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SUBORDINATION AND EXTREME-POINT THEORY

D. J. HALLENBECK AND T. H. MACGREGOR

This paper examines the set of extreme points of the con-
vex hull of families of analytic functions defined through sub-
ordination. The set of extreme points is determined for the
class of functions each of which is subordinate to some star-
like, univalent mapping of the open unit disk. This set is also
determined for the family defined by subordination to some
convex mapping, and a partial determination is obtained for
subordination to some close-to-convex mapping. This informa-
tion is used to solve extremal problems over such families.
Results are also presented about the extreme points for the
functions which are subordinate to a given analytic function F.
For example, if f(z) = F(xz) and \x\ = 1 then/ is an extreme
point. If FeHp, 1 < p < oo, and φ is an inner function with
φ(Q) = 0, then F(φ) is an extreme point.

We recall the definition of subordination between two functions,
say / and F, analytic in A = {z: | z \ < 1}. This means that/(0) = F(0)
and there is an analytic function φ so that ^(0) = 0, | φ(z) \ < 1 and
f(z) = F(φ(z)) (zeA). This relation shall be denoted by / •< F. If F
is univalent in A the subordination is equivalent to /(0) = F(O) and
f(A)czF(A). (See [8, p. 421-] and [13, p. 226-] for some basic results
about subordination.)

The classical illustration of our interest is the family & of func-
tions with a positive real part. Recall that / e ^ if / is analytic,
/(0) = 1 and Re/(z) > 0 (zeA). The family & consists of the func-
tions subordinate to F(z) = (1 + z)/(l — z) in A. Herglotz's formula
f(z) —\ (1 + xz)/(l — xz) dμ(x) gives a representation of the func-
tions in ^ , where μ varies over the probability measures on the unit
circle. Since the mapping μ—>f is one-to-one this formula also im-
plies that the extreme points of & are exactly the functions f(z) =
(1 + xz)/(l ~ xz), \x\ = l [ 1 4 , p . 30] .

We shall let s$? denote the set of functions analytic in A. This
set is a locally convex linear topological space with respect to the
topology of uniform convergence on compact subsets of A [19, p. 150].
Thus, the ideas of extreme points, convex hulls and other terms are
meaningful, and the general results about such spaces are applicable.
(We refer to [5, Chapter 5] for these considerations.) We shall use
the notaion φ ^ ~ to denote the closed convex hull of the set ^~ and
©$c^~ to denote the extreme points of φ ^ 7

The functions analytic in A and with a range contained in a given
half-plane can be represented by a formula analogous to the Herglotz
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formula by a simple appeal to that formula. With the normalization
/(0) = 1 such a family consists of the functions subordinate to F(z) =
(1 + cz)/(l — z) for a suitable number c. The representation formula is

f(z) = \ (1 + cxz)l(l — xz) dμ(x) and the functions (1 + cxz)/(l — xz),
Jl*l = l

I x I = 1, are the extreme points.
A more recent example of this kind of relation was obtained in

[2, see Theorem 5]. The result proved there implies the following
assertion: If μ is a probability measure on | x | = 1 then there is
another probability measure v on | x | = 1 such that

(1) |[ —L-dμ{x)Y=\ X dv{x) (zeA)
(J 1*1 = 1 1 — XZ ) J 1*1=1 ( 1 — XZ)P

(p = ly 2, 3, •)• The functions given by the left-hand side of equa-
tion (1) are precisely the analytic functions subordinate to F(z) =
1/(1 — z)p in A. The functions defined by the right-hand side of the
equation form a closed convex set, and since the kernel functions
f(z) = 1/(1 — xz)p(\x\ = 1) are subordinate to F(z) we may make
the following conclusions. The closed convex hull of the functions
subordinate to F(z) = 1/(1 — zf is given by the set of functions

\ 1/(1 — χz)p dμ(x), where μ varies over the probability measures
Jl*l = l

on I x I = 1, and the extreme points of this hull are the functions
f(z) = 1/(1 - xz)p, \x\ = l ( p - 1, 2, 3, . . . ) .

