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THE REALIZATION OF POLYNOMIAL ALGEBRAS AS
COHOMOLOGY RINGS
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To the memory of Norman Steenrod

We construct, for certain choices of a group G, a prime
p, and a positive integer n, a space X{G, p, n) whose cohomo-
logy ring mod p is a polynomial algebra, and we classify the
polynomial algebras which can be realized as cohomology rings
by this construction.

Let Zp denote the ring of p-adic integers. From Sullivan's work
on completions [15] it follows that the Eilenberg-MacLane space K(Z%, 2)
is the p-profinite completion of K(Zn, 2), and that as a consequence
of the p-analogue of [15, 3.9] we have

H*(K(Zl 2); Zv) = Zp[xlf x2, , xΛ

where deg x{ = 2. Now if G is a subgroup of GL(n, Zp) and finite,
we have an action of G on the space K(Zn

p, 2) which passes to its
cohomology ring, and we define

X(G,p,n) = K(Z;,2)xGEG

where EG is the total space of a universal bundle for G.

PROPOSITION. If p does not divide the order of G, then H*(X(G,
p} n); Zp) is the subalgebra of invariants of H*(K)(Zn

p, 2); Zp) under
the action of G.

Obviously the conclusions of this proposition apply as well with
coefficients in the prime field Fp or in the field Qp of p-adic numbers.
For the sake of completeness we sketch a proof.

Proof. From [5, Th. 3.1] and [8] it follows that the cohomology
of X(G, p, n) is given by ExtZp[σ)(C*(EG)), C*(K(Z*P, 2)), where we let
ZP(G) denote the group ring over Zp and C* and C* denote singular
chains with coefficients in Zp. The Eilenberg-Moore spectral sequence
associated with this Ext has E2 term determined by

El>* = Extί p ( β ) (Zp, H°(K(Zl 2); Zp))

and it follows that for r > 0, \G\E£>S = 0 by the results of [3, Ch. XII,
2.5]. However, Er

2'
s is a Z^-module and therefore can have only p-

torsion. The fact that p does not divide \G\ implies that EζtS = 0
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except for r = 0 and the spectral sequence collapses, giving

E2 = E^ = Hoπu ( β ) (Zp, H*(K(Zl, 2); Zp))

which is clearly the invariant subalgebra under the action of G. Fur-
thermore, E^ is a free Z^-module and as a result H*(X(G, p, n); Zp)
is isomorphic to the invariant subalgebra as a Z^-module. This shows
that the bundle projection

K(Z;, 2) x EG > X(G, p, n)

induces an isomorphism from the cohomology of X(G, p, ri) onto the
subalgebra of invariants under the action of G, and the proof is
complete.

These remarks reduce the problem to the purely algebraic question
of when the subalgebra of invariants of a finite group acting homo-
geneously on a polynomial algebra is again a polynomial algebra.
This question is answered completely by the following result abstracted
from Theorem 4 of [2, Ch. 2, §5].

THEOREM. Let G be a subgroup of GL(F) where V is a vector
space of dimension n over afield k with characteristic prime to the order
of G or with char & = 0. Let R denote the invariants of the action
of G on S(V), the symmetric algebra of V. Then R is a polynomial
algebra if and only if G is a finite group generated by pseudo-reflec-
tions.

A pseudo-reflection of V is an endomorphism s such that 1 — s
has rank 1. Ker (1 — s) is called the hyperplane of s. We shall call
a finite group generated by pseudo-reflections a hyperplane group of
V. Of course when A: is a subfield of the real numbers, pseudo-reflec-
tions are just reflections. We also observe that if we are given a
basis xl9 x2, , xn of V, that S(V) = k[xl9 x2, , xn] and that if R =
k[ul9 u2, , un], then the order of G is the product of the degrees of
the Ui&. This is also proved in [2]. Of course we shall prefer to
use topological degrees in these graded algebras rather than homo-
geneous degrees. As a result we obtain the following theorem about
the cohomology ring of the space X(G, p, n) by first applying the
theorem above to the case k == Qp and k = FPf and then lifting the
result to Z

p

COROLLARY. Let G be a finite subgroup of Gh(n, Zp) with order
prime to p which is a hyperplane group in GL(π, Qp). Then the coho-
mology ring of the space X(G, p, n) with coefficients in ZP9 QPJ or Fp is
a polynomial algebra.
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Proof. We set V = H\K{Zn

p, 2); Zp) s Z;, and V = F(x) Qp, and
V = V®F9. Then we have S(F) isomorphic to the cohomology ring
H*(K(Zl, 2); Zp) = Zp[xlf x2, ., χn] where deg x{ = 2. We let R denote
the invariants of S(V) under the action of G, .#' the invariants of
S(V') = S(V)(g) Qp, and β the invariants of S(V) ~ S(V) (x) JF; under
the action of the group G obtained from G by reduction mod p. G
is a hyperplane group in GL (n, Fp) and is, in fact, isomorphic to G,
as we shall see.

