ON FINDING THE DISTRIBUTION FUNCTION FOR AN ORTHOGONAL POLYNOMIAL SET

WM. R. ALLAWAY

Let $\{a_n\}_{n=0}^\infty$ and $\{b_n\}_{n=0}^\infty$ be real sequences with $b_n>0$ and $\{b_n\}_{n=0}^\infty$ bounded. Let $\{P_n(x)\}_{n=0}^\infty$ be a sequence of polynomials satisfying the recurrence formula

(1.1)
$$\begin{cases} xP_n(x) = b_{n-1}P_{n-1}(x) + a_nP_n(x) + b_nP_{n+1}(x) & (n \ge 0) \\ P_{-1}(x) = 0 & P_0(x) = 1. \end{cases}$$

Then there is a substantially unique distribution function $\psi(t)$ with respect to which the $P_n(x)$ are orthogonal. That is,

$$\int_{-\infty}^{\infty} P_n(x) P_m(x) d\psi(x) = K_n \delta_{n,m} \qquad (n, m \ge 0)$$

where $K_n\neq 0$ and $\delta_{n,m}$ is the kronecker delta. This paper gives a method of constructing $\phi(x)$ for the case $\lim_{n\to\infty}b_{2n}=0$, $\lim_{n\to\infty}b_{2n+1}=b<\infty$, the set of limit points of $\{a_n\}_{n=1}^\infty$ equals $\{-\alpha,\alpha\}$ and $\lim_{n\to\infty}\{a_{2n}+a_{2n+1}\}=0$. The same method can be used in the case $\lim_{n\to\infty}b_n=0$ and the set of limit points of $\{a_n\}_{n=0}^\infty$ is bounded and finite in number.

This continues the investigation started by Dickinson, Pollak, and Wannier [3] in which they studied the distribution function under the assumption $a_n = 0$ and $\sum b_n < \infty$. Goldberg [4] extended their results by considering the case $a_n = 0$ and $\lim_{n \to \infty} b_n = 0$. Finally, Maki [5] showed how to construct the distribution function when $\lim_{n \to \infty} b_n = 0$ and the set of limit points of $\{a_n\}_{n=0}^{\infty}$ are bounded and finite in number. In all these cases their approach was to study the continued fraction

(1.2)
$$K(z) = \frac{1}{|z-a_0|} - \frac{b_0^2}{|z-a_1|} - \frac{b_1^2}{|z-a_2|} \cdots,$$

where $\{b_n\}_{n=0}^{\infty}$ and $\{a_n\}_{n=0}^{\infty}$ consist of the same numbers as given in (1.1).

Our approach is different from that of the above mentioned authors. If $S(\psi)$ denotes the spectrum of ψ , i.e., the set $\{\lambda \mid \psi(\lambda+\varepsilon)-\psi(\lambda-\varepsilon)>0$ for all $\varepsilon>0\}$, then, in our case, we will show from the properties of the sequences $\{a_n\}$ and $\{b_n\}$ how to find the derived set of $S(\psi)$ and that the $S(\psi)$ consists of a denumerable set of points.

To prove our results we make use of the following theorem due to M. Krein ([1], p. 230-231).

THEOREM 1.1. The polynomial set defined by (1.1) is associated with a determined Hamburger moment problem with solution ψ , such that $S(\psi)$ is bounded and the set of limit points of $S(\psi)$ is contained

in $\{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_p\}$ $(\alpha_i \text{ real})$ if and only if the numbers a_i and b_i $(i=0, 1, 2 \cdots)$ form a bounded set and $\lim_{i,k\to\infty} g_{i,k} = 0$ where $g_{i,j}$ is the element in the ith row and jth column of the matrix

$$\prod\limits_{i=1}^{p}\left(A-lpha_{i}I
ight)$$
 ,

where

$$A = egin{bmatrix} a_0 \ b_0 \ 0 & \cdots \ b_0 \ a_1 \ b_1 & \cdots \ 0 & b_1 \ a_2 & \cdots \ \cdots & \cdots \ \cdots & \cdots \ \cdots & \cdots \ \cdots & \cdots \ \end{array}.$$

2. Our main results.

THEOREM 2.1. Let $\lim_{n\to\infty} b_{2n} = 0$ and $\lim_{n\to\infty} b_{2n+1} = b < \infty$, where b > 0. The set of limit points of $\{a_n\}_{n=0}^{\infty}$ is $\{-\alpha, \alpha\}$ and $\lim_{n\to\infty} \{a_{2n-1} + a_{2n}\} = 0$ if and only if the derived set of $S(\psi)$ equals

$$\{-(\alpha^2+b^2)^{1/2}, (\alpha^2+b^2)^{1/2}\}$$
.

