful special case of this lemma is

COROLLARY 1.4. Suppose [E, F] is a CG-pair of LCTVS’s. If
u: B— F is a linear map, w: F'— F is a continuous, linear injection,
and of wou is continuous, then u is continuous.

For easy reference we state Theorem 6.5.1 of [5]:

LeMMA 1.5. Let E, {F.};-, be F-spaces and let F be a separated
LCTVS. Suppose u: E— F,v,: F,— F(neN) are continuous linear
maps. If w(l)<S Usg, v.(F,), then there exists me N such that
w(l) = v,(F,) and if W, is a neighborhood of 0 in F,, then v (v, (W,))
is a neighborhood of 0 in E. In particular, if each v, is injective,
then vyou: K — F,, is continuous.

Our first main result is an extension of Johnson’s Theorem 9.1
(see [9]) from the » = 1 case to arbitrary finite n.

THEOREM 1.6. Let E be an F-space and F an LC(Eq)-K" space
such that [E, F] and [F, F] are CG-pairs. Suppose (1) S: E— E is a
continuous linear map and (2) T: F— F is a lower triangular linear
map with empty point spectrum. If u: E— F is a linear map such
that uS = Tu, then u is continuous.

Proof. We begin by observing that if P is any monic polynomial
with complex coefficients, then P(T) is injective. We can write
P(TYy=Tr.(T—a;I). If P(T)yy=0, then(T—a, I){T175'(T— a;I)y) = 0.
Since the point spectrum of 7 is empty we must have

(T — a;I)y = 0. The argument can be completed by induction
on the degree of P.

We let (ax,) denote the “lower triangular” matrix corresponding

to T and we define Qy: E— E and R;: F— F(Ke N")

Qx = I (S — a,I)

J=K

By

(T = a,,I) .

JEK
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If J < K weset Quy = Ili<x,125 (S — a;;I) so that we have Qx = Q;°Qx ;.
One defines Ry, similarly. We note that (1) 4Qx = Rzu for each
Ke N" and (2) each Ry is injective (since it is a monic polynomial
in T). Fix KeN*,yeF. Then px(Ty) = 3S,<x@x;0,(y). Hence,
Px((T — axxD)y) = Xi7<x axsDs(¥)-

We next show that if J < K, then p,oR; = 0. We shall induct
on |K|[(=k +---+k,). If |[K|=0 and J< K, then J =K = (0,
«ve,0) =0, and p(Ry) = p(T — a,l)y) = 0 since T is lower triangu-
lar. Suppose we have established the claim whenever | K| < q. Fix
KeN" such that |K|=4¢q and yeF. If J< K, then p,(Ryy) =
D/(R;Rx;y) = 0 since |J| < q. If J=K, then

Px(Bxy) = px((T — axxl)Ryy) ,

where Ry = II,<x (T — a,,I). Thus, px(Rxy) = Ss<x OxsD(BxY).
Now for each J < K we have p,(R%y) = p;,(R;oR%,y) where Ry, =
Ii<x,r65 (T — a;;I). Hence, p,(Ryy) = 0 (again J < K so |J| < g).

Since each Ry is a continuous linear injection it is sufficient to
find one Rj; such that R u (equivalently, #Qx) is continuous, (Corol-
lary 1.4 above). In fact, either all the operators Rxu are continuous
or none are. Suppose Rxu is continuous. If J < K, then Ry = R;oRy
and Ryu = Ry, oR,u. Since Ry is injective we conclude that R,u
is continuous. If J = K, then R,u = R,x-Riu, a composition of two
continuous maps; hence R,u is continuous. Let Je N" and let L =
J+ K. Then K< L so R,u is continuous. But J < L, so R;u is
continuous.

We assume that no operator R,u is continuous; i.e., no operator
%@, is continuous. Hence, for each Je N™ there exists K< N* such
that prou@; is not continuous (Lemma 1.1 above). Set J, = (0, -+, 0),
and fix J, = J,. Choose K, such that pgou@, is not continuous. Fix
J; = J, K, and choose K, such that pgou@; is not continuous.
Continue the process inductively. Fix an inereasing sequence {||* ||}z,
of seminorms for E:||z|; < ||z|lin(xec E, 1€ N). We choose induc-

tively a sequence {x,}2, in K such that for each [e N

(1) Il QJZ\_Jixl I < 2_l(’5 =0, 1: "t I - 1) .
(2) | D Q)| > 1 Cr, + 33 D Qi) |

where {C;} is the family of positive real numbers chosen so that {C;'p,}
is equicontinuous on F. We can make such a choice since each Q,,;,
is continuous (¢ = 0,1, -+, — 1) and pg,cuQ,, is not (hence, takes on
arbitrary large absolute values on elements arbitrarily close to 0 in
E). Let » = >, Q,7. The series converges absolutely in E (con-
dition (1) guarantees this). Fix le N. Then
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Py (ux) = pxl[é uQ, s + u(% Q,ixiﬂ
= pK;(% uQJixi) + pxz[uQJlH(gz QJ,;\JZ_Hxi)] .

This last step is possible because @,,., is continuous and the series
Slis1 Qupgy,®s converges in E: || Q. %l <27 > 1). Now

pKl(uQJl_Hx,) = pKl(RJl+1uxl)

for o' € E. Since K, < J,,, this number is zero. Thus,

Pr(uw) = 2 Px,(uQ;2,), SO
| D) | Z | Prc(uQs@) | — g | Dx (0@, ) |

and we have | pg,(ux)| > 1-Cg,.

There exists a neighborhood V of 0 in F such that if ye V and
Je N", then | p,(y) | < C;. Since u(x) € F' there exists N > 0 such that
Mu(w)e V. Hence, for each le N we must have | p,(Mu(@)) | < C,.
Combining this with our previous inequality we obtain I\ < 1 for each
le N, a contradiction. Thus, uQ, is continuous for some J e N" and
% 1s continuous.

