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ONE-ONE-MAPPINGS ONTO LOCALLY CONNECTED
GENERALIZED CONTINUA

Dix H. PETTEY

This paper is primarily concerned with 1 — 1 onto map-
pings between locally connected generalized continua, especially
mappings for which the image spaces are unicoherent. Condi-
tions are given which, if imposed on a space Y guarantee the
existence of a nontopological 1 — 1 mapping of a locally con-
nected generalized continuum onto Y. Other conditions, which
prohibit the existence of such a mapping, are also given.

Preliminary concepts* By a mapping we will mean a continuous

function.
By a generalized continuum we mean a connected, locally con-

nected, locally compact metric space. (It follows from [8, Cor. p. Ill]
that such a space is always separable.) We shall use LCGC to denote
both the expression locally connected generalized continuum and the
plural locally connected generalized continua. It follows from a
theorem of V. V. Proizvolov [7, Th. 1, p. 1321] that a locally con-
nected, locally compact topological space is metrizable if it has a 1— 1
continuous image in a metric space. Thus, in showing that a space
X is a LCGC it is sufficient to show that X is connected, locally
connected, and locally compact and that there is a 1 — 1 mapping of
X into a metric space.

For each positive integer n, we let En, Sn, and In denote, respec-
tively, Euclidean w-space, the unit π-sphere, and the unit w-cell. The
nonnegative real numbers will be denoted as E+, and for n ^ 2, E+
will denote the topological product of 2?""1 and E+.

Given a set H in a topological space X, we shall let bd H denote
the set 3 Π (X — H). For an ^-manifold with boundary Mn, we shall
use Bd Mn to designate the set of all points at which Mn is not locally
En (and Int Mn to denote Mn - Bd Mn).

Results concerning 1 — 1 mappings• It is not difficult to find
examples of nontopological 1 — 1 mappings between locally connected
generalized continua, especially if we allow the image spaces to be
multicoherent. (See, for example, [1, p. 136].) In fact, we have the
following theorem.

THEOREM 0. If Y is a multicoherent LCGC then there is a
LCGC which can be mapped onto Y by a nontopological 1 — 1 mapping.

Proof. Let H and K be closed connected sets in Ywith H[jK —
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Y and Hf]K disconnected. Let F and F' be disjoint nonempty closed
sets such that F U Ff = H Π K. We shall first show the existence of
a closed, locally connected set L such that F' c L, F Π L = 0 , and
L U J5Γ is connected. Since F is locally compact and paracompact,
there is a locally finite closed covering <& of Ff such that (1) no
member of ^ intersects F, and (2) each member of ^ is compact.
Now, using [9, 15.43, p. 22] and [9, 15.3, p. 20], we can obtain a
locally finite collection £f of closed sets such that (1) ^f covers the
union of the members of ^ (2) no member of Sf intersects F, and
(3) each member of ^f is locally connected. Let L* denote the union
of the members of Jίf. Then L* is closed and locally connected. Now
letting L denote the union of the components of L* which intersect K,
we have L closed and locally connected, F ' c L , F Π L = 0 , and L [j K
connected. Since H is connected, there exists a component V oί H—
(L U if) such that V intersects both L and F. Then Γ - V is con-
nected and Y— (V D F) is locally connected. If we let X denote the
topological space having as points the points of Y and having the
topology generated by the open sets of Y and the set Y — (V\JF),
then X is connected, locally connected, and locally compact. Now let
/ be the identity function on the set X. Then / is a nontopological
1 — 1 mapping of the space X onto the space Y.

If we restrict our consideration to 1 — 1 mappings of LCGC onto
unίcoherent LCGC, it becomes more difficult to find examples in which
the mappings are nontopological. In [10], G. T. Whyburn showed
that if a 1 — 1 mapping of a generalized continuum onto a unicoherent
LCGC satisfies one additional relatively mild condition, then the
mapping must be a homeomorphism. To more easily describe this
condition, we introduce the following notation. For a 1 — 1 mapping
/ on a topological space X let T(f) denote the set

{xe X\ f~ι is not continuous at f(x)} .

Whyburn [10, Th. 5, p. 1429] proved that for a 1 — 1 mapping / of a
generalized continuum onto a unicoherent LCGC, if f\ T(f) is a homeo-
morphism then / is a homeomorphism. (Observe that for the non-
topological mapping / obtained in the proof of Theorem 1, T(f) is a
subset of L and the restriction of / to T(f) is a homeomorphism. Thus,
in light of Whyburn's theorem, we may conclude that a LCGC Y is
multicoherent if and only if there is a LCGC X and a nontopological
1 — 1 mapping f oί X onto Y such that /1 T(f) is a homeomorphism.)