A very recent result of D. Brannan, J. Clunie, and W. Kirwan
in [1] implies that the conclusions described above more generally
hold if p ^ 1. This corresponds to the special case c = 0 of the
following assertion.

THEOREM A. (Brannan, Clunie, Kirwan) Let c be a complex num-
ber, I c I ̂  1, and let J?~ denote the family of functions analytic in A
and subordinate to F(z) = ((1 + cz)/(l — z))p, where p ^ 1. Then §^~

consists of the functions f(z) = I ((1 + cxz)/(l — xz))p dμ(x), where
J/*| = l

μ varies over the probability measures on \ x | = 1. Moreover, &$Q^~
are the functions f(z) = [(1 + cxz)/(l — xz)]p, \ x | = 1.

Theorem A implies that if p ^ 1, | c | <: 1 and if μ is a probability
measure on | x \ = 1 then there is another probability measure v on

x I = 1 such that

< 2 > M 1 • " I , V 1

Conversely, this generalization of the result concerning equation (1)
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implies Theorem A, as indicated by the argument following equation (1).
Our main interest in Theorem A is in the special case p = 2.

We use Theorem A with p = 2 and c = 1 to determine the convex
hull and the extreme points of the functions subordinate to some
starlike mapping. (In fact, the present authors proved Theorem A
in this special case by a different method and independently of
Brannan, Clunie, and Kir wan.) To be more precise, let S denote the
subset of £/ of functions univalent in Δ so that /(0) = 0 and /'(0) =
1. Also, let St denote the subset of S so that fe St iίf(Δ) is starlike
with respect to 0. Let St* = {f f < 9 for some g in St}. (In general
if ^ a Sf we let ^~* denote the set {/:/ < g for some g in ^ H )
We find tgSt* and @$S£*. The argument depends upon knowing
dlgSt, as determined in [2, Theorem 3], some observations made in
[12] and the special case of Theorem A.

In the same way, Theorem A with p = 2 and | c | = 1 is used to
discuss the convex hull and extreme points of functions subordinate
to some close-to-convex function. We recall that the family of close-
to-convex functions, which we denote by C, consists of the functions
/ analytic in Δ, so that /(0) = 0, /'(0) = 1 and for which there exist
a complex number a and a function g so that Re {zf(z)/g(z)} > 0 (z e A)
and ag e St. This class was introduced by W. Kaplan in [10] and we
note that StaCaS.

Let K denote the subset of S of functions / for which f(A) is
convex. We determine QK* and &ξ>K*. We also give applications
of our results to the solution of extremal problems and indicate other
families for which these considerations are useful.

The last part of this paper concerns the following general ques-
tion. Suppose that Fej^ and ^~ denotes the family of functions
subordinate to f in J. What, in general, can be said about

We first show that the functions f(z) = F(xz), \ x | = 1, always
belong to QεQJ^ That these functions may be the only functions in
© ^ ^ is well illustrated by the previous examples. The quite opposite
situation is represented by the diversity of the set of extreme points
of the functions in Jϊf that satisfy \f(z)\ ^ 1 (zeA) [see 9, p. 138].
(This is in the context of our discussion where, say, F(z) = z.) In
this direction, we show that if FeHp (the Hardy class), where 1 <
p < oo and if φ is an inner function and 0(0) = 0, then F(φ) is an
extreme function for the class.

2 The extreme points and convex hull of K*, St*, and C*.

THEOREM 1. Let K denote the subset of S of convex mappings
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and let K* = {f:f < g for some g in K) and let X = U x U where
U = {z: \ z\ = 1}. Then $K* consists of the functions given by

(3) f(z)=\ -**—dμ(xfv)
J* 1 — yz

where μ varies over the probability measures on X. Also,

Proof. Suppose that fe (SφK*. The argument given in [12, see
p. 366] implies that f < g for some function g in (&$K. Since (SQK
is the set of functions g(z) = z/(l — xz), \ x \ — 1 [see 2, Theorem 2]
we conclude that / is subordinate to g where g(z) — 2/(1 — xz) and

Let K(x) — {f:f < g, g(z) = z/(l — xz)} where x is fixed, \x\ = 1.

