ON METRIZABILITY OF COMPLETE MOORE SPACES

G. M. Reed

Abstract

This paper is concerned with the relationships between certain 'strong' completeness properties in Moore spaces and with conditions under which Moore spaces satisfying these properties are metrizable.

In [3], Heath showed that each regular T_{2}-space which admits a strongly complete semi-metric is a complete Moore space. Furthermore, in [6], Heath established that each separable Moore space which admits a strongly complete semi-metric is metrizable. In [10], the author defined strong star-screenability, a property shared by separable spaces and metrizable spaces, and conjectured that separability could be replaced by strong star-screenability in Heath's result. In this paper, the author establishes relationships between different types of completeness in Moore spaces and gives two new metrization theorems for complete Moore spaces. From these results, it follows that each strongly star-screenable Moore space which admits a continuous, strongly complete semi-metric is metrizable.

An admissible semi-metric d for a T_{2}-space S is a distance function for S such that (1) if each of x and y is a point of S, then $d(x, y)=d(y, x) \geqq 0$, (2) $d(x, y)=0$ if and only if $x=y$, and (3) the topology of S is invariant with respect to d. A semi-metric d for the space S is said to be strongly complete provided that if M_{1}, M_{2}, \cdots is a decreasing sequence of closed sets such that for each $i, M_{i} \subset$ $\left\{y \in S \mid d\left(x_{i}, y\right)<1 / i\right\}$ for some $x_{i} \in S$, then $\cap M_{i} \neq \varnothing$. A space which admits a strongly complete semi-metric is said to be strongly complete. A development for a space S is a sequence G_{1}, G_{2}, \cdots of open coverings of S such that, for each n, G_{n+1} is a subcollection of G_{n}, and for each point p and each open set D containing p, there is an integer n such that every element of G_{n} containing p is a subset of D. A development G_{1}, G_{2}, \cdots for the space S is said to be complete (sequentially complete) provided that if M_{1}, M_{2}, \cdots is a monotonic sequence of closed sets such that for each $i, M_{i} \subset g_{i}$ for some $g_{i} \in G_{i}$ ($M_{i} \subset \operatorname{st}\left(x_{i}, G_{i}\right)$ for some $x_{i} \in S$), then $\cap M_{i} \neq \varnothing$. A regular space having a development is a Moore space [1]. A Moore space having a complete (sequentially complete) development is said to be complete (sequentially complete). The property of sequential completeness is due to Traylor in [11]. Although each of strong completeness and sequential completeness is stronger than completeness in Moore spaces ([8] and [11]), for pointwise paracompact Moore spaces, all three are equivalent ([4] and [11]). A space S is said to be star-screenable
(strongly star-screenable) if and only if, for each open covering G of S, there exists a σ-pairwise disjoint (σ-discrete) open covering H of S which refines $\{\operatorname{st}(x, G) \mid x \in S\}$.

Lemma 1. Each sequentially complete Moore space S is strongly complete.

Proof. Let G_{1}, G_{2}, \cdots denote a sequentially complete development for S. Denote by d the "natural semi-metric" for S determined by this development, i.e., $d(x, y)=0$ if $x=y$ and $d(x, y)=1 / n$, where n is the first positive integer such that no element of G_{n} contains both x and y, if $x \neq y$. It follows that if M_{1}, M_{2}, \cdots is a monotonic decreasing sequence of closed sets such that for each i, there exists $x_{i} \in S$ such that $M_{i} \subset\left\{y \in S \mid d\left(x_{i}, y\right)<1 / i\right\}$, then for each $i, M_{i} \subset$ st (x_{i}, G_{i}) and $\bigcap M_{i} \neq \varnothing$. Thus S is strongly complete.

Lemma 2. Each Moore space S which admits a continuous, strongly complete semi-metric is sequentially complete.

Proof. Let d denote a continuous, strongly complete semi-metric for S. For each $p \in S$ and each positive integer n, let $g_{n}(p)$ denote an open set containing p such that if $x \in g_{n}(p)$ and $y \in g_{n}(p)$, then $d(x, y)<1 / n$. Now, for each n, let $H_{n}=\left\{g_{n}(p) \mid p \in S\right\}$. It follows immediately that G_{1}, G_{2}, \cdots, where for each $i, G_{i}=\bigcup_{j=i}^{\infty} H_{j}$, is a development for S. It is also a sequentially complete development. For suppose that M_{1}, M_{2}, \cdots is a monotonic decreasing sequence of closed sets such that for each i, there exists a point p_{i} such that $M_{i} \subset \operatorname{st}\left(p_{i}, G_{i}\right)$, then for each $i, M_{i} \subset\left\{x \in S \mid d\left(x, p_{i}\right)<1 / i\right\}$ and $\cap M_{i} \neq$ \varnothing. Thus, S is sequentially complete.

Theorem 1. Each normal, sequentially complete, star-screenable Moore space S is metrizable.

