ON FINDING THE DISTRIBUTION FUNCTION FOR AN ORTHOGONAL POLYNOMIAL SET

Wm. R. Allaway

Let $\left\{a_{n}\right\}_{n=0}^{\infty}$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ be real sequences with $b_{n}>0$ and $\left\{b_{n}\right\}_{n=0}^{\infty}$ bounded. Let $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ be a sequence of polynomials satisfying the recurrence formula

$$
\begin{cases}x P_{n}(x)=b_{n-1} P_{n-1}(x)+a_{n} P_{n}(x)+b_{n} P_{n+1}(x) & (n \geqq 0) \tag{1.1}\\ P_{-1}(x)=0 \quad P_{0}(x)=1 .\end{cases}
$$

Then there is a substantially unique distribution function $\psi(t)$ with respect to which the $P_{n}(x)$ are orthogonal. That is,

$$
\int_{-\infty}^{\infty} P_{n}(x) P_{m}(x) d \psi(x)=K_{n} \delta_{n, m} \quad(n, m \geqq 0)
$$

where $K_{n} \neq 0$ and $\delta_{n, m}$ is the kronecker delta. This paper gives a method of constructing $\psi(x)$ for the case $\lim _{n \rightarrow \infty} b_{2 n}=0$, $\lim _{n \rightarrow \infty} b_{2 n+1}=b<\infty$, the set of limit points of $\left\{a_{n}\right\}_{n=1}^{\infty}$ equals $\{-\alpha, \alpha\}$ and $\lim _{n \rightarrow \infty}\left\{a_{2 n}+a_{2 n+1}\right\}=0$. The same method can be used in the case $\lim _{n \rightarrow \infty} b_{n}=0$ and the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is bounded and finite in number.

This continues the investigation started by Dickinson, Pollak, and Wannier [3] in which they studied the distribution function under the assumption $a_{n}=0$ and $\Sigma b_{n}<\infty$. Goldberg [4] extended their results by considering the case $\alpha_{n}=0$ and $\lim _{n \rightarrow \infty} b_{n}=0$. Finally, Maki [5] showed how to construct the distribution function when $\lim _{n \rightarrow \infty} b_{n}=0$ and the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ are bounded and finite in number. In all these cases their approach was to study the continued fraction

$$
\begin{equation*}
K(z)=\frac{1}{\mid z-a_{0}}-\frac{b_{0}^{2} \mid}{\mid z-a_{1}}-\frac{b_{1}^{2} \mid}{\mid z-a_{2}} \cdots \tag{1.2}
\end{equation*}
$$

where $\left\{b_{n}\right\}_{n=0}^{\infty}$ and $\left\{a_{n}\right\}_{n=0}^{\infty}$ consist of the same numbers as given in (1.1).
Our approach is different from that of the above mentioned authors. If $S(\psi)$ denotes the spectrum of ψ, i.e., the set $\{\lambda \mid \psi(\lambda+\varepsilon)-\psi(\lambda-\varepsilon)>0$ for all $\varepsilon>0\}$, then, in our case, we will show from the properties of the sequences $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ how to find the derived set of $S(\psi)$ and that the $S(\psi)$ consists of a denumerable set of points.

To prove our results we make use of the following theorem due to M. Krein ([1], p. 230-231).

Theorem 1.1. The polynomial set defined by (1.1) is associated with a determined Hamburger moment problem with solution ψ, such that $S(\psi)$ is bounded and the set of limit points of $S(\psi)$ is contained
in $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{p}\right\}$ (α_{i} real) if and only if the numbers a_{i} and b_{i} $(i=0,1,2 \cdots)$ form a bounded set and $\lim _{i, k \rightarrow \infty} g_{i, k}=0$ where $g_{i, j}$ is the element in the ith row and j th column of the matrix

$$
\prod_{i=1}^{n}\left(A-\alpha_{i} I\right),
$$

where

$$
A=\left\|\begin{array}{cccc}
a_{0} & b_{0} & 0 & \cdots \\
b_{0} & a_{1} & b_{1} & \cdots \\
0 & b_{1} & a_{2} & \cdots \\
\cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdots & \cdots \\
\cdot & \cdot & \cdots
\end{array}\right\|
$$