Then, because z/(l — xz) — — I/a; + I/a? 1/(1 — ##), w e s e e that /(z) =
— I/a? + l/xh(z) where &•<& and k(z) = 1/(1 - a?2). The collection {&}
consists of the function subordinate to w = 1/(1 — z) and so we con-
clude that ©£{/*} = {h: h(z) = 1/(1 - yz), | y | = 1}. Since @£ϋΓ* c @ ί̂Γ(α;)
for all a<|aj| = 1) it follows that fe®$K(x) and thus f(z) = -I/a? +
l/» 1/(1 — ?/2) for some ?/, | y \ = 1. This is the same as /(#) =
yzjxil — yz), and so (with a change of letters) we conclude that
@£Z* c S = {/:/(*) - a?«/(l - y«), | a? | - | y \ = 1}.

We next show that £7c@^ίΓ*. Because EaK* this will follow
if we show that each function in E uniquely maximizes a real-valued
continuous linear functional over E. Let /(/) = af'(0) + /2/"(0)/2
where a and β are two complex numbers with | a \ = \ β \ = 1. Then,
if feE, ReJ(f) = Re [ax + /Sa?i/] ̂  \ax + /SO T/I ^ 2. The equality
Re J(f) = 2 determines that a? = I/a and 2/ = α://3. Thus, a unique
function in E maximizes Re /(/). By varying a and /S this gets all
possible pairs x, y. This completes the proof that @£>1T* = E.

The conclusion that $K* is given by the functions represented
by equation (3) follows from the Krein-Milman theorem [5, p. 440].
This uses the fact that the collection of functions φiΓ* is a compact
convex set and that @£ΐΓ* = {f:f(z) = xz/(l - yz), | a? | = | y | = 1}.
We also appeal to [2, Theorem 1].

THEOREM 2. Let Si* = {f:f<g for some g in St}, let U =
{x: I a? I = 1} ami let X — U x U. Then ξ>St* consists of the functions
represented by

where μ varies over the probability measures on X. Also,
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= \ f : f ( z ) = VZ , \χ\ = \ y \ = l \ .
* \J- XZ) '

Proof. Suppose that fe @£>S£*. Then, by the argument given
i n [ 1 2 ] , / < g a n d g e ® $ S t . S i n c e ®%St = {g: g(z) = z/(l - xz)\ \x\ =
1} [see 2, Theorem 3] we conclude t h a t / < g where g(z) = 2/(1 — xzf
and \x I = 1.

Let S^(x) denote the set of functions subordinate to F(x, z) —
z/(l - xz)\ I x I = 1. The identity F(x, z) = l/4α?[((l + xz)/(l - α z))2 - 1]
shows that the linear m a p / = l/4:x(g — 1) exhibits a one-to-one cor-
respondence between the family £^(x) and the class of functions J^~
subordinate to the function F(z) = [(1 + z)/(l - z)\\ Therefore,
§£f(x) - l / 4 « ( ^ - 1) and &§£f(x) = l/4x(®Q^~ - 1). The case
c = 1, p = 2 of Theorem A shows that @φ^" consists of the functions
w = ((1 + yz)/(l - yz))\ \y\ = l. Since © φ S Γ c &§£<*(%) we conclude

that/(ίs) = 1/4#[((1 + yz)l(l - yz))2 - 1]. In a slightly different notion,
if we let ^ = {/:/(«) = 7/̂ /(1 - M)2, | .τ | = | y \ = 1}, this proves that