In [7], V. V. Proizvolov claimed to have proved that if X is a
connected, locally connected, locally compact topological space and Y
is a unicoherent LCGC then every 1 — 1 mapping of X onto 7 is a
homeomorphism. (See [7, Th. 2, p. 1322].) Examples given by L. C.
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Glaser [2, 3 and 4] and Kenneth Whyburn [11], however, show that
this is not the case and that both E3 and S3 are 1 — 1 continuous images
of connected 3-manifolds with nonempty boundaries. Making use of
one of Glaser's examples, we obtain the following rather general result.

THEOREM 1. If Y is a LCGC and if for some integer n ^ 3 Y
contains an open set V homeomorphic to En, then there is a LCGC
X which can be mapped onto Y by a nontopological 1 — 1 mapping
f. Furthermore, X and f can be chosen so that the restriction of f
to X — f~ι(V) is a homeomorphism.

Proof. We may suppose, without loss of generality, that the
closure of V in Y is a closed n-ce\\. We shall first obtain a non-
topological 1 — 1 mapping / of a connected ^-manifold with boundary
onto V such that /[/"^Bd V) is a homeomorphism. By [3, Lemma
1, p. 180] there exists a 1 — 1 mapping h of E+ onto S3. Choose a
closed 3-cell K3 in Int E% such that S3 - Int h(K3) is a closed 3-cell,
and let M3 = E% — Int K3 and g = h\M3. Then g is a nontopological
1 — 1 mapping of the connected 3-manifold with boundary M3 onto
the closed 3-cell S3 - Int h(K3). If n = 3 then, since g~\Bd g(M3)) =
Bd K3 and since g\BάK3 is certainly a homeomorphism, we can obtain
the desired mapping / simply by choosing a homeomorphism φ of g(M3)
onto V and letting / = φg. If n > 3 we proceed as follows. Since
g(M3) is a closed 3-cell we may regard In to be g(M3) x In~3. Define
λ: M3 x In~3 —> In by letting λ(r, s) = (g(r), s) for each r e M3, s e In~3.
Let Jn be the space obtained from In x {1, 2} by identifying the point
(g, 1) with the point (q, 2) for each geBd jp\ Let Ml be the space
obtained from (M3 x In~3) x {1, 2} by identifying the point (p, 1) with
the point (p, 2) for each pe λ^Bd In). Then ikfj is a connected w-
manifold with boundary and Jn is an ^-sphere. Define μ: M™ —>Jn by
letting μ(p9 i) = (λ(p), i) for each p e M3 x Iw~"3, i e {1, 2}. Now choose
a closed ^-cell if71 in Int If? such that J" — Int ^(^%) is a closed w-
cell, and let Mn — Ml — Int ^ and σ = μ\Mn. Then ex is a non-
topological 1 — 1 mapping of the connected ^-manifold with boundary
Mn onto the closed w-cell Jn — Int μ{Kn), and the restriction of σ to
σ"1(Bdσ(ilfH))(= Bd Kn) is a homeomorphism. The desired / is now
obtained by letting Θ be a homeomorphism of σ(Mn) onto V and then
letting / = θσ. To complete our proof of the theorem we let X be the
space obtained from the free union of Mn and Y — V by identifying the
point t with the point /"x(ί) for each έeBdF. Then X is connected,
locally connected, and locally compact. If we define / : X —>Y by letting
/ 1 Y - V be the identity and /1 Mn = /, then / is a nontopological
1 — 1 mapping of X onto F and the restriction of / to X — /"X F)
is a homeomorphism.
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A consideration of 1 — 1 mappings onto 1-dimensional spaces yields
a result of a quite different nature. In contrast to Theorem 1, we
have the following.