The theorem above applies directly to R' and R. Clearly we have
R' = R (x) Qp. We also have R = R (x) Fp by the following argument.
For ve S(V) and ae Zp, ave R implies that g(av) — av = a(gv — v) =
0 for every geG. Since S(V) is a free Zp-module, this implies that
veR. Therefore, R is a direct summand of S(V) and consequently
we have R (x) Fp contained in R. On the other hand, given an element
u of Ry we can always write it in the form u — ̂  Vi (x) a{ for some
Vi's in S(V) and some α/s in Fp, and furthermore, since ΰ is an invariant
we have

\G\ r* \G

in which the last expression obviously belongs to R (x) Fp.
Now R is a free ^-module and consequently Rf and R have

the same Poincare polynomials. Since Rr and R are polynomial
algebras, it follows that they have generators of the same degree.
Since the product of the homogeneous degrees of these generators
give the orders of the groups G and G, it follows that G and G must
have the same orders and are isomorphic.

It remains to show that R is a polynomial algebra. Since R' is
a polynomial algebra we have R' = S( Uf) for some graded vector sub-
space of S( V). We let U = U' R. Then if u e R and au e U for some
a e ZP, we have au e Uf and it follows that ue Uf and hence u e U.
Thus R/U is torsion free and U is a direct summand of R. The
inclusion of algebras S(U)—>R is a monomorphism since S(U) and R
are free over Zp and tensoring with Qp yields the isomorphism S( U') =
R'. Comparison of Poincare polynomials shows that S( U) = R, which
completes the proof.

Representations of hyperplane groups* To determine which
polynomial algebras are representable as the cohomology rings of
spaces X(G, p, n) we need a classification of the finite subgroups of
GL (n, Zp) which are generated by pseudo-reflections, and which have
order prime to p. While no such classification seems to be available,
a complete classification of hyperplane groups over the complex field
C has been given by Shepard and Todd [12], and by using some ele-
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mentary theory of group representation to shift back and forth between
C-representations and Zp-representations, we can derive the results we
need. Feit's book [6] is a general reference. By the type of a poly-
nomial algebra we mean the list of the degrees of the generators.

THEOREM. Let G be a finite group with order prime to p. If
G has a faithful representation p as a hyperplane group over Zp, then
G has a faithful unitary representation σ as a hyperplane group over
C, such that σ affords the same character as p. Furthermore, the
invariant algebras obtained from G acting on &{Zn

p) and S(Cn) have
the same type.

Proof. Let χ denote the character of p, viewed as a Qp-repre-
sentation for G. Since char Qp = 0, there is a finite extension E of
the rational field Q and an jK-representation σ of G which affords the
same character as p. Since p and σ may be construed as ϋΓ-repre-
sentations for some common extension K of E and Qp, and since they
afford the same character, it follows that as i£-representations p and
σ are similar by [6, I, 2.6], Thus σ still represents G as a hyperplane
group and is a unitary representation of G if we consider E a subfield
of C.

Let R denote the invariant subalgebra produced by the action
of G on S(Z;) via p. The argument of the preceding corollary may
be repeated to show that R is a polynomial algebra. Let R denote
the invariant subalgebra produced by the action of G on S(E") via σ.
The actions of G on S(Kn) via p and a have invariant subalgebras
R (x) K and R ® K and these ϋΓ-algebras are isomorphic since the
representations are similar. The invariant subalgebra obtained from
the action of G on S(Cn) via σ is clearly R ® C. It is obvious that
all these invariant subalgebras must have the same types and the
proof is finished.

This theorem shows that we can pass from hyperplane groups
over Zp to hyperplane groups over C. We cannot always go in the
opposite direction, but the following proposition tells us when we can.

We recall that the Schur index of a character χ is the minimum
of the degrees [F: Q(χ)] taken over all the fields F for which there
is an jP-representation affording χ.