We next show that ^c@^Sέ*. To do this we prove that to
each function f0 in <& there a continuous linear functional J on Szf
such that f = f0 is the only function in *& for which Re /(/) =
max {Re J(g): ge &}. Specifically, let a and β be complex numbers
so that I a \ = | β \ = 1 and let J(g) = α^'(0) + /3#"(0). Then Re J(flf) =
Re [ay + 4/3T/&] ^ | ay | + 4| βyx | = 5. The maximum value 5 is only
achieved if y = I/a and # = a/iβ. Letting a and β vary we get all
possible pairs x, y associated with the unique function in & with
Re J{g) - 5. This completes the proof of the determination of

The assertion about $St* given through equation (10) is a con-
sequence of the Krein-Milman theorem and [2, Theorem 1], since $St*
is compact and convex and the set of kernel functions for all possible
choices of x and y is precisely equal to the set

THEOREM 3. Let C denote the subset of S of close-to-convex func-
tions and let C* = {/:/ -< g for some g in C}. Let X = U x U x U
where U — {z: | z \ = 1}. Then §C* consists of all functions

= \ , y, w)
(1 + WXZf

where μ varies over the probability measures on X. Also,
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( £ £ C * c {/ :/(*) = u ' + l f t e + v W V , \x\ = | V | = | W | = l , x Φ y\ .
I (1 + wxzf )

Proof. This is similar to the proofs of Theorems 1 and 2. Sup-
pose that fe (££>C*. Then f <g for some g in ©£C. In [2, Theorem
6] &$C was completely determined as the set of functions

g(z) = g " ( g + y y 2 g > j a ) = lyl = l , s * y
(1 - ?/z)2

and so f < g for such a function g. We may write

2(?/ —

and therefore,

( 4 ) /(z) = 1 [h(z) - 1] where h < k and fc(s) = ( 1 ~ x z V
2(i/ — a?) V 1 - y I

[h(z) 1] where h < k and fc(s) ( ~ x z V .
— a?) V 1 - yz I

The collection {h} is the same as t h e set of functions subordinate to
[(1 — uz)/(l — z)]2 where u = x/y Φ 1, \ u \ — 1.

According to Theorem A with c = ~u and p = 2 the extreme
points of the hull of {fe} are the functions [(1 — uvz)/(l — vz)]2 where
v\ = 1. The linear relation (4) also holds between the two sets of

extreme points of the hulls of {/} and {h} and so an extreme / must
have the form

ι [Y1 ~ (y
- x) LV 1 -2(y - x) LΛ 1- vz >

_ v z — (v/2x)(x + y)z2

x (1 — vzf

Therefore,

<czE=\f:f(z) =
(1 + wxzf

Our assertion about §C* follows in the usual way by appealing
to the Krein-Milman theorem and the fact that ©£>C* c E. We are
unable to resolve the question of whether Gfξ>C* = E. In any case,
the inclusion (5£>C* c E suffices for most applications.

3* Applications to extremal problems and other classes of func-
tions.
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THEOREM 4. Let R{a) denote the set of analytic functions f so
that /(0) = 0, /'(0) = 1 and Re Vf(zjjz > a(z e J)(0 ^ a < 1). Let X
denote the unit circle, P the set of probability measures on X, and

fμiz) = \ Jl
— xz

Then

= {/„: μeP} and @%R(a)

1 — xz I

Proof. The result follows by the usual argument by applying
Theorem A where c = 1 — 2a and p = 2.

We remark that R(0) =2 T where T is the set of typically real
functions introduced by Rogosinski [16]. This fact is probably known
but we point out here that if fe T then f(z) — [z/(l — z2)]p(z) where
pe^ (and p is real on ( — 1, 1)) and the general fact that if Re wt >
0 and Re w2 > 0 then Re Vwxw2 > 0. We also note that the class
S ΓΊ i?(l/2) was introduced by 0. Dvorak in [6] and most recently
discussed by P. Duren and G. Schober in [4]. We recall that SO
R(l/2) ^ St and yet as is clear from a result in [2, p. 106] and the
above theorem where a = 1/2, that §R(l/2) = Q(S Π #(1/2)) = %St.
Note however that %R(0) Φ §T = T.