THEOREM 1.7. Let E be an F-space and F an LC(E,) — K" space
such that [F, F'] is a CG-pair. Let M be a subspace of F such that
(1) M s both F- and ,F-closed and (2) [E, F/M] is a CG-pair. Suppose
8) S: E— E is a continuous linear map and (4) T: F— F is a lower
triangular operator omn F such that T(M)<S M and such that the
induced map T: F|M— F|M has empty point spectrum. If u: E—F|/M
is a linear map such that wS = Tu, themn w is continuous.

Proof. Let (ax;) be the lower triangular matrix corresponding to

T. We define Qg, Ry as in the proof of Theorem 1.6 and define R on
F/M to be the map naturally induced by Ry, since RK(M) S M. Itis
clear that uQK = Rqu for Ke N” and that each B is a monic poly—
nomial in 7; hence, each By is injective. It is easily verified that 7'
and the operators R, are continuous on F/M, equipped with the
quot (F')-topology. Recall that the quot (,F)-topology on F/M is
determined by the linear maps {,: J € (N"),]}, where (N*),, = {(J: p, =0
on M}. Since[(E, F/M)] is a CG-pair we are in the same situation
as in Theorem 1.6: we need only show that for one J € N* the operator
R,u (equivalently, uQ,) is continuous. Assume that none is. Let
= (0, ++-,0). Fix J,e N*. Choose K, € (N"), so that D ouQ,, is not
continuous. Continue as in Theorem 1.6. The sequence {x;}i=, is
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chosen as in that theorem (with Py, in place of pg). The proof is
completed as before, with two small problems to be resolved. We
must show that (a) D [uQ,, (Zisi Qs @)l =0 and (b) the family
{C7*Ds: J € (N™)y} is equicontinuous on F/M.

Re (a). Let 2’ denote the sum in parentheses. We have
ﬁxl(zﬁQJl L) = ﬁKl([}?Jl . (wa")]). Now u(x’) = [¢'] for some y' € F, and
DB, W) = D ((Ray D = Pi(By,.0') = O (proved in Theorem 1.6),
since K, < J,4,.

Re (b). There exists a continuous seminorm ¢ on F' such that if
q(y) <1 and J e N*, then |p,(y)| < C;. Let § be the corresponding
seminorm on F/M. Fix [y]e F/M such that ¢([y]) <1 and J e (IN"),.
Then there exists m € M such that g(y + m)<1. Hence, |p,(y + m)|<C;,
or |p,(y) + p;(m)| <C,. However, meM and Je(N"),. Thus
p,(y) < C; and | D,([y]) | < C,.

We now show that there is a large class of spaces F' for which
our hypotheses regarding CG-pairs are satisfied.

LEMMA 1.8. Let E be an F-space and let G be a wvector space
with two locally conwvex topologies 7, and 7, where 7, < . 7, If
[E, (G, .73)] is a CG-pair, then so is [E, (G, 77)].

Proof. Let u: E— G be a linear map such that Gr(w) is closed
in £ x (G, 77). If {(z,, w(x,)} is a sequence in Gr(v) which converges
in E x (G, .73) to (z,2), then z,—2 in E and w(x,) —2(7,). But
T1=< T 80 u(x,) —2(77) and our hypotheses imply that z = u(z).
Hence, Gr(u) is closed in E X (G, .7,) and w is .7,-continuous. Since
7. < 7, we have also that « is .7;-continuous.

DEFINITION. An LC space (F, .7) is an injective inductive limit
of F-spaces provided there exists an increasing sequence {F}:., of
subspaces of F' such that (1) /" = U, F,., (2) each F, is an F-space
with respect to some topology .77,, and (8) .7 is the (LC) inductive
topology determined by the continuous injections <,: (¥,, .7,) G F.

An example of such a space is ,2,, the space of germs of
holomorphie functions at 0in C*. Let {®,};, be a base for the topology
at 0 in C~, then 2, = Ui, ©(®,) and is the injective inductive limit
of the sequence {<(®,)}.

PRrOPOSITION 1.9. Let F be an LC space which ts an injective
inductive limit of F-spaces. If M 1is a closed subspace of F', then
[E, (F/M, quot (F'))] ts a CG-pair for every F-space E.

Proof. Let {(F,, 7,) be the ascending sequence of F-spaces
which determines the F-topology. For each n we let M, be M N F,,
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a 7 ,-closed subspace of F,. Hence, F,/M, is an F-space, and there
exists a continuous map »,: F,/M,— (F/M, quot (F')). Moreover,
U, r.(F./M,) = F/M, and the sequence {F,/M,} defines an inductive
topology .7, an F/M. We let .7 be quot (F). Then 7, < .7, since
each 7, is continuous. Now (F/M,.7,) is an inductive limit of
F-spaces, so [E, (F/M, 7,)] is a CG-pair for every F-space. Apply
Lemma 1.9.

REMARK. If in Theorem 1.7 the LC(Eq) — K" space is an injec-
tive inductive limit of F-spaces, then (1) [F, F'] is a CG-pair and (2)
if M is any subspace of F’ which is both F-and ,F-closed, then F/M
satisfies the required hypotheses.

2. Analytic structure theorems for F-algebras. The results in
this are concerned with continuous maps and polydiscs and varieties
into the spectrum of an F-algebra in such a way that Gelfand trans-
forms “are” holomorphic functions. We begin by fixing our notation,
defining the relevant concepts and stating (mostly without proof) some
results on varieties and holomorphiec functions thereon.