PROPOSITION. If σ is an irreducible unitary representation of G
with character χ whose Schur index mQ(χ) is 1, then there is a Zp-
representation of G which affords the same character χ if and only
if Qp contains a subfield isomorphic to the character field Q(X)

This is obvious. We now show that for hyperplane representations
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over C the Schur index is always 1. In fact we can extract most
of the following theorem from the section on the Schur index in
Huppert's book [7, V, §14].

THEOREM. Let σ be an irreducible C-representation of degree n

of a finite group G and let χ denote the character of σ. For geG

let Fσ{g) denote the subspace of Cn left pointwise fixed by σ(g) and let

k = max {dimc Fσig) \g e G, σ(g) Φ 1} .

Then the Schur index mQ(χ) is at most n — k.

Proof. The group algebra Q(X)(G) is semisimple and X is non-
zero on precisely one of its constituents, call it A. A is simple and
is a complete matrix algebra, by the Wedderburn theorem, of m x m
matrices over D, a division ring over θ(%). Furthermore, A is central
simple over Q(χ) and we have

A = m2 dimρ(z) D = (mQ(χ)f

hence

d i m ^ ) A = n2 = m2(mQ(X))2 .

Let π denote the projection of the group algebra Q(χ)(G) onto A and
let / denote a minimal nontrivial left ideal of A. G acts on /via the
projection and, furthermore, /consists o f m x m matrices over D which
vanish outside one column. Therefore,

dim0(z) I — m* dimζ)(z) D = n mQ (X) .

In fact the action of G on I is equivalent to the representation
mQ(χ) o. For g e Gy π(g) acts on / by left multiplication and the space
Fπ{g) left pointwise fixed under this action is a right vector space over
D. Thus when π(g) Φ 1, we have dim^ Fπig) <£ m — 1. It follows that

) FrΛg) ^ (m - l)(mQ(X))2 = mQ(χ) (n - mQ(X)).

On the other hand,

d i m ρ ( χ ) Fz{g) - dimQ(γ) FmQ{γ).σ{g) = mQ(χ) dimQix) Fo{g) .

Consequently when σ(g) Φ 1, we also have π(g) Φ 1, and thus

dimQ{χ)Fσig) ^ n - mQ(χ) .

Maximizing over the g's for which σ(g) Φ 1 yields k ̂  n — mQ{X).

COROLLARY. For hyperplane representations the Schur index is
always 1.
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Classification of the types* To summarize the situation to this
point, we know that if p does not divide the order of G, then the
space X(G, p, n) has polynomial cohomology mod p precisely when G
is a hyperplane group over Zp. A hyper plane group over Zp always
has a representation as a unitary hyperplane group, while a given
unitary hyperplane group has a Z^-representation as a hyperplane
group only for some primes.

Further, we observe that while the space X(G, p, n) depends on
the class of the ^-representation of G, its cohomology algebra depends
only on the class of the (^-representation, which is to say, upon the
character. For this reason it turns out that the types of polynomial
algebras realizable in this way are products of irreducible types,
although we cannot say the same thing for the spaces involved. It
may be that such a statement is true after completion.

In the table below the types are given with topological degrees
and the last column gives conditions on the primes. We give the
order of G as well as the rank of the algebra it determines.

THEOREM. The types of polynomial algebras modp which can
be realized as the cohomology ring H*(X(G, p, n); Fv) where G is a
hyperplane group over Zp with order prime to p are products of
the irreducible types given by the following table:

Number

1

2α*

26

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Rank

n

n

2

1

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

Order

(n + l)\

qmn~ιn\

2m

m

24

72

48

144

96

192

288

576

48

96

144

288

600

1200

1800

Type

[4,6, ...,2(w + l)]

[2m,4m, ,2(n — l)m,2g^]

[4,2m]

[2m]

[8,12]

[12,24]

[8,24]

[24,24]

[16,24]

[16,48]

[24,48]

[48,48]

[12,16]
[16,24]

[12,48]

[24,48]

[40,60]

[40,120]

[60,120]

Primes

pHn+ 1)1
rp\ n\ ,p = 1 mod m

m > 2, p = ± 1 mod m

p = 1 mod m

p = 1 mod 3

p = 1 mod 3

p = 1 mod 12

p = 1 mod 12

p = 1 mod 4

p = 1 mod 8

P Ξ I mod 12

p = 1 mod 24

p = 1,3 mod 8, pφ2>

p = 1 mod 8

p = 1,19 mod 24

p = 1 mod 24

p = 1 mod 5

p s l mod 20

p = 1 mod 15

(table to be continued)
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(table to be continued)

Number

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

Rank

2

2

2

2

3

3

3

3

3

4

4

4

4

4

5

6

6

7

8

Order

3600

360

720

240

120

336

648

1296

2160

1152

7680

14,400

64-6!