Proof. By using the notation of Theorem 1.1, it is easy to show that the element in the *i*th row and *j*th column of the matrix $A^2 - (\alpha^2 + b^2)I$ is given by

$$g_{n,n+j} = egin{array}{lll} 0 & & & ext{if} & |j| > 2 \;, \ b_{n-1} \, b_n & & ext{if} & j = 2 \;, \ b_{n-1} (a_{n-1} + a_n) & & ext{if} & j = 1 \;, \ b_{n-2}^2 + a_{n-1}^2 + b_{n-1}^2 - lpha^2 - b^2 & & ext{if} & j = 0 \;, \ b_{n-2} (a_{n-2} + a_{n-1}) & & ext{if} & j = -1 \;, \ b_{n-2} \, b_{n-3} & & ext{if} & j = -2 \;. \end{array}$$

Let $\{-\{\alpha^2+b^2\}^{1/2}, (\alpha^2+b^2)^{1/2}\}$ constitute the derived set of $S(\psi)$. Because $\{b_n\}_{n=0}^{\infty}$ is bounded, then the Hamburger moment problem associated with (1.1) is determined (see [7], p. 59). Thus by Theorem 1.1 $\lim_{i,j\to\infty} g_{i,j} = 0$. Therefore, $\lim_{n\to\infty} (a_{2n-1} + a_{2n}) = 0$ and $\lim_{n\to\infty} (a_n^2 - \alpha^2) = 0$. But this implies that the set of limit points of $\{a_n\}_{n=0}^{\infty}$ is $\{-\alpha, \alpha\}$.

Conversely if the limit points of $\{a_n\}_{n=0}^{\infty}$ is $\{-\alpha, \alpha\}$ and

$$\lim_{n\to\infty} (a_{2n-1} + a_{2n}) = 0$$
,

then $\lim_{i,j\to\infty}g_{i,j}=0$. Thus by Theorem 1.1 this implies that the

derived set of $S(\psi)$ has $-(\alpha^2 + b^2)^{1/2}$ and $(\alpha^2 + b^2)^{1/2}$ as its only two points. This completes the proof of the theorem.

Let k be a positive integer and $\{\alpha_1, \alpha_2, \dots, \alpha_k\}$ be a set of real numbers. If $g_{i,j,k}$ is the element in the *i*th row and *j*th column of the matrix

$$\prod_{i=1}^k (A - \alpha_i I)$$

then it is easy to show by mathematical induction on k that

$$(2.1) \quad g_{n,n-i,k} = egin{cases} h_{i,n,k} \prod_{l=1}^i b_{n-l-1} & ext{if} \quad 1 \leq i \leq k \;, \ s_{n,k} \, b_{n-1}^2 + q_{n,k} \, b_{n-2}^z + \prod_{i=1}^k \left(a_{n-1} - lpha_i
ight) & ext{if} \quad i = 0 \;, \ r_{i,n,k} \prod_{l=0}^{-i-1} b_{n+l-1} & ext{if} \quad -k \leq i \leq -1 \;, \ 0 & ext{if} \quad |i| > k \;, \end{cases}$$

where $\{h_{i,n,k}\}$, $\{r_{i,n,k}\}$, $\{s_{n,k}\}$, and $\{q_{n,k}\}$ are bounded sequences in n for fixed k and i.

By using Equation (2.1) and the same technique as that used in the proof of Theorem 2.1 we have

Theorem 2.2. Let $\lim_{n\to\infty} b_n = 0$ and $\{a_n\}_{n=0}^{\infty}$ be a bounded sequence. The derived set of $S(\psi)$ equals $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$ if and only if the set of limit points of $\{a_n\}_{n=0}^{\infty}$ is $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$.