Proof. Denote by G_{1}, G_{2}, \cdots a sequentially complete development for S. Each normal star-screenable Moore space is strongly starscreenable [10]. Thus for each i, let $H_{i}=\bigcup_{j} H_{i j}$ denote an open cover of S which refines $\left\{\right.$ st $\left.\left(x, G_{i}\right) \mid x \in S\right\}$ such that $H_{i j}$ is discrete for each j. Since S is normal and each open set in S is the union of countably many closed sets, for each i and j, let $H_{i j}^{*}=\bigcup_{k} H_{i j k}$ such that for each $k, H_{i j k}$ is open in S and $\mathrm{CL}\left(H_{i j k}\right) \subset H_{i j}^{*}$. For each i, j, and k, let $F_{i j k}=\left\{H_{i j k} \cap h \mid h \in H_{i j}\right\}$ and note that if $f \in F_{i j k}$, then $\mathrm{CL}(f) \subset \operatorname{st}\left(x, G_{i}\right)$ for some $x \in S$. Now, for each n, let F_{n} denote a σ-discrete collection of open sets covering S such that if $f \in F_{n}$, then $\mathrm{CL}(f) \subset \operatorname{st}\left(x, G_{n}\right)$ for some $x \in S$. Let $B_{1}=F_{1}$ and for each $i>1$,
let B_{i} denote the σ-discrete collection $\left\{f \cap b \mid f \in F_{i}\right.$ and $\left.b \in B_{i-1}\right\}$. Finally, let $B=\bigcup B_{i}$ and note that B is a σ-discrete collection of open sets covering S. However, B is also a basis for S. For let $p \in S$ and let D be an open set containing p. Then by the construction of B there exists a sequence of open sets $g_{1}(p), g_{2}(p), \cdots$ such that for each $i, p \in g_{i}(p), g_{i}(p) \in B_{i}, g_{i+1}(p) \subset g_{i}(p)$, and $\mathrm{CL}\left(g_{i}(p)\right) \subset \operatorname{st}\left(x_{i}, G_{i}\right)$ for some $x_{i} \in S$. Suppose that for each $i, g_{i}(p) \cap(S-D) \neq \varnothing$. Then (CL $\left.\left(g_{1}(p)\right)-D\right),\left(\operatorname{CL}\left(g_{2}(p)\right)-D\right), \cdots$ is a monotonic decreasing sequence of closed sets such that for each $i,\left(\mathrm{CL}\left(g_{i}(p)\right)-D\right) \subset$ st $\left(x_{i}, G_{i}\right)$ for some $x_{i} \in S$. Since G_{1}, G_{2}, \cdots is a sequentially complete development for $S, \bigcap\left(\mathrm{CL}\left(g_{i}(p)\right)-D\right) \neq \varnothing$. Thus, let $x \in \bigcap\left(\mathrm{CL}\left(g_{i}(p)\right)-D\right)$ and note that for each i, there exist intersecting elements g_{1} and g_{2} of G_{i} which contain x and p respectively. But this contradicts the fact that G_{1}, G_{2}, \cdots is a development for S. Thus, for some n, $g_{n}(p) \subset D$ and B is a σ-discrete basis for S. Therefore, S is strongly screenable, hence metrizable [1].

Heath in [7] defines a Moore space S with the three link property to be one with a development G_{1}, G_{2}, \cdots having the three link property, i.e., for each two points p and q of S, there exists an n such that if g_{1}, g_{2}, and g_{3} are elements of G_{n}, g_{1} contains p and intersects g_{2}, and g_{2} intersects g_{3}, then g_{3} does not contain q. Zenor has shown in [12] that A Moore space has the three link property if and only if it has a regular $G_{\sigma^{-}}$-diagonal.

Theorem 2. Each sequentially complete, strongly star-screenable Moore space S with the three link property is metrizable.