DEFINITION. An F-algebra is a separated topological algebra whose
topology is determined by a countable family of submultiplicative
seminorms and which is complete. A wuniform F-algebra is a com-
mutative F-algebra A such that the Gelfand transform is a topological
isomorphism onto a subalgebra of C(M(A)), where the latter is equipped
with the topology of compact convergence. (M(A) is the spectrum of
A, the space of nonzero C-valued homomorphisms of A equipped with
the relative weak * topology.)

DEFINITION. Let Q be an open subset of C. A subset V of 2 is
called a subvariety of 2 if for each ze Q there is a neighborhood U
of z and a family & < «7(U) (the algebra of holomorphic functions on
U) such that

VAU={LeU:f(Q) =0 (feF)}.
It follows from [6, p. 87] that the family . may be taken to be

finite.

DEFINITION. ,7" ={V < C™: V is a subvariety of a neighborhood
of 0 and 0e V}.

DEFINITION. If Vis a subvariety of 2 we say that V is globally
determined in 2 if there exists & < #7(2) such that V={z e Q: f(z) =0
(feF )}

We note that if V is a subvariety of 2 (and is globally determined



322 R. M. BROOKS

in 2), and if w is an open subset of 2, then VN w is a subvariety
of w (and is globally determined in ®).

DEFINITION. Let V be a subvariety of 2, and let f: V— C be
a continuous function. We say that f if holomorphic on V provided
that for each ze V there exists a neighborhood U of z in C” and
Feo(U) such that F|UNV = f|UNYV. We denote by &(V) the
algebra of all holomorphic functions on V.

PROPOSITION 2.1. Let V be a globally determined subvariety of
an open set 2 im C". We give (V) the topology of uniform con-
vergence on compact subsets of V. Then (V) is a uniform F-algebra
with identity. If Q 14s holomorphically convex, then (V)=
Q)] A(V), where #(V)={fe(Q):f =0 on V}. Moreover, the
1somorphism s also topological when <7(2)[ .7 (V) is given the quotient
topology. Flinally, in this case the spectrum of (V) is V.

Proof. Since 2 is locally compact and o-compact and V is closed
in 2, all we need to do to prove that #7(V) is an F-algebra is show
that #(V) is complete in this topology. This is Theorem III, 7 of
[12, p. 61].

Now assume that Q is holomorphically convex. Since ~7(2) is an
F-algebra and .”(V) is a closed ideal, we have that ~2(2)/_Z (V) with
the quotient topology is an F-algebra and its spectrum is V (see [2,
p. 453]). We have maps &(Q)— &(V) (restriction) and ~(Q)—
7(2)/.#(V), each of which has kernel # (V). The latter map is
clearly surjective and that the former is surjective is an immediate
consequence of Cartan’s Theorem B (see [6, p. 245]). Thus, the Gelfand
transform maps #(2)/.# (V) onto (V) (if we identify M(<7(2)/.#(V)))
and V, and is injective. Now each of ~7(2)/.7 (V) and £(V) is an
F-space. Thus, the Gelfand transform is a topological isomorphism.

DEFINITION. Let Ve ,7 and define a relation ~ on J{(VNw): ®
is a neighborhood of 0} by f~ g if, and only if, there exists a
neighborhood @ of 0 such that V N & Dom (f) N Dom(g) and
flVNnow=g9g|VNno. Let .2, be the algebra of equivalence classes
of U 2Z(VN w) modulo this relation with the obvious operation; i.e.,
y 2 = lim_ ., 2(V N w).

ProPOSITION 2.2. Let Ve, . There exists a sequence {®,}r, of
open neighborhoods of 0 such that

(1) D=2 W, =2 e

(2) {w.). is a base at 0.

(8) VnNno, is globally determined in o, (k = 1).
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(4) iffecac(VNnwy)and flVN o, =0 for somel >k, then f =0
on VN o,

(5) for each ke N the natural map (i,;: (VN @) — 7 18 in-
Jective.

Proof. Fix a basis {U,};., at 0. Choose a neighborhood 2 of 0
such that VN Q is globally determined in 2. Then U, NQ is a
neighborhood of 0 and Lemma 1.8 of [4, p. 14] yields the existence
of a neighborhood w, of 0 such that w, & U, N 2 and such that if
fea(VNw,) and if f =0 in some neighborhood of 0, then f = 0 in
VNw. Now U,N®, is a neighborhood of 0. Continue inductively
to apply Clayton’s Lemma 1.8. The resulting sequence {®,};-, has the
desired properties.

DEFINITION. If Ve,7 and {w.,};, satisfies the conclusions of
Proposition 2.2 we shall call {w,}z, a V-basis at 0.
We need an alternate description of , 7.

DEFINITION. ,27, is the algebra of germs (at 0) of functions
holomorphic near 0 in C*. If Ve, %; we define idV = {a € ,2: there
exists a representative f of a with domain ® such that "nw<

{z e w: f(z) = 0}}.

PROPOSITION 2.3. If Ve,%; then id V is an ideal in &, which
18 closed with respect to both the inductive and ,F-topologies on ,2,.
Moreover, ,cn/idV is algebraically isomorphic to <%, and if we
identify them, then for each open @ containing 0 the natural map of
2(V N o) into (&, quot (,&7)) is continuous.