THEOREM 2. If X is a connected, peripherally compact topological
space and Y is a 1-dimensional unicoherent LCGC, then every 1 — 1
mapping of X onto Y is a homeomorphism. (A topological space is
said to be peripherally compact if there is a base ^U for the space
with bdZ7 compact for each

Proof. Due to a result of G. T. Whyburn [10, Cor. p. 1428], we
need only show that Y contains no simple closed curve. Assume
the contrary and let J be such a simple closed curve. Then there is
a connected open set V in Y such that bd V is O-dimensional and such
that each of V Π J and J — V is nonempty. Let G denote a component
of J — V and let W denote the component of Y — V which contains
G. Since bd G consists of two points and since GlΊ V a bd Wcz bd V,
we conclude that G Π V(=Wf) (Y—W)) is disconnected. But the
connectedness of V implies that Y — W is connected, so Y is the union
of two closed connected sets, W and Y—W, having a disconnected
intersection. This contradicts the hypothesis that Y is unicoherent.

For 1 — 1 mappings onto 2-dimensional LCGC the situation is
somewhat more complicated. Theorem 1 cannot be extended to include
the case n — 2 since none of the three most obvious examples of 2-
dimensional LCGC (i.e., E2, S2, and I2) is the nontopological 1 — 1
continuous image of a LCGC. (See [5, Th. 4.3, p. 305] and [6, Cor.
1.1 and 1.2, p. 277].) More generally, we have the following.

THEOREM 3. Let X be a LCGC and let Y be a LCGC having the
following property: for each simple closed curve J in Y there is a
closed 2-cell K in Y such that J = Bd K and such that Int K is an
open set in Y. Then every 1 — 1 mapping of X onto Y is a home-
omorphism. (For a proof, see [6, Th. 1, p. 277].)

Since a unicoherent LCGC in E2 (or S2) will always have the
property required in the hypothesis of Theorem 3, we have the follow-
ing corollary. (Compare [6, Cor. 1.3, p. 277].)

COROLLARY 3.1. If X is a LCGC and Y is a unicoherent LCGC
in Ez (or S2) then every 1 — 1 mapping of X onto Y is a home-
omorphism.

There are, however, examples of nontopological 1 — 1 mappings
of LCGC onto 2-dimensional unicoherent LCGC. One such example is
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given by Duda [1, p. 137]. Another is the following.

EXAMPLE A. Let Io be the half-open interval (—1, 0] on the y-
axis in E3, and for each positive integer n, let In denote the interval
(n — 1, n] on the ^/-axis, Γn the interval (0, 1) on the line x = 0, y =
n, and Vn the open 2-cell x2 + (y — nf < 1/9 in the plane z = 1. (See
Figure l(a).) Let X - OJ?-o /«) U (UJUi;) U (UϊU Vn). Then X is a
LCGC. Now let Y be the union of closed 2-cells Kl9 K2, Kz, such
that for each n (1) Kn does not intersect the closure of UΓ=%+2 Kif (2)
ίΓ% Π Kn+1 is an arc in Bd Kn+1, and (3) iί% Π X"»+i intersects Bd iΓ% at
exactly one point, this being an end-point of Kn Π Kn+1. (See Figure
l(b).) Then 7 is a 2-dimensional, unicoherent LCGC. The space X
can be taken onto Y by a 1 — 1 mapping / such that /(/<,) = Bd ^
(with /(O, 0, 0) = ΈάK1Π Bd iΓ2), /(Vi) = Int Ku /(Λ U ϋ) = (Bd K2) -

Kn, f{In U /;) - (Bd lΓn+1) - JBΓW, . . (Figure 1).

(0,0,0)

(a)

(We remark here, without going into detail, that a slight modifi-
cation of Example A produces another interesting mapping. If we
thicken X and Y so that Y becomes a topological copy of E3 and X
a 3-manifold with boundary — with only enough boundary so that
we can still map the thickened X onto the thickened Y in a 1 — 1
continuous manner — then the thickened X will be homeomorphic to
El and the 1—1 mapping onto E3 will be equivalent to that described
— in quite a different manner — by Glaser in [3].)
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In seeking to identify significant properties of the space Y in
Example A — properties which allow for the existence of a non-
topological 1 — 1 mapping of a LCGC onto Y — our attention is drawn
to the special way in which each 2-cell Kn intersects its successor
Kn+ι. Indeed, if Y were modified so that each of these intersections
were an arc in Bd Kn Π Bd Kn+1, then Y would be a topological copy
of E+ and by Corollary 3.1 no such mapping would be possible. Nor
could such a mapping exist if each Kn Π Kn+1 were a single point.
In order to prove this last statement (Corollary 4.1 below) we first
state and prove the following theorem, which is of some interest for
its own sake in the study of 1 — 1 mappings.