2. Our main results.

Theorem 2.1. Let $\lim _{n \rightarrow \infty} b_{2 n}=0$ and $\lim _{n \rightarrow \infty} b_{2 n+1}=b<\infty$, where $b>0$. The set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is $\{-\alpha, \alpha\}$ and $\lim _{n \rightarrow \infty}\left\{a_{2 n-1}+\right.$ $\left.a_{2 n}\right\}=0$ if and only if the derived set of $S(\psi)$ equals

$$
\left\{-\left(\alpha^{2}+b^{2}\right)^{1 / 2},\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right\}
$$

Proof. By using the notation of Theorem 1.1, it is easy to show that the element in the i th row and j th column of the matrix $A^{2}-\left(\alpha^{2}+b^{2}\right) I$ is given by

$$
g_{n, n+j}= \begin{cases}0 & \text { if }|j|>2 \\ b_{n-1} b_{n} & \text { if } j=2 \\ b_{n-1}\left(a_{n-1}+a_{n}\right) & \text { if } j=1 \\ b_{n-2}^{2}+a_{n-1}^{2}+b_{n-1}^{2}-\alpha^{2}-b^{2} & \text { if } j=0 \\ b_{n-2}\left(a_{n-2}+a_{n-1}\right) & \text { if } j=-1 \\ b_{n-2} b_{n-3} & \text { if } j=-2\end{cases}
$$

Let $\left\{-\left\{\alpha^{2}+b^{2}\right)^{1 / 2},\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right\}$ constitute the derived set of $S(\psi)$. Because $\left\{b_{n}\right\}_{n=0}^{\infty}$ is bounded, then the Hamburger moment problem associated with (1.1) is determined (see [7], p. 59). Thus by Theorem $1.1 \lim _{i, j \rightarrow \infty} g_{i, j}=0$. Therefore, $\lim _{n \rightarrow \infty}\left(a_{2 n-1}+a_{2 n}\right)=0$ and $\lim _{n \rightarrow \infty}\left(a_{n}^{2}-\alpha^{2}\right)=0$. But this implies that the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is $\{-\alpha, \alpha\}$.

Conversely if the limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ is $\{-\alpha, \alpha\}$ and

$$
\lim _{n \rightarrow \infty}\left(a_{2 n-1}+a_{2 n}\right)=0
$$

then $\lim _{i, j \rightarrow \infty} g_{i, j}=0$. Thus by Theorem 1.1 this implies that the
derived set of $S(\psi)$ has $-\left(\alpha^{2}+b^{2}\right)^{1 / 2}$ and $\left(\alpha^{2}+b^{2}\right)^{1 / 2}$ as its only two points. This completes the proof of the theorem.

Let k be a positive integer and $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{k}\right\}$ be a set of real numbers. If $g_{i, j, k}$ is the element in the i th row and j th column of the matrix

$$
\prod_{i=1}^{k}\left(A-\alpha_{i} I\right)
$$

then it is easy to show by mathematical induction on k that

$$
g_{n, n-i, k}= \begin{cases}h_{i, n, k} \prod_{l=1}^{i} b_{n-l-1} & \text { if } 1 \leqq i \leqq k \tag{2.1}\\ s_{n, k} b_{n-1}^{2}+q_{n, k} b_{n-2}^{2}+\prod_{i=1}^{k}\left(a_{n-1}-\alpha_{i}\right) & \text { if } i=0, \\ r_{i, n, k}^{\prod_{i=0}^{-i-1} b_{n+l-1}} & \text { if }-k \leqq i \leqq-1 \\ 0 & \text { if }|i|>k\end{cases}
$$

where $\left\{h_{i, n, i}\right\},\left\{p_{i, n, k}\right\},\left\{s_{n, k}\right\}$, and $\left\{q_{n, k}\right\}$ are bounded sequences in n for fixed k and i.

By using Equation (2.1) and the same technique as that used in the proof of Theorem 2.1 we have

THEOREM 2.2. Let $\lim _{n \rightarrow \infty} b_{n}=0$ and $\left\{a_{n}\right\}_{n=0}^{\infty}$ be a bounded sequence. The derived set of $S(\psi)$ equals $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right\}$ if and only if the set of limit points of $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right\}$.

Proof. Let $L=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \cdots, \alpha_{p}\right\}$ be the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$. From Equation (2.1) and Theorem 1.1 we have that D, the derived set of $S(\psi)$, is contained in L. Assume D is a proper subset of L. That is, $D=\left\{\beta_{1}, \beta_{2}, \beta_{3}, \cdots, \beta_{k}\right\}$ where $k<p$. Thus, if $g_{i, j, k}$ is the element in the i th row and j th column of the matrix $\prod_{i=1}^{k}\left(A-\beta_{i} I\right)$, then by Theorem 1.1 and Equation (2.1)

$$
\lim _{n \rightarrow \infty} \prod_{i=1}^{k}\left(a_{n-1}-\beta_{i}\right)=0
$$

That is, L is a proper subset of D. But this is a contradiction. Thus $D=L$.