Proof. It is clear that id V is an ideal in ,~2%. That idV is
JJF-closed is a consequence of the version of the “closure of modules
theorem” found in Hormander’s book [7, p.152]. Since the ,F-topology
is dominated by the ,Z%-topology (inductive topology) id V' must also
be closed in this finer topology. We now show that ,~5/id V and ,27,
are algebraically the same. Define +:,2— 2% by ¥((f, w)) =
(f1 VNno, VN o), where we denote by (f, w), the germ of fe o7 (w),
ete. Itisclear that + is a well-defined homomorphism. If ((f, ®),) =0,
then (f|VNw, VNw),=0 in ,~, and there exists a neighborhood
@' S w of 0 such that f| VN =0. But then (f|®’, @) is a repre-
sentative of (f, ), and VNw' S{z € »": f(z) =0}. Hence, (f, w),cid V=
Ker 7w, where 7 is the natural map of ,Z, onto ,2%/id V. Clearly,
Kerm = idV < Ker 4. That 4 is surjective is a direct consequence of
the definition of ,¢7,. Thus 7 and + are each surjective and they
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have the same kernel. - Hence, ,#%/id V and ,7, are isomorphic.

Fix a neighborhood w of 0. If ® is holomorphically convex then
VN o is globally determined in w, and &2(V N w) = Z(w)/ 7 (VN w)
(and the given topology (compact convergence) is the quotient topology).
We have the following diagram.

o(w)—— .2,

Tt

ﬁ(vna))T‘)rﬁo-

We know that @, v, and 7 are continuous, when 2% is given the
quotient topology (carried from ,<%/id V by the isomorphism produced
above). Hence, the induced map ¥ is continuous. But ¥ is just the
natural map of ~(V N o) into ,&7.

If w is an arbitrary neighborhood of 0 we choose @' & w, a
holomorphically convex neighborhood such that VN ' is globally
determined in w’. Then we have

ﬁ’(Vﬂw)——»ﬁ’(Vﬂw')-——’v@n

where the first map is just a (continuous) restriction map and the
second is continuous (by our argument above). The composition is
the natural map of ~2(V N w) into ,&.

DEFINITION. Fix Ve, 7. We say that V 4s drreducible at 0
provided that whenever @ is a neighborhood of 0 and V, V, are
elements of ,2" such that VNno = (V, Nw)U(V.N o), then there
exists a neighborhood @’ of 0 such that either VNw' = V,N o or
Vne =V,Nw'.

PROPOSITION 2.4. If Ve, %, then there exists a meighborhood w
of 0 and V, «++, V,,€,.7 such that

(1) each V; is irreducible at 0.

(2) Vno=UL(V;nw).

Proof. See [6, pp. 89-90]. We shall call {V}, .-+, V,} an irre-
ducible family for V.

REMARK. In [6] a stronger result is proved using germs of
varieties. We shall not need the strengthened conclusion.

PropPOSITION 2.5. If V, V, <+, V,€.,7" and if
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Vinw= Q(V,- N w)
hoet
for some neighborhood @ of 0, then idV = N2, dV; in .
Proof. This is an easy “representative chase.”

PropoSITION 2.6. Ve ,7 is irreducible at 0 if, and only if, idV
s a prime ideal in 0.

Proof. See [6, p. 89].

ProroSITION 2.7. Let Ve,7 and let {V,, +++, V.} be an irre-
ducible family for V. Then there exists a family {05 v — %) of
quot (,&%)-continuous homomorphisms such that

(1) Nr.Kerp; =1{0}, and

(2) the following diagrams commute (j =1, -+, m):

v
0

3
v —')Vja

05

where = and w; are the natural maps determined by the ideals idV
and id V;, respectively.

Proof. Since for each je({l, +-+, m} there is a unique homomor-
phism o; which makes the appropriate diagram commutative and since
each of these induced maps is continuous, we need only verify (1).
Suppose wa € -, Ker p; for some a € ,%. Then for each j, p,7(a) = 0.
But p;n(a) = mi(e). Hence, ac N\, Ker7; = N, id V; =id V = Ker .
Thus, we see that za = 0.

LEMMA 2.8. We define 9:,0,— C to be the evaluation map
7 (f, @)y — f(0) for (f, ®)€ . The map e:, 7 — C induced by 7
and @ 7 — hidV =, is a continuous homomorphism of ,, for
every Ve, 7. (,&, has the quot (,&%)-topology.) (We shall call e the
evaluation map for ,7%.)

Proof. The map 7 is a continuous homomorphism of 77 (with
respect to the ,27-topology) whose kernel is the maximal ideal of ,Z.
Thus, Ker 7 < Ker 7 and the map ¢ is well-defined continuous homo-
morphism of ,~/idV to C.

LEMMA 2.9. Let Ve, 7”7 and let {V,, -+, V,} S .7 be an irre-
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ducible family for V. For each je{l, «-+, m} we have e;o0; =e. In
particular, if 7€y, and if /(7)€ C-(1)y,, then 0(7) = e(v)-(1);,.

Proof. We have the following commutative diagram

T

o

7| o —2 (.
/;f e

v

The second part of the conclusion follows from the first part.

ProroSITION 2.10. Let Ve, 7 and let {V, «++, V,} be an irre-
ducible family for V. If ve,\C-(1),, then there exists je{l, «--, m}
such that 0(7) €y, \C-(1)y;.

Proof. If ve,, and if for each je{l, ---, m}poi(v)eC-(1),,
then 0,(7) = e(7)+(1)y,. Consider the element v — e(7)-(1), of ,%. It
is clear that it belongs to M-, Ker o; (= {0}). Hence, v = e(v)(1),-

We now have all the requisite information about the algebras , 7,
to allow us to proceed with our applications.

We note that we require a homomorphism from one algebra with
identity to another to map the identity of the first onto the identity
of the second.

We first extend Loy’s results on F-algebras which admit maps
into ,&% (see [10]).

If ge,Z\CQ), then the map T:,2,— ,2, defined by T(«) = pa
has empty point spectrum since ,% is an integral domain. Also,
% 18 an injective inductive limit of F-spaces and is an LC(¥E,) — K"
space (see [10]); hence, satisfies the hypotheses required of the “F'”’
of Theorem 1.6.