THEOREM 4. Suppose that Y is a LCGC and that Y = \Jβe&Yβ,
where for each β e & (1) Yβ is a closed subset of Y, (2) Yβ Π Y— Yβ is a
point, and (3) Yβ is not the image, under a nontopological 1 — 1
mapping, of a LCGC. Then Y is not the image, under a nontopological
1 — 1 mapping, of a LCGC.

Proof. Assume the contrary and let / be a nontopological 1—1
mapping of a LCGC X onto Y. By [9, 5.2, p. 38] X is arcwise con-
nected. Therefore, by [10, Th. 7, p. 1430], there is a topological ray
a in X such that f(a) is a simple closed curve. From (2) in the
hypothesis, it follows that for some ye&,f(a)c:Yr. Let q =
Yr Π T^Ϋ7. Then f~\q) separates f~ι{Yr - q) from X~ f~ι{YΊ), which
implies that f~ι(Yr) is connected. By a similar argument, if V is a
connected open set in X, then V f] f~ι(Yr) is connected. So f~\Yγ)
is locally connected. And since f~](Yr) is closed in X, f~\Y7) is locally
compact. It now follows from (3) in the hypothesis that the restriction
of / to f~ι{ Y7) is a homeomorphism. But since a c f~ι{ Y7) and since
f\a is not a homeomorphism this gives us a contradiction.

COROLLARY 4.1. If X is a LCGC and if Y is the union of 2-cells
Ku K2, K3, such that for each n (1) Kn does not intersect the closure
of Kn+2 U Kn+Z U » and (2) Kn Π KnΛι is a point, then every 1 — 1
mapping of X onto Y is a homeomorphism.

Proof. For each n, let Yn = K, U U Kn. Since no Kn is the
image, under a nontopological 1—1 mapping, of a LCGC (Corollary 3.1
or [6, Cor. 3.2, p. 277]), it follows from Theorem 4, by induction,
that no Yn is the image, under a nontopological 1 — 1 mapping, of
a LCGC. Since Y = \Jζ=ίYn, & second application of Theorem 4 now
tells us that Y is not the image, under a nontopological 1 — 1 map-
ping, of a LCGC.
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In Example A the Kn's intersect in such a way that each union
Kn U Kn+1 contains a set which is topologically the product of an arc
and a simple triod. We shall call such a set a book-wίth-3-pages. (The
image space in Duda's example [1, p. 137] also contains a book-with-
3-pages.)

A book-with-3-pages itself is the simplest example known to the
author of a 2-dimensional unicoherent LCGC which is the nontopological
1 - 1 continuous image of a LCGC. We shall now describe a non-
topological 1 - 1 mapping of a LCGC onto a book-with-3-pages and
then refer to this mapping in proving a more general theorem (Theorem
5, below) concerning spaces which contain books-with-3-pages.

EXAMPLE B. In the plane z = 2 in E\ let K denote the closed

(a)
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rectangular set {(xf y, 2) | - 3 ^ x ^ 0, - 3 ^ y ^ 3}. In the plane x =0,
let Q denote the closed square set {(0, y, z)\ — 3 <; y <. 3, — 1 ^ z ^ 5}.
Let 5 = K\J Q (Figure 2(a)). Then 5 is a book-with-3-pages.

In the plane x = 0, define sets i2, At, A2, A3, and A4 as follows
(see Figure 2(a)):

( 0 ) R is the rectangular set {(0, y, z) \ -1 < y < 1, 0 < z ^ 1};
( 1 ) Aj. is the closed straight-line segment from (0, 0, 1) to (0, 0, 3);
( 2 ) A2 is the closed straight-line segment from (0, — 1, 3) to

(0, 1, 3);
( 3 ) A3 is the closed straight-line segment from (0, — 1, 3) to

(0, -1 ,0) ;
(4 ) A4 is the closed straight-line segment from (0, 1, 3) to (0, 1, 0).

Let B = B - (R U Λ (j A2 (J A3 U A*). Now in the plane s = 0, define
sets iϋ', AJ, AJ, A3, and A[ as follows (see Figure 2(b)):

( 0 ) Rf is the rectangular set {(α, 7/, 0) 10 < x ^ 1, - 1 < y < 1};
( 1 ) A[ is the closed straight-line segment from (1, 0, 0) to (3, 0, 0);
( 2 ) Af

2 is the closed straight-line segment from (3, — 1, 0) to
(3, 1, 0);

(3) A3 is the closed straight-line segment from (3, — 1, 0) to
(3, - 4 , 0);

(4 ) A[ is the closed straight-line segment from (3, 1, 0) to (3, 4, 0).
Let M = B U R' U A[ U A2 U A[ U A[. Then M is a LCGC topologically
different from B.

