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ON FINDING THE DISTRIBUTION FUNCTION
FOR AN ORTHOGONAL POLYNOMIAL SET

WM. R. ALLAWAY

Let {αre}~=0 and {6J~=0 be real sequences with bn > 0 and
{b-Jn^Q bounded. Let {Pn{x))Z^ be a sequence of polynomials
satisfying the recurrence formula

(xPn(x) = δn-1Pn-1(a» + anPn(x) + bnPn+1(x) (n ^ 0)

iP-Λx) = 0 P0(x) = 1.

Then there is a substantially unique distribution function ψ(t)
with respect to which the Pn(x) are orthogonal. That is,

Pn(x)Pm(x)dψ(x) = Ϊ A , n fa, m ^ 0),

where Kn Φ 0 and <5π,m is the kronecker delta. This paper gives
a method of constructing ψ(x) for the case limn_oo b2n ~ 0,
lim^oβ 62«+i = b < oo, the set of limit points of {αj~=1 equals
{—α, α} and lim^oo {α2Λ + α2n+1} = 0. The same method can be
used in the case lim^*, bn = 0 and the set of limit points of
{βΛ}n=o is bounded and finite in number.

This continues the investigation started by Dickinson, Pollak, and
Wannier [3] in which they studied the distribution function under the
assumption an = 0 and Σ bn < oo. Goldberg [4] extended their results
by considering the case an = 0 and lim^^^ bn — 0. Finally, Maki [5]
showed how to construct the distribution function when lim^^ bn = 0
and the set of limit points of {αw}»=.0 ̂

r e bounded and finite in number.
In all these cases their approach was to study the continued fraction

(1.2) K(z) = —ί bl ' b* '
— α2

where {6Λ}"=0 and {αTO}Γ=o consist of the same numbers as given in (1.1).
Our approach is different from that of the above mentioned authors.

If S(ψ) denotes the spectrum of ψ, i.e., the set {λ | ψ(X + ε) — ψ(X — ε) > 0
for all ε > 0}, then, in our case, we will show from the properties of
the sequences {an} and {bn} how to find the derived set of S(ψ) and
that the S(ψ) consists of a denumerable set of points.

To prove our results we make use of the following theorem due
to M. Krein ([1], p. 230-231).

THEOREM 1.1. The polynomial set defined by (1.1) is associated
with a determined Hamburger moment problem with solution ψ, such
that S(ψ) is bounded and the set of limit points of S(ψ) is contained
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in {au a2, a3, , ap} (a{ real) if and only if the numbers a{ and b{

(i = 0, 1, 2 •) form a bounded set and lim*^^ gi>k — 0 where gi>3 is the
element in the it\ι row and jth. column of the matrix

where

Π (A - aj) ,
i

α 0 &00

bQ a1 bλ

0 &! α 2
A =

2* Our main results*

THEOREM 2.1. Let l i m ^ ^ ^ = 0 and l im^^ 62Λ+1 = b < c>o, where
b > 0. The set of limit points of {an}™=o is { — a, a) and \ιmn^00{a2n^ι -f
&2%} = 0 if and only if the derived set of S(ψ) equals

{-(a*+ bψ2,(a2 + bψ2}.

Proof. By using the notation of Theorem 1.1, it is easy to
show that the element in the ith row and jth column of the matrix
A2 — (a2 + b2)I is given by

0

bn-i bn

bn^(an^ + an)

δU + αU + 6

\ un_2 un-z

if l i l > 2 ,

if j = 2 ,

if i = 1 ,

if i = 0 ,

if i = - 1 ,

if j = - 2 .

Let {- {a2 + £>2)1/2, (a2 + b2)1'2} constitute the derived set of S(ψ). Because
{bn}n=o is bounded, then the Hamburger moment problem associated with
(1.1) is determined (see [7], p. 59). Thus by Theorem 1.1 lim^ . ^ gitj = 0.
Therefore, lim^^^ (a2%_L + a2n) — 0 and l im^^ (a\ — a2) = 0. But this
implies that the set of limit points of {αj~=o is { — a, a}.

Conversely if the limit points of {an}ζ=0 is { — a, a} and

>oo (&2%-l + a2%) — 0 ,

then j = 0. Thus by Theorem 1.1 this implies that the
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derived set of S(γ) has - (a2 + bψ2 and (a2 + b2)1'2 as its only two
points. This completes the proof of the theorem.

Let k be a positive integer and {au a2i •••, ak) be a set of real
numbers. If gitίtk is the element in the ith row and jϊh column of
the matrix

Π (A - aj)

then it is easy to show by mathematical induction on k that

1 = 1

k

$n,k δ2

Λ_! + qn,k δ2

Λ_2 + Π (α«-i - a ύ if ί = 0 ,
(2.1)

i,n,fc Π δ«+ι-i if — & ^ ΐ ^ —:

0 if I i I > fc ,

where {hitn,k}, {rifn,k}9 {sn,k}, and {qn,k} are bounded sequences in n for fixed
& and i.

By using* Equation (2.1) and the same technique as that used in
the proof of Theorem 2.1 we have

THEOREM 2.2. Let l im^^δ^ = 0 and {α,J~=0 be a bounded sequence.
The derived set of S(ψ) equals {al9 a2, , <xp} if and only if the set
of limit points of {an}^Q is {au a2, , ap}.