THEOREM 2.11. Let A be a commutative F-algebra with identity.
If there exists a homomorphism ®: A — ., such that rank @ > 1,
then there exists a meighborhood @ of 0 in C™ and a continuous map
7: @ — M(A) such that if ac A, then @ot € (@) and (@-7), = P(a).

Proof. Choose z € A such that ¢(x) ¢ C-(1),. Define S: A — A and
T: .&— .7 by S(a) = za(a € A) and T(a) = p(x)a(a € ,&,). It is clear
that (1) S is a continuous linear map, (2) T is a lower triangular
operator with empty point spectrum, and (8) S = T®. In the light
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of our comments preceding the statement of this theorem we can
apply Theorem 1.6 and conclude that @ is continuous. Let {w,}7, be
a base at 0 in C" consisting of holomorphically convex open sets and
let %,: &Z(w,) — .7 be the natural injection for each ke N. We apply
Lemma 1.5. There exists [ € N such that ¢(4) S i(~(w,)) and ¥ top
is a continuous homomorphism of A into ~(w,;). Call this map +, let
w =, and let 7:® — M(A) be the dual map of + restricted to
o = M(7(w)) S «(w)*. We have used here the fact that M(~(0)) = w,
a direct corollary of Theorem 7.2.10 of Hormander’s book ([7, p. 171])
which implies that w3 {— (evaluation at {) € M(£”(w)) is surjective.
That this map is topological follows from the fact that the weak
topology on @ determined by <7 (w) is exactly the C" topology on w.
If {ew, then 7({)e M(A) is defined by 7({): a —+(a){). Hence,
(@o7)(&) = 7(€)(@) = ¥(a)(§) and @7 = y(a)e F(w). Also, (a°7) =
(¥ (@) = u(¥(a)) = P(a).

Let We,” be irreducible at 0. Suppose B €, has the property
that 78 ¢, 2\C(1)y,. Then the map T: .2, — ., defined by T(a) =
Bala e ,,) leaves id W invariant; hence, induces T: v — w and
since ¢d W is a prime ideal, the algebra , % is an integral domain
and 7 has empty point spectrum (T is multiplication by wR). Also,
w satisfies the conclusions of Proposition 1.9. Thus, there is no
obstruction to our applying Theorem 1.7 to a situation like the one
we have described here.

THEOREM 2.12. Let A be a commutative F-algebra with identity.
Suppose Ve ,7" and there exists a homomorphism @: A — ,7, such that
rank ® > 1. Then there exists a neighborhood @ of 0 in C" and a
continuous map v: VN w— M(A) such that if a € A, then @ot e Z(VNw®)
and (Go7), = P(a).

Proof. Fix an irreducible family {V,, ---, V,.} & .7 for V. Let
E={je{1, «-+, m}: 0,# has rank > 1}. We note that Proposition 2.10
and our hypothesis regarding the rank of @ imply that E is nonempty.
Fix je E. We shall show that o, is continuous. Choose € A such
that 0,9(x) ¢ C-(1),,, and choose B¢, such that 7;8 = p;p(x). We
define S:4—A and T:,2,— .2 by S(a) = za(ac A) and T(a) =
Ba(a e o). Clearly (1) S is a continuous linear map, (2) T is a lower
triangular operator on ,% and (3) ;¢S = fl,-pﬁ (0;28(a) = p{(P(xa)) =
pi(P@)P(a)) = p;P(x)0;P(a) = 7;80;P(a) = TH{p;P(a))). Since . is an
integral domain and ;8¢ C-(1),, we conclude that 7); (which is just
multiplication by 7;8) has empty point spectrum. Theorem 1.7 implies
that o, is continuous. We select one ke E.

Let je{l, -+, m}\E. We shall show that ;7 is continuous.
Since j¢ E we have 0,P(A) & C(1)y; hence, for each ae A we must
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have 0;(?(a)) = e(P(a))+(1),, by Lemma 2.9. But e¢(®P(a)) = e.(0,P(a))
(also by Lemma 2.9). Hence, p;oP(a) = ¢,00,%(a)+(1)y,. But ¢, and 0,?
are continuous maps (e, is continuous by Lemma 2.8 and 0, is conti-
nuous by the first part of this proof). Thus, p;# is continuous. Since

™, Ker po; = {0} (by Proposition 2.7) we can apply Lemma 1.3 to
conclude that @ is continuous.

We now fix a V-basis {w,};-, at 0 (see the Definition following
Proposition 2.2), and for each i, we let ¢,: Z2(V N w,) — &% be the
natural (continuous, by Proposition 2.3) injection of ~(V N w,) into
+ (with the quot (,&%)-topology). Since A and the spaces Z(V N w,)
are all F-spaces and the maps @, i,(k € V) are all continuous and since
(»2%, quot (,c7)) is separated we can apply Lemma 1.5. Thus, there
exists [ € IV such that #(4) S 1(Z(V Nw)) and 4;7@: A— (VN w)
is eontinuous. Choose a holomorphically convex open neighborhood @
of 0 such that w S w,, noting that V' N w is globally determined in
w, and let 7: (VN w,) — 2 (VN o) be the (continuous) restriction map.
We set 4 = joij'o@: A — 2(V N w) and note that 4 is a continuous
homomorphism of F-algebras with identity. We let 7 be the restric-
tion of the dual map of 4 to VNnw= Mc(VNw). The other
conclusions of the theorem are obtained exactly as in the proof of
Theorem 2.11.

3. Analytic structure theorems for natural systems. In this
section we apply Theorems 2.11 and 2.12 in order to extend these
results to natural systems.

DEFINITION. A wnaiural system is a pair [X, A] such that

(1) X is a Hausdorff space,

(2) A is an algebra of continuous functions on X containing the
constant functions.