We can now define a function m from ikf to B such that
( 1 ) the restriction of m to B is the identity mapping,
( 2 ) on it?' U A[ U AJ, m is given by m{x, y, 0) = (0, y, x),
( 3 ) on A!, m is given by m(3, 7/, 0) = (0, — 1, 4 + y), and
( 4 ) on A'iy m is given by m(3, ?/, 0) = (0, 1, 4 - y).

Then m is a 1 - 1 mapping which takes B onto itself, Rf onto iϋ, A[
onto Ai, A2 onto A2, A3 onto A3, and A4 onto A4.

In the proof of the following theorem B, R, Alf A2, A3, A4, and ikί
will denote the same sets, and m the same mapping, as in Example B.

THEOREM 5. If Y is a LCGC which contains a book-with-3-pages
Bf and if there is an open set V in Y such that VaBf, then there
is a LCGC X which can be mapped onto Y by a nontopological 1 — 1
mapping f. Furthermore, X and f can be chosen so that the restric-
tion of f to X — f~ι{Bf) is a homeomorphism.

Proof. We may assume, without loss of generality, that V is an
open 2-cell. Let a denote the union of arcs A2, A3, and A4 in the
book-with-3-pages B. There exists an uncountable collection ^f of
homeomorphisms of B onto B' such that (1) each member of Sίf takes
R into V, and (2) if hu h2e ^f and K Φ h2 then hx{a) Π h{a) = 0 .
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Since a does not separate B, it follows from [9, Th. 1.5, p. 43] that
for some h e έ%f, h(a) does not separate Y. Now let <& be an uncoun-
table collection of homeomorphisms of B onto Br such that (1) each
member of & takes a U R onto h(a U R), and (2) if gl9 g2e <& and
gx Φ g2 then ^(AO Π g2(A1) = 0 . Since Aγ — a does not separate
B — a, it follows that for some g e &, g{Ax — a) does not separate
Y— h(a), i.e., g(a U Ax) does not separate Y. Since #(5) c V, we may-
conclude that g(a U A U R) does not separate F. Now B — (a U A1 U i2)
is the intersection of 5 and the LCGC M (from Example B). Let X
denote the topological space obtained from the free union of M and

Y-giaΌAU R)

by identifying the point p with the point g(p) for each p e M Π B.
Then X is connected, locally connected, and locally compact. Finally
(with m still denoting the above 1 — 1 mapping of M onto B), we
define / : X->Y by letting

£m(g) if g e ikΓ

Then / is a nontopological 1 — 1 mapping of X onto Y, and the re-
striction of / to f~ι(Y— Bf) is a homeomorphism.

COROLLARY 5.1. If a LCGC Y is the union of countably many
books-with-3-pages, then there is a LCGC which can be mapped onto
Y by a nontopological 1 — 1 mapping.

Proof. By Baire's theorem, one of the countably many books-
with-3-pages contains a set which is open in Y. Thus, the desired
conclusion follows from Theorem 5.

As special cases of both Theorem 5 and Corollary 5.1 we have the
following results, which provide us with some additional examples of
rather simple 2-dimensional unicoherent LCGC which are nontopological
1 — 1 continuous images of LCGC.

COROLLARY 5.2. Let n be an integer greater than 2. If a metric
space Y is the union of n 2-cells Ku K2, , Kn such that Ki Π Kό —
Bd Ki — Bd Kj whenever 1 ^ i < j :g n, then there is a LCGC tvhich
can be mapped onto Y by a nontopological 1 — 1 mapping.

COROLLARY 5.3. Let n be an integer greater than 2. If a metric
space Y is the union of n 2-cells Kίf K2y , Kn such that for some arc
A in Y, K{ Π Kj — Bd Ki Π Bd K5 = A whenever l<Li<j <^n, then there
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is a LCGC which can be mapped onto Y by a nontopological 1 — 1
mapping. (Note that for the special case n = 3, Y is just a book-
with-3-pages.)

QUESTION. Can the requirement that Bf contain an open set be
deleted from the hypothesis of Theorem 5?

QUESTION. If Y is a unicoherent LCGC which does not contain
a book-with-3-pages, then must every 1 — 1 mapping of a LCGC onto
Y be a homeomorphism?
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