It is also clear that if one defines the class Rp(a) through the
condition Re %lf(z)\z > a and with the above normalizations then if
p ^ 1 again by applying Theorem A we find that

®Rp(a) = {fμ(z):μeP} where fμ(z) = \ z( * + ( 1 " 2a)xz Y dμ(x)
jx \ 1 — xz /

and X and P are as defined above.

THEOREM 5. Let j ^ ~ = {f:f<F} where F(z) = (1 - z)~p. If
^y p ^ l and

f(z) = Σ«M , then \ an \ £ P(v + 1) • • {p + n - 1) {n =

Proof. It suffices to examine the set 6f£> J^. By applying Theo-
rem A with c = 0 one finds that
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The result follows since F(z) = 1 + Σ~=i Anz
n with

A

nl

We remark that when p ^ 2 this theorem is obtainable by a
result of Rogosinski [17, p. 64] since the numbers Ak(l ^ k ^ n) are
nondecreasing and convex. That sequence is not convex if 1 < p <
2. When p ^ 1 the sharp coefficient estimate is | an \ ̂  p(n = 1,2, •).

We recall the result of Rogosinski [17, p. 72] that if / < g and
geSt then \an\ ^ n(n = 1, 2, •) where /(z) = ΣΓ=i α ^ A n applica-
tion of Theorem 4 with a = 1/2 and the kind of argument made in
the proof of Theorem 2 shows that <S$R*(l/2) = &®St*. This implies
a generalization of Rogosinski's result; namely, Ίίf<F, FeR(l/2)
and f(z) = Σ"=i anz

n then | an \ ̂  ^ = 1, 2, •)• For, it suffices to
consider the functions in (g£i?*(l/2), and the nth coefficient of a func-
tion f(z) = 7/̂ /(1 - α z)2, I x \ = \ y \ = 1, always has modulus n.

In [15] Robertson generalized the result of Rogosinski for the
coefficients of a function in C*. By making use of Theorem 3 we
can obtain a simple proof of this result. It suffices to consider the
function in @£>C*. Hence we need only show that the wth coefficient
of the functions

has modulus bounded by n. This is an easy calculation; namely

and so

I α» I ̂  1/2 [π + 1 + n - 1] = n .

Our next applications deal with the Lp means of a function /
which is subordinate to a function g belonging to some compact sub-
family ^ of S. To each function / analytic in Δ we let

J(f) = — \2π\f(reiθ) \p dθ, where 0 < r < 1, p> 0 .
2π Jo

Since Si* is a compact subset of Sxf we know, by arguments given
in [12], that

(w)) - maxJ(/ (w)) - max J(fn))
feξ>St* fe®$St*

for n = 0, 1, 2, , 0 < r < 1 if p ^ 1. Theorem 2 asserts that
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and since J(f{n)) is constant on these functions we conclude that

(5) -L\2π\f^(reiθ)\pdθ ^ — [** \ ¥n){reiθ) \p dθ (n = 0, 1,2, . . .
2ττ Jo 2π Jo

for each function / in St*, where

0 < r < 1, p ^ 1, and k(z) = z

(1 - zf

The inequalities (5) hold, more generally, for the class C*. This de-
pends on arguments given by the second author in [12] for n =
1, 2, 3, and by D. R. Wilken in [20] for n = 0. We note that
the inequalities (5) contain the result | an | ^ n for the coefficients of
/. This follows for a given n by using the inequality for p = 1 and
then by letting r —> 0. Similar results about Lv means hold for func-
tions in K*> as is easy to show (see [12] for various references about
related problems).

4, General results on the extreme points of the family of func-
tions subordinate to a given function.