{38) The weak topology on X generated by A is the given topology
on X, and

(4) if P A— C is a k-continuous homomorphism, then there
exists xe X such that @(f) = f(x) for each fe A, where “k” denotes
the topology of compact convergence on A (inherited from C(X)).

Note. We shall call X the spectrum of the natural system [X, A].

DEFINITION. A natural system [X, A] satisfies (*) provided that
(1) X is locally compact, and (2) every open subset of X is o-compact.

DEFINITION. Let [X, A] be a natural system, and let K be a
compact subset of X. The A-convex hull of K is the set hull, (K) =
(e X:|fx)| £ || fllx for every fe A}, where || - ||x is the supremum-
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on-K seminorm on A. A subset E of X is called A-conwvex provided
that hull, (K) £ E whenever K is a compact subset of E.

ProrosiTION 3.1. Let [X, A} be a natural system. An open subset
U of X is A-convex if, and only if, [U, A| U] (equivalently, [U, A | U*])
1s a matural system.

Proof. This is just Proposition 1.3 of [13].

PROPOSITION 3.2. Let [X, A] be a natural system. If pe X, then
there exists a base for the topology at p which consists of A-convex
open sets.

Proof. Fix pe X and let U be a neighborhood of ». Since the
topology of X is the A-topology there exist f,, ---, f.€ A such that
each fi(p) =0 and V(f,, ---, f) ={ee X:|filw)| <L j=1, -, m}S U.
It is easily verified that V(f, ---, f.) is A-convex.

Let [X, A] be a natural system with X a locally compact space.
For each open subset U of X we set A, = A | U* the k-completion
of A|U. Since X is locally compact, so is U. Hence, A| U* is just
the closure of A| U in C(U). If U and V are open and UZ V, we
define *¥: A, — A, by r%(f) = f| U for feA,. It is easily verified
that each 7% is a continuous homomorphism of algebras. Moreover,
{(Ay; U open), (r¥; U, Vopen, UZS V)} is a presheaf on X. We denote
by .o~ the sheaf generated by this presheaf and by .o/ the stalk of
7 at p. We make some observations about .o7,. First, & =
lim_{(A,; pe U(open)), (r;; U, Vopen, pc US V)}, and .57, is a local
algebra whose maximal ideal consists of all «e.o7 such that there
exists an open set U containing p and fe A, for which f(p) =0 and
ro(f) = «. We note also that .o~ is a subsheaf of & (the sheaf of
germs of continuous functions on X) and obtain another way of regarding
o7, the germ of fe C(U) at p belongs to .97 if, and only if, there
exists a neighborhood V of p such that VS U and f|Ved,. We
shall use the “germ” notation, writing “(f),” for “r,(f)” whenever
fe A, (ry being the natural map of 4, into .&7), and “f | V' instead
of “ri(f)” (fedAy, V< U). We refer the reader to Chapter IV of
[6] for material on sheaves and presheaves.

THEOREM 3.3. Let [X, 4] be a natural system which satisfies (x).
Suppose p € X and there exists a homomorphism P: .S, — 7 having
rank >1. Then there exists an A-convex open set U im X containing
B, a polydisc 4 about 0 tn C*, and a continuous map t: 4— U such
that
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(1) =(0) = p,
(2) iof feAy then fote o(4), and
(3) if fedy then (for), = P((f),)

Proof. Fix a base %, = {U} for the topology at p consisting of
A-convex open sets. If ¢(.97) has dimension >1, then there exists
Ue %, such that @or,(4,) has dimension >1. Since U is o-compact,
Ay is an F-algebra. We apply Theorem 2.11 and obtain a polydise 4
about 0 in C* and a continuous map 7: 4 — M(A,) = U (by Proposition
3.1), such that fore 7(4) and (fo7), = Pry(f) = P((f),). We know
that 7(0) = qge U. If ¢ # p, then we can choose fe A, such that
flg) =0, f(p) = 0. Since f(p) # 0 we have that (f), has an inverse
in .%7,. Hence, ®((f),) is invertible in ,&%. But ®((f),) = (f°7), and
fot(0) = 0 since 7(0) = ¢ and f(¢) = 0. Thus, we must have ¢ = p.

THEOREM 3.4. Let [X, A] be a natural system which satisfies (x).
Suppose p e X and there exist Ve ,7” and a homomorphism P: 7~ 7,
having rank >1. Then there exists an A-convex open neighborhood U
of » in X, a holomorphically convex open meighborhood w of 0 in C*
and a continuous map : VN o — U such that

(1) z(0) = p,

(2) if feAy, then fore (VN w), and

(3) if feAy then (for), = P((f),)

Proof. The proof is essentially the same as that of the preceding
theorem: Theorem 2.12 rather than 2.11 is invoked at the appropriate
place.

LEMMA 3.5. Let [X, A] be a natural system with X locally compact
and let U be an A-convex open subset of X. If hy, -+, h,cA; and
if we set h = (hy, -+, h,): U— C*, then h7'(4) is an A-convex open set
for each polydisc 4 in C".

Proof. Fix a compact subset K of 27'(4). If x¢hull,, (K), then
for each polynomial p we have | pi(z)| < || 2|l = || » |lsx) and conclude
that (z) € hully,, (W(K)) & 4. Thus, x e h™'(4). Now, if & € hull, (K),
then e U (U is A-convex) and if fe A,, then for each ¢ > 0 there
exists f.e€ A such that || f — f.llxus < e&. But then |[f(2)] = |fx) | <
[f@)| + e |f.llx + el fllxk + 2. Since ¢ > 0 is arbitrary, we
conclude that x chull, (K). Hence, e h™(4).