Proof. Let $L = \{\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_p\}$ be the set of limit points of $\{a_n\}_{n=0}^{\infty}$. From Equation (2.1) and Theorem 1.1 we have that D, the derived set of $S(\psi)$, is contained in L. Assume D is a proper subset of L. That is, $D = \{\beta_1, \beta_2, \beta_3, \dots, \beta_k\}$ where k < p. Thus, if $g_{i,j,k}$ is the element in the ith row and jth column of the matrix $\prod_{i=1}^k (A - \beta_i I)$, then by Theorem 1.1 and Equation (2.1)

$$\lim_{n\to\infty}\prod_{i=1}^k(a_{n-1}-\beta_i)=0.$$

That is, L is a proper subset of D. But this is a contradiction. Thus D = L.

The converse may be proved in a similar manner.

Maki [6] conjectured, that in the case $\lim_{n\to\infty} b_n = 0$, the set of limit points of $S(\psi)$ equals the set of limit points of $\{a_n\}_{n=0}^{\infty}$. Theorem 2.2 shows that this conjecture is true for the case when $\{a_n\}_{n=0}^{\infty}$ is bounded and has a finite set of limit points. Chihara [2] has shown by using the theory of continued fractions that Maki's conjecture is true in general.

3. Construction of the distribution function. Because the sequence $\{b_n\}_{n=1}^{\infty}$ is bounded we are dealing with the determined Hamburger moment problem, so the continued fraction given in Equation (1.2) converges uniformly on every closed half plane,

$$(3.1) \operatorname{Im}(z) \ge s > 0 ,$$

to an analytic function F(z) which is not a rational function. F(z) has the form

(3.2)
$$F(z) = \int_{-\infty}^{\infty} (z-t)^{-1} d\psi(t) ,$$

where z satisfies (3.1). The polynomial set $\{P_n(x)\}_{n=0}^{\infty}$ given in (1.1) is orthogonal on $(-\infty, \infty)$ with respect to the distribution $\psi(x)$.

Let us define,

$$A(x) = \psi(x+0) - \psi(x-0)$$
.

LEMMA 3.1. Let T be a bounded countable set of real numbers such that the derived set of T is $B = \{\beta_1, \beta_2, \dots, \beta_n\}$. Also let

$$H = T \setminus B$$

= $\{h_i \mid i = 1, 2, 3, \cdots \}$.

(i) $S(\psi)=H\cup B$ $A(h_j)=M_j$ $(j=1,\,2,\,3,\,\cdots),$ and $A(\beta_k)=N_k$ $(k=1,\,2,\,3\cdots n),$ if and only if

(ii)
$$M_j > 0 \ (j = 1, 2, 3, \cdots), \ N_k \ge 0 \ (k = 1, 2, 3, \cdots n),$$

$$\sum\limits_{j=1}^{\infty}M_{j}+\sum\limits_{k=1}^{n}N_{k}<\infty$$
 ,

and

$$F(z) = \sum_{j=1}^{\infty} (z - h_j)^{-1} M_j + \sum_{k=1}^{n} (z - \beta_k)^{-1} N_k$$
.

Proof. It is easy to show that $S(\psi)$ is closed. From this and by the definition of the Lebesgue-Stieltjes Integral, (i) implies (ii). Also from the fact that $S(\psi)$ is closed and from the Stieltjes inversion formula, (ii) implies (i). This completes the proof of the lemma.

Let & represent the field of complex numbers.

THEOREM 3.1. Let $\lim_{n\to\infty} b_{2n} = 0$ and $\lim_{n\to\infty} b_{2n+1} = b < \infty$, where b>0. Also let the set of limit points of $\{a_n\}_{n=0}^{\infty}$ be $\{-\alpha,\alpha\}$ and $\lim_{n\to\infty} \{a_{2n-1}+a_{2n}\}=0$.

(i) K(z) as defined by Equation (1.2) is a meromorphic function in $\mathcal{C}\setminus\{-(\alpha^2+b^2)^{1/2}, (\alpha^2+b^2)^{1/2}\}$ and it has a representation of the form

$$(3.4) K(z) = \frac{A(-(\alpha^2+b^2)^{1/2})}{z+(\alpha^2+b^2)^{1/2}} + \frac{A((\alpha^2+b^2)^{1/2})}{z-(\alpha^2+b^2)^{1/2}} + \sum_{i=0}^{\infty} \frac{A(t_i)}{z-t_i}$$

where $A(\pm(\alpha^2 + b^2)^{1/2}) \ge 0$ and $A(t_i) > 0$.