The converse may be proved in a similar manner.
Maki [6] conjectured, that in the case $\lim _{n \rightarrow \infty} b_{n}=0$, the set of limit points of $S(\psi)$ equals the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$. Theorem 2.2 shows that this conjecture is true for the case when $\left\{a_{n}\right\}_{n=0}^{\infty}$ is bounded and has a finite set of limit points. Chihara [2] has shown by using the theory of continued fractions that Maki's conjecture is true in general.
3. Construction of the distribution function. Because the sequence $\left\{b_{n}\right\}_{n=1}^{\infty}$ is bounded we are dealing with the determined Hamburger moment problem, so the continued fraction given in Equation (1.2) converges uniformly on every closed half plane,

$$
\begin{equation*}
\operatorname{Im}(z) \geqq s>0, \tag{3.1}
\end{equation*}
$$

to an analytic function $F(z)$ which is not a rational function. $F(z)$ has the form

$$
\begin{equation*}
F(z)=\int_{-\infty}^{\infty}(z-t)^{-1} d \psi(t) \tag{3.2}
\end{equation*}
$$

where z satisfies (3.1). The polynomial set $\left\{P_{n}(x)\right\}_{n=0}^{\infty}$ given in (1.1) is orthogonal on $(-\infty, \infty)$ with respect to the distribution $\psi(x)$.

Let us define,

$$
A(x)=\psi(x+0)-\psi(x-0) .
$$

Lemma 3.1. Let T be a bounded countable set of real numbers such that the derived set of T is $B=\left\{\beta_{1}, \beta_{2}, \cdots, \beta_{n}\right\}$. Also let

$$
\begin{aligned}
H & =T \backslash B \\
& =\left\{h_{i} \mid i=1,2,3, \cdots\right\} .
\end{aligned}
$$

(i) $S(\psi)=H \cup B A\left(h_{j}\right)=M_{j}(j=1,2,3, \cdots)$, and $A\left(\beta_{k}\right)=N_{k}$ $(k=1,2,3 \cdots n)$, if and only if
(ii) $\quad M_{j}>0(j=1,2,3, \cdots), N_{k} \geqq 0(k=1,2,3, \cdots n)$,

$$
\sum_{j=1}^{\infty} M_{j}+\sum_{k=1}^{n} N_{k}<\infty
$$

and

$$
F(z)=\sum_{j=1}^{\infty}\left(z-h_{j}\right)^{-1} M_{j}+\sum_{k=1}^{n}\left(z-\beta_{k}\right)^{-1} N_{k} .
$$

Proof. It is easy to show that $S(\psi)$ is closed. From this and by the definition of the Lebesgue-Stieltjes Integral, (i) implies (ii). Also from the fact that $S(\psi)$ is closed and from the Stieltjes inversion formula, (ii) implies (i). This completes the proof of the lemma.

Let \mathscr{C} represent the field of complex numbers.
Theorem 3.1. Let $\lim _{n \rightarrow \infty} b_{2 n}=0$ and $\lim _{n \rightarrow \infty} b_{2 n+1}=b<\infty$, where $b>0$. Also let the set of limit points of $\left\{a_{n}\right\}_{n=0}^{\infty}$ be $\{-\alpha, \alpha\}$ and $\lim _{n \rightarrow \infty}\left\{a_{2 n-1}+a_{2 n}\right\}=0$.
(i) $K(z)$ as defined by Equation (1.2) is a meromorphic function in $\mathscr{C} \backslash\left\{-\left(\alpha^{2}+b^{2}\right)^{1 / 2},\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right\}$ and it has a representation of the form

$$
\begin{equation*}
K(z)=\frac{A\left(-\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right)}{z+\left(\alpha^{2}+b^{2}\right)^{1 / 2}}+\frac{A\left(\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right)}{z-\left(\alpha^{2}+b^{2}\right)^{1 / 2}}+\sum_{i=0}^{\infty} \frac{A\left(t_{i}\right)}{z-t_{i}} \tag{3.4}
\end{equation*}
$$

where $A\left(\pm\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right) \geqq 0$ and $A\left(t_{i}\right)>0$.
(ii) If $T=\left\{t_{i} \mid i=1,2,3 \cdots\right\}$, where t_{i} is as given in Equation (3.4), then $S(\psi)=T \cup\left\{-\left(\alpha^{2}+b^{2}\right)^{1 / 2},\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right\}$.
(iii) The limit points of $S(\psi)$ are $-\left(\alpha^{2}+b^{2}\right)^{1 / 2}$ and $\left(\alpha^{2}+b^{2}\right)^{1 / 2}$.