We now include a sketch of an extension of Proposition 8.25 of
[3a] to F-algebras.

LEMMA 3.6. Let A be a uniform F-algebra with identity and
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assume that the spectrum X of A 1is locally compact. Let p be a
Gs-point in X, U a neighborhood of p, Y a topological space, and
h: U— Y. If for each ac A there exists a complex-valued function
g defined in a meighborhood of h(p) such that a = goh in some neigh-
borhood of p, then h is injective in some meighborhood of p.

Proof. Using the local compactness of X we choose a nested base
{U;}7, at p such that U, € U. Fix an ascending sequence {K;}7., of
compact sets such that US K, K, =S K, ,(n=1), and U, K, = X
(we may assume that U is relatively compact by intersecting it with
K)).

If h is not injective in any neighborhood of p, then as in [3a]
we may choose sequences {x;}7, and {y;}7, in X such that for each j
we have z; = y;, and (%) for each ac A there exists j(a) such that
a(z;) = a(y;)(J = j(a)). Construct a sequence {a;}7-, in 4 such that for
each j we have [ a;|; =1, ai(®;) # ai(y;), and a;(@) = a;(y.)(k > 7).
(It may be necessary to use a subsequence of the z;’s to accomplish
this.) The estimates which finish the proof can be obtained by the
same procedures used in [3a]. We state the main steps. Let b, = a,
and define b;,, = 6™%a;,[b(x;) — b;(y;)] for 7 = 1. It is easily checked
that (1) b(x;) # bj(y;) for each 7, (2) | b;|l; < 377 for each j, and
) 1| bjsp llirr < 27'87%| bj(;) — bi(y;) | for each j and k. We conclude
from (2) that >); b; converges in A (say, to (b)), and from (3) that for
each j7 we have |b(z;) — b(y;)| = 27" | bi(x;) — bi(y;)| > 0, a violation
of ().

LeEMMA 3.7. Let [X, A] be a natural system which satisfies (x).
Suppose pe X and P: ., — 7, is a surjective homomorphism. Choose
an A-convex meighborhood U of » and h,, - - -, h, such P((h;),) = (2; | V),
(G=1, --+, n). There exists a polydisc 4 about 0 in C* and a continuous
map 7: VN4d— U such that (1) 7(0) = p, and (2) if fe Ay, then
fore 2(V N 4) and (fot), = P((f),). (Theorem 3.4.)

Suppose W is an A-convex meighborhood of p which is contained
wn U. Then there exists a metghborhood w of 0 in C* such that (1)
w4, Q) Pory(4Ay) S 1(A(V N W), and (3) 1, s injective. Let
Wy = dgloPory: Ay — (VN ), and let 7, VN o— W be the dual
of rw vestricted to VN (s M,ynw). Then (4) iof feA, then
Yu(f | W) =4o(f) | VN, and (5) 7y = 7| VN O.

Proof. Statements (1), (2), and (8) follow from Theorem 3.4 and
the fact that ®(r,(4,)) has dimension greater than one. We next
consider statement (4). Recall that we obtain 4 and v, Ay, —
(VN 4) by first choosing a neighborhood @’ of 0 such that or,(4,) =
1.(Z(VN®)) and 1, is injective, with ,: Ay — (VN @) (= i,/ 0 Pory).
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We have the following diagram (unlabelled arrows are restriction
maps).

Vo
o !
A, 5 (VN @) — (V0 A)
J AN /
NS
Ay —— 2(VNw)

Vw

Statement (4) follows.

If (eVNw, then 7,(0)ec W satisfies f(t,(0) = v, S (O(f € 4y).
In particular, for fe A, we have f(z,(0)) = (s ()I VN o)) =
wo(f(0) = f(=({). Since A, | W separates the points of W we conclude
that 7, =7 on VN w.

THEOREM 3.8. Let [X, A] be a natural system which satisfies (x).
Suppose pe X is a G-point and P: .7, — 7, 18 an 1somorphism (onto)
for some Ve, . Then there exists an A-convex open meighborhood
W, of », a polydisc 4, about 0 in C", and o homeomorphism T, of
VN 4, onto W, such that (1) t0) = p, (2) f— fo7, is a topological
isomorphism of A,,, onto (VN 4,), and (3) if fe Ay, then P((f),) =
(foTo)o

Proof. Fix an A-convex open neighborhood U of p and 4, ---,
h,e Ay such that 2((h;),) = (2;| V), (j =1, .-+, n). Choose a polydisc
Jabout 0in C*and z: VN 4— U a continuous map such that z(0) = »
and fore (VN 4) and (fo7), = P((f),) for each fe A,. Let v be
the map f—for of A, into &~2(V N 4). Then +(A4,) contains
{1V, --,2,1V}; hence ¢ is a relative homeomorphism. Let
h=(h,- -, h,) U—C" The map h is continuous and hr is the
identity on V N 4.

We now verify two facts: (1) peint[h™(V N 4)] and (2) & is
injective in some neighborhood of ».

(1) Let U, = h*(4). Then, by Lemma 8.5, U, is an A-convex
neighborhood of p. Let {U,;}7, be a nested base at p such that U, € U,
let £ =k™(V N 4) and define for S < U, the closed ideal I(S) in A4,,
by setting I(S) = {feA,: f|S=0}. If fe(F), then f|E=0. By
Lemma 3.7 we have 7,, =7 on VN ®, (w, an appropriate neighbor-
hood of 0 in C* corresponding to U;). If (e VN w, then 7,({)ecE,
since h(ty(0)) = (L)) = (e VN 4. Thus, for,, =0 and 2((f),) =
(foty)o = 0. But ® is injective; hence, (f), =0 and f| U; =0 for
some j. We have shown that I(F) = U, I(E U U;). Now I(F) isan
I-space and each I(E U U,) is a closed subspace of I(F). Since I(F) is
a Baire space and proper closed subspaces must have empty interior
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we conclude that I(¥) = I(E'U U,) for some k. If there exists x € U\E,
then A(x) e 4\V N 4 and there exists g € £°(4) such that g(h(x)) = 1 and
glVN4=0. Since gohc A, we have I(E) = I(E U U,). (Approximate
g on 4 by polynomials {p,.}, then p,(k,, ---, h,) € Ay, and p,(h,, « -+, h,)—
goh in Ay).