216-6!

72-6!

108-9!

72-6!

8-9!

192-10!

Type

[120,120]

[24,60J

[24,120]

[24,40]

[4,12,20]

[8,12,28]

[12,18,24]

[12,24,36]

[12,24,60]

[4,12,16,24]

[8,16,24,40]

[4,24,40,60]

[16,24,40,48]

[24,36,48,60]

[8,12,20,24,36]

[12,24,36,48,60,84]

[4,10,12,16,18,24]

[4,12,16,20,24,28,36]

[4,16,24,28,36,40,48,60]

Primes

p = 1 mod 60

p = 1,4 mod 15

p = 1,49 mod 60

p = 1,9 mod 20

p ΞΞ 1,4 mod 5

p = 1,2,4 mod 7

p = 1 mod 3

p = 1 mod 3

p ΞΞ 1,4 mod 15

p φ 2 or 3

p = 1 mod 4, p Φ 5

p ΞΞ 1,4 mod 5

p ΞΞ 1 mod 4, p ^= 5

p = 1 mod 3

p ΞΞ 1 mod 3

p ΞΞ 1 mod 3, p Φ 7

p^=2,3, or5

p^= 2,3,5, or 7

p ^ 2 , 3 , 5 , or 7

* where m > 1 and m = qr.
Note: The product of the entries in the type is 2 r a n k x |G| .

Proof. The groups on this list come from the classification of
irreducible unitary hyperplane groups given by Shepard and Todd [12,
p. 301]. Given a faithful representation p of a group G as a hyper-
plane group over Zp, we know that the character field Q(χ) is con-
tained in Qp and, furthermore, we know that there exists a faithful
unitary representation σ of G which affords the same character χ.
Now o is equivalent to a sum Σi σi °f irreducible unitary represen-
tations Gi with characters χ<. Let G; = σ^G). It follows from the
fact that G is generated by pseudo-reflections that each Gt is an
irreducible unitary hyperplane group and that G is isomorphic to the
direct product of the G> Of course each Gt must be among the groups
listed by Shepard and Todd. What is more, since G is hyperplane and
the Schur index mQ(χ) = 1, we may assume that σ is a Q(χ)-represen-
tation, and consequently that the same is true of each σ4. As a result
Q(χ) must contain the character field Q(Xi) for each i. (The essential
step in this argument is to see that each pseudo-reflection of G must
belong to one of the groups Gi9 that is, must leave fixed all but one
of the invariant subspaces of Cn under the action of G.) Since Q(χ̂ )
is contained in Q(χ) and hence in Qp, it follows that each G4 has a
representation over Zp, say p{ which affords the same character χ4 as
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σ{. Consequently we have that Σ* ft * s a representation of G as a
hyperplane group over Zv with character Σ< χ̂  — χ, as a result of
which it must be equivalent to p, the representation with which we
started. Thus the type of G is a product of the types of the G{,
that is, of types in the list of Shepard and Todd.

It remains only to compute the primes for which various types
on the list can occur. To do this we must compute the character
field for each of the groups from the information of Shepard and
Todd [12]. In most cases this is not difficult at all and we omit the
details, simply listing the results in the table below. However, we
do give the details for the groups 2a and 26, which are more difficult.

No.

1

2α

26

3

4

5

6

7

8

9

10

11

12

βω

Q

Q(θ)

Qiθ)

Qiω)

Qiω)

Q(i, ω)

Qii, ω)

β »

Qii, V 2)

Qii, ω)

β(e, ω)
Q(V^2)

Table

No.

13

14

15

16

17

18

19

20

21

22

23

24

25

of Character Fields

βω

QH, V"2)

Qiω, V=2)

Qii, ω, V"2)

Qiv)

Qϋ, v)
Qiω, η)

Qiω, i, η)

Qiω, VT)

Qii, ω, VΊΓ)

Q(i,VT)

Qivτ
β(V=7)

Qiω)

No.

26

27

28

29

30

31

32

33

34

35

36

37

βω

Qiω)

Qiω, VΊΓ)

Q

Qϋ)
β(Vδ)

QH)
Qiω)

Qiω)

Qiω)

Q

Q

Q

w h e r e i = V — 1 , ω = e27ίi/3, η = e27ClΓ°, ε = e2 7 ίV s,# = e2icί/m.