Proof. We know from Theorem 2.1 that $S(\psi)$ is countable and its derived set consists only of the points $-\left(\alpha^{2}+b^{2}\right)^{1 / 2}$ and $\left(\alpha^{2}+b^{2}\right)^{1 / 2}$. Thus by Lemma 3.1

$$
F(z)=\frac{A\left(-\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right)}{z+\left(\alpha^{2}+b^{2}\right)^{1 / 2}}+\frac{\mathrm{A}\left(\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right)}{z-\left(\alpha^{2}+b^{2}\right)^{1 / 2}}+\sum_{i=1}^{\infty} \frac{A\left(t_{i}\right)}{z-t_{i}}
$$

where $T \cup\left\{-\left(\alpha^{2}+b^{2}\right)^{1 / 2},\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right\}=S(\psi)$. Because ψ is monotonically non-decreasing and $-\left(\alpha^{2}+b^{2}\right)^{1 / 2},\left(\alpha^{2}+b^{2}\right)^{1 / 2}$ are the only limit points of its spectrum we obtain, $A\left(t_{i}\right)>0$ for $t_{i} \in T$ and

$$
A\left(\pm\left(\alpha^{2}+b^{2}\right)^{1 / 2}\right) \geqq 0
$$

But the continued fraction given in Equation 1.2 converges uniformly to $F(z)$ on any closed bounded set that doesn't contain $S\left(\psi^{\prime}\right)$. Thus $K(z)=F(z)$, for $z \notin S(\psi)$. This completes the proof of the theorem.

By working directly with $K(z)$ Maki ([5] Theorem (5.4)) proves that if $\lim _{n \rightarrow \infty} b_{n}=0$ and the set of limit points of $\left\{\alpha_{n}\right\}_{n=0}^{\infty}$ is $\left\{\alpha_{1}, \alpha_{2} \cdots \alpha_{p}\right\}$ with $\left|\alpha_{i}\right|<\infty \quad i=1,2 \cdots p$, then
(i) $K(z)$ is a meromorphic function in $\mathscr{C} \backslash\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right\}$ and has a representation of the form

$$
\begin{equation*}
K(z)=\sum_{i=1}^{p}\left(z-\alpha_{i}\right)^{-1} A\left(\alpha_{i}\right)+\sum_{i=0}^{\infty}\left(z-t_{i}\right)^{-1} A\left(t_{i}\right) \tag{3.5}
\end{equation*}
$$

where $A\left(\alpha_{i}\right) \geqq 0$ and $A\left(t_{i}\right)>0$,
(ii) if $T=\left\{t_{i} \mid i=1,2,3 \cdots\right\}$ where t_{i} is as given in Equation (3.5), then $S(\psi)=\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right\} \cup T$, and
(iii) the derived set of $S(\psi)$ is $\left\{\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}\right\}$.

By using Theorem 2.2 and a technique similar to the one used in our proof of Theorem 3.1 it is easy to see how to give a short proof of Maki's theorem.

References

1. N. I. Ahiezer and M. Krein, Some questions in the theory of moments, Transl. Math. Monographs, Vol. 2, Amer. Math. Soc., 1962.
2. T. S. Chihara, The derived set of the spectrum of a distribution function, Pacific J. Math., 35 (1970), 571-574.
3. D. J. Dickinson, H. O. Pollak, and H. Wannier, On a class of polynomials orthogonal over a denumerable set, Pacific J. Math., 6 (1956), 239-247.
4. J. L. Goldberg, Some polynomials orthogonal over a denumerable set, Pacific J. Math., 15 (1965), 1171-86.
5. D. P. Maki, On constructing distribution functions: A bounded denumerable spectrum with n limit points, Pacific J. Math., 22 (1967), 431-452.
6. - A note on recursively defined orthogonal polynomials, Pacific J. Math., 28 (1969), 611-613.
7. J. Shohat and J. Tamarkin, The problem of moments, Math. Surveys No. 1, Amer. Math. Soc., 1950.

Received August 16, 1972.
Lakehead University