(2) We shall apply Lemma 3.6 with X = U, U, the neighborhood
of p, and h: U,— C* the function in question. Fix fe A,;. Then
fete (VN 4) and there exists g e &°(4) such that for=g¢g|V N 4.
Consider gohe Ay. We claim that ®((f),) = P((geh),). The latter is
(g9ohoty,), (Lemma 3.7) = (9| VN ®,),. The former is (f-7),. But
(fot)=(@|VNnd=(9]IVNo) Thus, (gok), = (f), and f = goh
near p. Apply Lemma 3.6.

We now choose an A-convex open neighborhood W of p such that
W < (VN 4) and kb is injective on W. Choose a polydisc 4, about
0 in C” such that VN4 < (W). We set Wo=r(VN4L)NW
(= k*(4) N W). Then W,is an A-convex open neighborhood of p and
Q) VNnd, =t (W), (2) (W) S VN 4y, (8) th is the identity on W,
and (4) hr is the identity on V' N 4,. Statements (2) and (4) are clear.
The first follows from

(W) =RV N 4)N W) =R (VN d)NT™ (W)
=Ry (VNL)NT (W)= (VNd)NTH (W)= V4.

The third is proved as follows. If xe W, then th(z)e W, & W and
Wth(x)) = hr(h(x)) = Mx). But h is injective on W, so th(x) = «.

Let 7, be the surjective homeomorphism c|4,N V:4,N V— W,
This map satisfies the conclusions of the theorem.

REMARKS. We close with some remarks on the preceding results.

(1) There is an obvious corollary to the special natural system
[M(A), A] where A is a uniform F-algebra with identity. This corol-
lary is in the spirit of Clayton’s localization of Gleason’s theorem,
although we do not use the same sheaf.

(2) It is clear that the condition (*) could be replaced by a
weaker condition concerning only the nature of the topology of X near
p. For example, one alternative would be (xp): there exists a base
for the topology at p consisting of A-convex, g-compact open sets (X
is assumed locally compact).

(3) We assumed in the four main theorems that the rank of the
homomorphism ¢ was >1. There are two reasons for this assumption.
First, it now appears that in Theorems 2.11 and 2.12 the assumption
is necessary in order to guarantee that ® is continuous: Benedetto
(see [1]) asserts the existence of commutative F-algebras which admit
discontinuous complex-valued homomorphisms. Second, even if @ is
continuous, the conclusion is guaranteed to be meaningless: 7(w) (or
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(VN w)) will be a single point in M(A) (or in U) and for will be a
constant function for any f defined on M(A) (or U). Thus, some
restriction on the nature of ® is essential in order to avoid the certainty
of a trivial conclusion.

(4) The sheaf used by Carpenter and Loy in the case [M(A), A]
was constructed so that each algebra A}, was an F-algebra (without
topological restrictions on M(A)). However, there are two reasons we
choose our approach rather than theirs. First, their algebras A} are
not in general algebras of continuous functions on C(U) (they are
completions of A| U relative to a topology with respect to which C(U)
is not in general complete). Second, the spectrum of A}, will be
unrelated to M(A) unless the open set U is of the type we choose to

consider.
(5) The example given in [3a] to show the necessity of the
assumption that » be a G;-point remains valid in our setting.

REFERENCES

1. John J. Benedetto, The Helson-S set problem and discontinuous homomorphism on
metric algebras, (preprint).

2. R. M. Brooks, The structure space of a commutative locally m-convex algebra,
Pacific J. Math., 25 (1968), 443-454.

3. R. L. Carpenter, Singly generated homogeneous F-algebras, Trans. Amer. Math. Soc.,
150 (1970), 457-469.

4. D. D. Clayton, A local characterization of analytic structure in a commutative
Banach algebra, Symposium on Several Complex Variables, Park City, Utah, 1970,
Springer-Verlag Lecture Notes 184 (1971).

5. R. E. Edwards, Functional Analysis, Theory and Applications, Holt, Rinehart, and
Winston, New York, 1965.

6. R. Gunning and H. Rossi, Analytic Functions of Several Complex Variables, Prentice-
Hall, Englewood Cliffs, N. J., 1965.

7. L. Hérmander, An Introduction to Complex Analysis in Several Variables, van
Nostrand, Princeton, 1966.

8. J. Horvath, Topological Vector Spaces and Distributions, Addison-Wesley, Reading,
Mass., 1966.

9. B. E. Johnson, Continuity of linear operators commuting with continuous linear
operators, Trans. Amer. Math. Soc., 128 (1967), 88-102.

10. R. J. Loy, Local analytic structure in commutative F-algebras, (preprint).

11. E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer.
Math. Soe., 11 (1952).

12. R. Narasimhan, Introduction to the Theory of Amalytic Spaces, Springer-Verlag
Lecture Notes 25 (1966).

13. C. E. Richart, Holomorphic convexity for general function algebras, Canad. J.
Math., 20 (1968), 272-290.

3a. D. D. Clayton, A local characterization of analytic structure in a Banach algebra,
Thesis, University of Utah, 1969.

Received August 30, 1972. Research for this paper was supported in part by NSF
Grant GP 18729A1.

UNIVERSITY OF UTAH