Character fields of the groups 2a and 2b. These are the group.
G(m, r, n) consisting of all the transformations xt —• ΘVi xσ{ih where
xlf x2, , xn is a basis for Cn, σ is a permutation of n letters, θ =
e2πiim, and the v/s are integers satisfying the congruence Σi v% =
Omodr, and where m > 1 and m = qr. The order of G(m, r, n) is
qm^ nl as computed in [12]. Clearly Q(χ) is contained in Q(θ)
and when n > 2, Q(χ) = Q(/9) because G{m, r, n) contains transforma-
tions of the form xγ —> θxu x2 —> ^αα?3, α;3 —> ^^^2, and ^ —•» #* for i > 3.
On the other hand, for n = 2, G(m, r, n) has the transformation
xL-^θxu x2—>θ~ίx2f so that Q(θ + 61"1) is contained in Q(χ). To decide
whether Q(χ) is Q(^) or Q(θ + θ~ι) we need to look closely. We observe
that when q > 2, we have θr is in Q(χ) but not in Q(θ + 0"1) and
therefore Q(χ) = Q(6>) for g > 2. This follows because Q(θ) is a degree
2 Galois extension of Q(θ + /9"1) with nontrivial automorphism θ —> 0"1,
and θreQ(θ + 0"1) would imply θr = ^~r or m| 2r, contradicting g > 2.
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When q — 2, we have Θr = — 1, and G(m, r, 2) contains the transfor-
mations xt —> 0a?!, £2 —» ± 0~^2 so that θ ± θ~ι belongs to Q(χ) and Q(χ) =
Q(0). Finally, for g = 1, G(m, m, 2) is the dihedral group of order
2m generated by the transformations xι —» #0 ,̂ x2 —» tf"1^, and a?x —> a?2,
#2 —• a?!, from which we compute directly that Q(χ) = Q(θ + 0"1).

Determination of the primes for which a given type occurs. This
is a simple matter now that the character fields are given. In the cases
1, 28, 35, 36, 37, the character field is Q and the only restriction is
that p does not divide the order of G. For many of the other cases
the conditions are determined by the fact that Qp contains only the
(p — l)st roots of unity. In the cases where square roots occur, we
use the theorem that Qp contains i/ a if and only if a is a quadratic
residue moάp [1, Th. 1, p. 48]. The results are obtained by routine
use of quadratic reciprocity.

This completes the proof of the classification theorem.

Remarks on the primes allowable for a type* All the presently
known types of polynomial algebras which can occur as the modp
cohomology of a space are given as products of the types in the list
above. However, it is clear that some types occur for primes other
than those listed. It turns out, however, that we are missing at most
primes which divide the order of the group. To verify this it is
sufficient to apply the following result [4, Th. 2].

THEOREM. If B is an algebra over the Steenrod algebra as well
as a polynomial algebra over Fp on generators of even degree, one of
which occurs in degree 2m, then either p\m or else B has a generator
in some degree 2n where n = 1 — p mod m.

This theorem can also be used to eliminate some of the primes
dividing the order of the group. Specifically we can eliminate p = 3
for the groups 6, 8, 9, 13, 16, 17, 22, 23, 24, 29, 30, 31, and we can eli-
minate p = 5 for the groups 20, 21, 30, 31, 32, 33, 34. There still remain
a number of cases not constructed by our method for given primes
dividing the order of the group.

Final remarks• One would like to have a complete answer to
the question first raised by Steenrod in [13]: Given a graded polynomial
algebra A — Fp[xlf x2y , xn] of rank n over the prime field Fp with
generators of even degree, under what conditions does there exist a
space X whose cohomology algebra H*(X; Fp) is isomorphic to Al

The requirement that A admit an action of the Steenrod algebra,
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and higher order operations, severely limits the types of polynomial
algebras which can be realized. In the rank one case Fp[x] admits
Steenrod operations only when deg x = 2Xpk where λ | (p — 1), and
secondary operations eliminate all the cases where k Φ 0, except the
type [4] for p = 2 (realized by infinite quaternionic protective space).
All the types [2λ] where λ | (p — 1) are realized as shown by Sullivan
[15, 4.30] and by group 3 above. In rank 2 some restrictions have
been obtained by Nakagawa and Ochiai [9], but their results can be
improved even by further use of primary operations. In ranks above
2 nothing whatever has been accomplished and in general it seems
that we are very far from an answer.

We see no reason not to conjecture that the list of types
constructed above, and their products, with the exceptional primes
determined, is the complete list of polynomial algebras realizable as
cohomology rings, but the evidence for this is very slender.
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