THEOREM 6. Let F be analytic in A and let J^ be the family
of functions subordinate to F in A. Then the functions f(z) = F(xz),
\x\ = 1, belong to

Proof. The theorem holds if F is constant. Otherwise, we let
F(z) = Ao + Anz

n + An+1z
n+1 + . . . (I z I < 1) where An Φ 0. Suppose

that fe ^ and f(z) = α0 + axz + α22
2 + . Then α0 = A*, and if we

write f(z) = F(φ{z)) where <j>{z) = cxz + c2z
2 + , then a1 = a2 = =

α n - 1 = 0 and αw = cM%. Since | φ(z) \ < 1 for | z \ < 1 it follows that
I d I <; 1 and | cx \ = 1 only if ^(^ ) = xz and | α; | = 1. This implies that
Re an ^ I -A* I and that Re an = \ An \ only for functions f(z) = jP(a?2;)
where | x \ = 1 (and α? has a suitable argument so that ίΛ4.w > 0).

Let &l consist of the functions f(z) = ^H=oakz
k in φ ^ f o r which

Re an = I An \. Then ^ " is a compact subset of QJ^ and thus con-
tains an extremal element [5, p. 439], say /0. Since &l is an ex-
tremal subset of §^tr this implies that f0 e @̂> ^ . But as ^ ^ is
compact ^Q^czJ^ [5, p. 440] and so fQe ^ 7 Therefore, /0 must
have the form /0(^) = F(xz) for a suitable α;, as shown above (| x | = 1).
This shows that there is a complex number x1 so that | xι \ = 1 and
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We next show that if F(xxz) e Gcφ,^ for some xl9 \ x1 | = 1 then
F(xz) e ©ξ> J^~ for every x, \ x | = 1. Suppose that | x2| = 1 F(x2z) $ ^ ^ .
Then, we may write F(x2z) = tf(z) + (1 - t)g(z) where 0 < t < 1, / Φ
g and / and g belong to $ ^~. This is the same as F(xLz) = tf(xjx2 z) +
(1 — t)g(xjx2 z), which would contradict that F{x^z) e © § ^ " if we show
that f(xjx2 z) and g(xjx2 z) belong to φ J^, since f(xjx2 z) Φ g(xjx2 z).

We are required to show that if |α?| = l and / e ^ y then
f(xz) e £>^7 A function / e φ ^"* if / is a limit (uniform on compact
subsets of A) of functions of the form Σ*=i λfcΛ> where λfc ^ 0,
Σί=i λA = 1 and Λ e ^ . Since this is the same as f(xz) is the limit
of functions of the form Σ*=i ^kfk(%z) we need only show that if
^ G &* then (̂α;̂ ) 6 ^ Γ If g e J^ we may write g(z) = F(φ(z)) where
φ is analytic in A, \ φ(z) \ < 1 and 0(0) — 0. This implies that g(xz) =
F(φ(xz)), and as φ(xz) has the same properties as φ, that g is subor-
dinate to F. Thus, ^ G X This completes the proof.

Theorem 6 can be proved by appealing to other unique extremal
properties of the functions F{xz). For example, say that ^'(0) Φ 0,
30 that for all sufficiently small r, F maps | z \ < r one-to-one onto
a convex domain. Lindelof's theorem [13, p. 22] asserts that if Ar =
{z:\z\ < r} then f(Aτ)cF(Ar) and the boundary of f(Ar) meets the
boundary of F(Ar) only if f(z) = F(xz), \x\ = 1. The convexity of
jP(Jr) thereby implies that Reeία/(z) is uniquely maximized for each
z,\z\ — r, over ^ 7 With varying a we get all functions F(xz)f

\x\ = 1 .

Theorem 6 may be thought of as prescribing the minimal pos-
sibility for the set ©φ ^ 7 This minimal situation is achieved for
several examples discussed earlier. Our next theorem gives informa-
tion about when the set @^>^ can be much more varied for certain
functions F.