Proof. Let L = {alfa2,a3f , ap} be the set of limit points of
{αΛ}£U From Equation (2.1) and Theorem 1.1 we have that D, the
derived set of S(ψ), is contained in L. Assume D is a proper subset of
L. That is, D = [βl9 β2, β3, , βk} where k<p. Thus, if giίjtk is the
element in the ith row and jth column of the matrix Πi=i (A ~ βj),
then by Theorem 1.1 and Equation (2.1)

k

i —l

That is, L is a proper subset of D. But this is a contradiction. Thus
Ώ =.L.

The converse may be proved in a similar manner.
Maki [6] conjectured, that in the case lim*-*. bn = 0, the set of limit

points of S(ψ) equals the set of limit points of {αΛ}^0 Theorem 2.2
shows that this conjecture is true for the case when {αn}£=0 is bounded
and has a finite set of limit points. Chihara [2] has shown by using
the theory of continued fractions that Maki's conjecture is true in
general.



308 WM. R. ALLAWAY

3* Construction of the distribution function* Because the
sequence {6ft}~=1 is bounded we are dealing with the determined Ham-
burger moment problem, so the continued fraction given in Equation
(1.2) converges uniformly on every closed half plane,

(3.1) I m ( 2 ) ^ s > 0 ,

to an analytic function F(z) which is not a rational function. F(z) has
the form

(3.2) F(z) = Γ (s - ty'
J - c o

where z satisfies (3.1). The polynomial set {PΛ(α)}~=o given in (1.1) is
orthogonal on (— oo? oo) with respect to the distribution ψ(x).

Let us define,

A(x) = ψ(x + 0) - ψ(x - 0) .

LEMMA 3.1. Let T be a bounded countable set of real numbers
such that the derived set of T is B — {fiu β2, , βn}. Also let

H= T\B

= {h\i = 1,2,3, . . . } .

( i ) S(ψ) = H U B A(hs) - M, (j = 1, 2, 3, - -.), and A(βk) - Nk

(k = 1, 2, 3 ' ^ ) , if and only if
( i i ) M3>0 (j = 1, 2, 3, • •)> JV* ^ 0 (λ; = 1, 2, 3, . w),

Σ Ms + Σ iVfc < co ,
j = l A;—1

= Σ (s - Λi)"1^- + Σ (s -

Proof. It is easy to show that S(^) is closed. From this and by
the definition of the Lebesgue-Stieltjes Integral, (i) implies (ii). Also
from the fact that S(ψ) is closed and from the Stieltjes inversion
formula, (ii) implies (i). This completes the proof of the lemma.

Let cέ? represent the field of complex numbers.

THEOREM 3.1. Let Hindoo&2n = 0 and l im^*,b 2 n + 1 — b < oo, where

b > 0. Also let the set of limit points of {an}^=Q be {—a, a} and
l i m ^ {a2n_1 + a2n} = 0.

( i ) K{z) as defined by Equation (1.2) is a meromorphic function
in c(f\{ — {a2 + b2)1'2, (a2 + δ2)1/2} and it has a representation of the form
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/o 4 Ϊ K(z) _ A(-(a + bψ) A((α + &2)1/2) , f A(t<)

( ± ( α 2 + 62)1/2) ^ 0 and A(tt) > 0.
(ii) If T — {ti I i = 1, 2, 3 •}, where ti is as given in Equation

(3.4), then S(ψ) = Γ U { - ( « 2 + 62)1/2, (α2 + 62)1'2}.
(iii) The limit points of S(ψ) are - {a2 + bψ2 and {a2 + bψ2.

Proof. We know from Theorem 2.1 that S(ψ) is countable and
its derived set consists only of the points — (a2 + 62)1/2 and (a2 + 62)1/2.
Thus by Lemma 3.1

F(z) - A(-{a2 + bψ2) A((a2 + 62)^2) f A(U)
w « + (α2 + 62)1/2 z - (α2 + 62)1/2 έ ί 2 - U

where Γ U { - ( « 2 + δ2)1/2, («:2 + δ2)1/2} = S(ψ). Because ψ is monotoni-
cally non-decreasing and — (a2 + 62)1/2, (a2 + 62)1/2 are the only limit
points of its spectrum we obtain, Afa) > 0 for ^ e T and

A(±(a2 + 62)1/2) ^ 0 .

But the continued fraction given in Equation 1.2 converges uniformly
to F(z) on any closed bounded set that doesn't contain S(ψ). Thus
K(z) = F(z), for z$S(ψ). This completes the proof of the theorem.

By working directly with K(z) Maki ([5] Theorem (5.4)) proves that
if lim^oo bn = 0 and the set of limit points of {αΛ}*=0 is {al9 a2 —ap}
with I (Xi I < c>o ί = 1, 2 p, then

( i ) K(z) is a meromorphic function in ^\{α 1 , α2, , αr̂ } and has
a representation of the form

(3.5) K(z) = ±(z- arιA{a{) + ±(z- ί^Afo) ,
i=i 5=0

where A(<Xi) ^ 0 and A(Q > 0,
(i i) if T = {̂  I i = 1, 2, 3 } where ti is as given in Equation (3.5),

then S(ψ) = to, a2, , a,} U ϊ7, and
(iii) the derived set of S(ψ) is {α̂ , α2, , ap}.
By using Theorem 2.2 and a technique similar to the one used in

our proof of Theorem 3.1 it is easy to see how to give a short proof
of Maki's theorem.
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