(ii) If $T = \{t_i \mid i = 1, 2, 3 \cdots \}$, where t_i is as given in Equation (3.4), then $S(\psi) = T \cup \{-(\alpha^2 + b^2)^{1/2}, (\alpha^2 + b^2)^{1/2}\}$.

(iii) The limit points of $S(\psi)$ are $-(\alpha^2+b^2)^{1/2}$ and $(\alpha^2+b^2)^{1/2}$.

Proof. We know from Theorem 2.1 that $S(\psi)$ is countable and its derived set consists only of the points $-(\alpha^2 + b^2)^{1/2}$ and $(\alpha^2 + b^2)^{1/2}$. Thus by Lemma 3.1

$$F(z) = rac{A(-(lpha^2+b^2)^{1/2})}{z+(lpha^2+b^2)^{1/2}} + rac{A((lpha^2+b^2)^{1/2})}{z-(lpha^2+b^2)^{1/2}} + \sum_{i=1}^{\infty} rac{A(t_i)}{z-t_i}$$

where $T \cup \{-(\alpha^2 + b^2)^{1/2}, (\alpha^2 + b^2)^{1/2}\} = S(\psi)$. Because ψ is monotonically non-decreasing and $-(\alpha^2 + b^2)^{1/2}$, $(\alpha^2 + b^2)^{1/2}$ are the only limit points of its spectrum we obtain, $A(t_i) > 0$ for $t_i \in T$ and

$$A(\pm(\alpha^2+b^2)^{1/2})\geq 0$$
.

But the continued fraction given in Equation 1.2 converges uniformly to F(z) on any closed bounded set that doesn't contain $S(\psi)$. Thus K(z) = F(z), for $z \notin S(\psi)$. This completes the proof of the theorem.

By working directly with K(z) Maki ([5] Theorem (5.4)) proves that if $\lim_{n\to\infty} b_n = 0$ and the set of limit points of $\{a_n\}_{n=0}^{\infty}$ is $\{\alpha_1, \alpha_2 \cdots \alpha_p\}$ with $|\alpha_i| < \infty$ $i = 1, 2 \cdots p$, then

(i) K(z) is a meromorphic function in $\mathcal{C}\setminus\{\alpha_1,\alpha_2,\cdots,\alpha_p\}$ and has a representation of the form

(3.5)
$$K(z) = \sum_{i=1}^{p} (z - \alpha_i)^{-1} A(\alpha_i) + \sum_{i=0}^{\infty} (z - t_i)^{-1} A(t_i),$$

where $A(\alpha_i) \geq 0$ and $A(t_i) > 0$,

- (ii) if $T = \{t_i \mid i = 1, 2, 3 \cdots\}$ where t_i is as given in Equation (3.5), then $S(\psi) = \{\alpha_1, \alpha_2, \cdots, \alpha_p\} \cup T$, and
 - (iii) the derived set of $S(\psi)$ is $\{\alpha_1, \alpha_2, \dots, \alpha_p\}$.

By using Theorem 2.2 and a technique similar to the one used in our proof of Theorem 3.1 it is easy to see how to give a short proof of Maki's theorem.

REFERENCES

- 1. N. I. Ahiezer and M. Krein, Some questions in the theory of moments, Transl. Math. Monographs, Vol. 2, Amer. Math. Soc., 1962.
- 2. T. S. Chihara, The derived set of the spectrum of a distribution function, Pacific J. Math., **35** (1970), 571-574.
- 3. D. J. Dickinson, H. O. Pollak, and H. Wannier, On a class of polynomials orthogonal over a denumerable set, Pacific J. Math., 6 (1956), 239-247.

- 4. J. L. Goldberg, Some polynomials orthogonal over a denumerable set, Pacific J. Math., 15 (1965), 1171-86.
- 5. D. P. Maki, On constructing distribution functions: A bounded denumerable spectrum with n limit points, Pacific J. Math., 22 (1967), 431-452.
- 6. ———, A note on recursively defined orthogonal polynomials, Pacific J. Math., 28 (1969), 611-613.
- 7. J. Shohat and J. Tamarkin, *The problem of moments*, Math. Surveys No. 1, Amer. Math. Soc., 1950.

Received August 16, 1972.

LAKEHEAD UNIVERSITY