We need to recall some results about subordination and its rela-
tion to Hp spaces. (For a general discussion of the theory of Hp

spaces see [3] or [9].) For a function / analytic in A we set

(p > 0, 0 < r < 1). In [11] J. E. Littlewood proved that if f<F then

' - < [ / ; r] ^ ^tp[F; r]

for p > 0, 0 < r < 1. Also, ^%,[f; r] is an increasing function of r
(0 < r < 1) [3, p. 9].
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The space Hp(p ^ 1) is defined to be the set of functions F ana-
lytic in Δ for which ^V\F\ r] is a bounded function of r for 0 <
r < 1. If FeHp then we set \\F\\P = l i n w ^ f F ; r]. For such
functions, limr^ F(τeiθ) exists for almost all θ and defines a function
F(eiθ) which we also denote by F. It follows that

2ττ Jo

Now, \ί f <F and Fe Hp these several relations imply that
/eJEΓp and | | / | | p ^ HJPHP A study of these and other Hp relations
between / and F was presented by J. V. Ryff in [18], including the
proof of Theorem B stated below. We first recall the definition of
an inner function φ. This means that φ is analytic in Δ, \ φ(z) | < 1
and I Φ(eiθ) | = 1 for almost all θ.

THEOREM B. (Ryff) Suppose that f <F and FeHp (p ^ 1). A
necessary and sufficient condition that \\f\\P = \\F\\P is that f = F(φ)
where φ is an inner function and φ(0) = 0.

THEOREM 7. Let F be analytic in A and let J? be the family
of functions subordinate to F in Δ. If F e Hp where 1 < p < oo and
if φ is an inner function so that φ{0) — 0, then f = F(φ) e 6fξ> ^.

Proof. We first show the following general statement: If FeHφ

and p ^ 1 then £ ^ c Hp. Suppose that fe $ J^7 Then / can be
uniformly approximated on compact subsets of A by functions of the
form Σ*=i λ*Λ where Xk ^ 0, Σ t i λ* = 1 and fk e &. Since fk<F
Littlewood's inequality implies that ^£p[fk', r] ^ ^fP[F; r] for each
r(0 < r < l)(k = 1, 2, , n). We may use the Minkowski inequality
since p ^ 1 and this shows that

J
; r] rg ^ ζ [ F ; r] .

This implies that ^ ^ [ / r] ^ ^^[ ί 7 ; r] and, therefore, / G ^ and
^ || Flip. Also limr^/(reί<?) =/(eί<?) exists for almost all θ and

Now, suppose that FeHp and / = JP(^) where φ is an inner
function and ^(0) = 0. Also, suppose that f(z) = t g(z) + (1 - t)h(z)
(z e Δ) where 0 < t < 1 and g, h belong to § ^ 7 By the argument in
the previous paragraph the functions g{eiθ) = l im^ g(reiθ) and h{eiθ) =

r^ h(τeiθ) are well-defined (for almost all θ). They belong to
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1/(0,2π), || g \\, = (JL j J g(eiS) \> dθj"

and

1/P

Also, /(e") = ί ίjr(ew) + (1 - t)h(eiθ) (for almost all θ). By the Minkowski
inequality this implies that | | / | | p ^ t\\g \\p + (1 - ί) | | h | |, ^ ί | | F | | p +
(1 — ί)| | i*7 | |p = II ί711^. Because of Theorem B, the inequalities here each
must be an equality. But when p > 1 equality in the Minkowski in-
equality is possible only when the two functions are effectively multiples
of each other. Therefore, there is a number a Φ 0 so that tg(eiθ) =
a(l — t) h(eiθ) for almost all θ. When two functions in Hp have boundary
values that are equal on a set of positive measure they are equal as
functions in A. Thus, t g(z) = α(l - t)h(z) for each z in A. Since
0(0) = h(0) = F(0) this implies that tF(0) = α(l - t)F(0). We may
assume that F(0) Φ 0, otherwise we would first prove the theorem,
say, with F(z) + 1 replacing F(z). F(0) Φ 0 implies that t = a{l - t)
and so ^ = a(l — t)h is equivalent to a(l — ί)ί/ = a(l — t)h, or g = h.
This proves that fe @£>^~ if p > 1.