Proof. Without loss of generality, let G_{1}, G_{2}, \ldots denote a sequentially complete development for S with the three link property. Now, by a construction similar to the one used in the proof of Theorem 1, let $B=\bigcup B_{i}$ denote a σ-discrete open covering of S such that for each i, if $b \in B_{i}$, then $b \subset \operatorname{st}\left(x, G_{i}\right)$ for some $x \in S$. (Note that without normality, we cannot require $\mathrm{CL}(b) \subset$ st $\left(x, G_{i}\right)$.) However, B still forms a basis for S. For suppose that $p \in S$ and D is an open set containing p. Then there exists a sequence of open sets $g_{1}(p), g_{2}(p), \cdots$ such that for each $i, p \in g_{i}(p), g_{i}(p) \in B_{i}, g_{i+1}(p) \subset g_{i}(p)$, and $g_{i}(p) \subset$ st $\left(x_{i}, G_{i}\right)$ for some $x_{i} \in S$. Suppose that for each $i, g_{i}(p) \cap(S-D) \neq$ \varnothing. Thus, for each i, let $p_{i} \in g_{i}(p) \cap(S-D)$. Consider $\left\{p_{1}, p_{2}, \cdots\right\}$. Suppose this set has no limit point. Then for each $i, M_{i}=\left\{p_{i}, p_{i+1}, \cdots\right\}$ is a closed set such that $M_{i} \subset \operatorname{st}\left(x_{i}, G_{i}\right)$ for some $x_{i} \in S$. And since G_{1}, G_{2}, \cdots is a sequentially complete development for $S, \cap M_{i} \neq \varnothing$. But if $\cap M_{i} \neq \varnothing$, as in the proof of Theorem 2, we contradict the fact that G_{1}, G_{2}, \cdots is a development for S. However, if x is a limit point of $\left\{p_{1}, p_{2}, \cdots\right\}$, then for each i, there exists an element g_{1} of G_{i}
which contains both x and p_{j} for some $j>i$. But $p_{j} \in g_{j}(p)$ and $g_{j}(p) \subset \operatorname{st}\left(x_{j}, G_{j}\right)$ for some $x_{j} \in S$. Thus, there exist intersecting elements g_{2} and g_{3} of G_{j}, hence of G_{i}, which contain p and p_{j} respectively. Therefore, for each i, there exist elements g_{1}, g_{2}, and g_{3} of G_{i} such that g_{1} contains x and intersects g_{2}, g_{2} intersects g_{3}, and $p \in g_{3}$. But this contradicts the fact that G_{1}, G_{2}, \cdots has the three link property. Thus, for some $n, g_{n}(p) \subset D$ and it follows that B is a σ-discrete basis for S. Again, by [1], S is metrizable.

THEOREM 3. Each strongly star-screenable Moore space S which admits a continuous, strongly complete semi-metric is metrizable.

Proof. By Lemma 2, S is sequentially complete. And from ([2], Theorem 8) it follows that S has the three link property. Thus, by Theorem 2, S is metrizable.

The next two theorems show that Theorem 3 is a reasonable partial answer to question (5) in [10].

Theorem 4. There exists a strongly star-screenable Moore space which admits a continuous semi-metric that is not metrizable.

Proof. In [2], Cook gave an example of a separable, nonmetrizable Moore space which admits a continuous semi-metric. Since each separable space is strongly star-screenable, that example has the desired properties.

Theorem 5. There exists a Moore space S which admits a continuous, strongly complete semi-metric which is not metrizable.

Proof. Consider the following Moore space S given by Heath in [5]. The points of S are all points of the plane on or above the x axis. For each positive integer n, define H_{n} as follows: (1) for p above the x-axis, $\{p\} \in H_{n}$; (2) for each rational number r on the x axis, $\{(r, y) \mid o \leqq y \leqq 1 / n\} \in H_{n}$; (3) for each irrational number x on the x-axis, $\{(t, y) \mid t=x+y, o \leqq y \leqq 1 / n\} \in H_{n}$. Then, $\cup H_{n}$ forms a basis for S and the sequence G_{1}, G_{2}, \cdots, where for each $i, G_{i}=\bigcup_{j=i}^{\infty} H_{j}$, is a development for S. It is easily seen that the "natural semi-metric" for S with respect to this development has the required properties.

References

1. R. H. Bing, Metrization of topological spaces, Canad. J. Math., 3 (1951), 175-186.
2. H. Cook, Cartesian products and continuous semi-metrics, Proc. of the Arizona State Univ. Top. Conf., (1967), 58-62.
3. R. W. Heath, Arcwise connectedness in semi-metric spaces, Pacific J. Math., 12 (1963), 1301-1319.
4. _, A nonpointwise paracompact Moore space with a point countable base, Notices Amer. Math. Soc., 10 (1963), 649-650.
5. -, Screenability, pointwise paracompactness, and metrization of Moore spaces, Canad. J. Math., 16 (1964), 763-770.
6. -, Separability and か1-compactness, Coll. Math., 12 (1964), 11-14.
7. —, Metrizability, compactness, and paracompactness in Moore spaces, Notices Amer. Math. Soc., 10 (1963), 105.
8. L. F. McAuley, A relation between perfect separability, completeness, and normality in semi-metric spaces, Pacific J. Math., 6 (1956), 315-326.
9. R. L. Moore, Foundations of Point Set Theory, Amer. Math. Soc. Coll. Publ. 13, Revised Edition, Providence, R.I., 1962.
10. G. M. Reed, On screenability and metrizability of Moore spaces, Canad. J. Math., 23 (1971), 1087-1092.
11. D. R. Traylor, Completeness in developable spaces, preprint.
12. P. Zenor, On spaces with regular G δ-diagonals, Pacific J. Math., 40 (1972), 759-763.

Received January 28, 1972 and in revised form July 31, 1973.
Ohio University