REMARKS 1. The result of Theorem 7 contrasts sharply with the
earlier situations. For example, we now know something about the
diversity of @£>^ where ^" consists of the functions subordinate
to F(z) — GQ(z) where G is a linear fractional transformation and q <
1 because this implies that Fe Hp for some (1 < p < oo).

2 There are other ways to show that such a family ^~ has
extreme points besides the functions F(xz), \ x \ = 1, without obtaining
such descriptive information as that given by Theorem 7. A good
example of this is provided by the result proved by A. W. Goodman
in [7]. He shows that if the class of functions subordinate to a
univalent function F is the same as the set of functions given by

f(z) = \ F(xz)dμ(x), where μ varies over the probability measures
J 1*1 = 1

on I a; I = 1, then F(A) is a half-plane. The converse is, of course,
equivalent to Herglotz's formula.

For example, let J^~ denote the family of functions subordinate
to F(z) = 1/(1 - z)p in A where 0 < p < 1. If @ φ ^ contained only
the functions F(xz), \ x \ = 1, then by the Krein-Milman theorem we

would conclude that φ ^ " consists of the functions f(z) = \ F(xz)
J\χ\=ί

dμ{x) (μ varying over the probability measures.) But, as is easy to
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verify, F(z) is univalent and convex since 0 < p < 1 and so the func-
tions given by these integrals would be all functions subordinate to
Ff contrary to Goodman's result.

One can also show that the functions F(xz), \x\ = 1, are not the
only extreme points by showing that none of these functions solves
a specific linear problem. For example, with F(z) = 1/(1 — z)p = 1 +
Aγz + A2z

2 + , we see that A2 = p(p + l)/2 and so if F(xz) = 1 +
AJix)z + A2(x)z2 + , I x I = 1, then | A2(x) \ = p(p + l)/2. But we
know that max | α21 = p > p(p + l)/2, where f(z) = 1 + axz + a2z

2 +
varies over functions subordinate to F.

The type of situation just described also occurs if one of the
coefficients (after Aλ) of F vanishes. Similarly, if F(z) = Σ*=o A*3*>
A1 Φ 0 and An —> 0 then there are extreme points other than F(xz),
\x\ = 1, as such functions are not extremal for the problem max | an

if n is sufficiently large. This follows merely by noting that the
functions f(z) = F(zn) are subordinate to F. The situation An —> 0
occurs, for example, if F is univalent and convex in Δ and does not
map onto a half-plane. More generally, F need only be subordinate
to some such function and F\0) ^ 0. To see this observe that such
a function belongs to H1 due to Littlewood's inequality and the fact
that a convex, univalent function other than a half-plane mapping is
in H1 (and even in Hp for some p > 1). But it always follows that
An-+0 if FeH1. A geometric realization of this situation occurs
whenever the range of F has at least two distinct lines of support.

3* The converse of Theorem 7 is not generally true; for certain
functions F in Hp there can be extreme points not of the form F(φ)
where φ is an inner function. This is already the case when F(z) —
z [see 9, p. 138]. We thank L. Brickman for pointing out the follow-
ing example in which extreme points can be geometrically realized.
Let the analytic function F be univalent in Δ so that F(Δ) is convex
and some arc Γ on the boundary of F(Δ) does not contain a line
segment. Then each analytic function / (say, univalent in Δ) so that
/(0) = F(0), f{A) c F{A) and [closure of f(Δ)] Π [closure of F(Δ)] 3 Γ
is extreme in the class of functions subordinate to F. To see this
consider writing f(z) = tg{z) + (1 - t)h(z)(z e A) where 0 < t < 1, g e Q^
and h e φ *̂ Γ Since F(Δ) is convex ^^ = J?~ and so g and h belong
to H1. Therefore, g and h have radial limits almost everywhere. We
now see that by taking radial limits associated with points eiθ so that
f(eiθ) e Γ that the relation f(z) = tg(z) + (1 - t)h(z) could only be
possible if g(z) — h(z) = f(z) on some set on | z \ — 1 of positive meas-
ure. But then we would have g — h in A.
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