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LIMIT SETS OF POWER SERIES OUTSIDE THE
CIRCLES OF CONVERGENCE

CHARLES K. CHUI AND MILTON N. PARNES

Let U denote the open unit disc in the complex plane C.
A power series of a complex variable with center at the origin
and radius of convergence equal to one will be called a power
series in U. It is well-known that the behaviors of a power
series outside its circle of convergence are quite irregular.
In particular, it is proved that for each complex number
z*, \z*\ > 1, and for every closed set E in C, there is a power
series in U whose limit set at z* is E. The power series
Pa(z) = Σ (1 — eίna)zn, a real, are studied in this paper. Their
peculiar properties seem to suggest that it might be fruitful
to study the irregularities of power series outside their circles
of convergence by probability theory. To study Pa{z), results
in diophantine approximation are obtained.

We first recall the following result obtained in [2]:

THEOREM A. There exists a power series P in U with the pro-
perty that for each compact set K which lies outside the unit circle
and has connected complement and for any function f continuous on
K and holoTπorphic at the interior points of K, there exists a sub-
sequence of the sequence of partial sums of P that converges uniformly
to f on K.

Hence, different subsequences of the sequence of partial sums of
a power series in U may overconverge to different values at the same
point outside the unit circle. This leads to the following

DEFINITIONS. Let P be a power series in U and let | a | > 1.
(1) We denote by L(a, P) the set of all complex values which

are the limits of all the convergent subsequences of the sequence of
partial sums of P at the point a and we call it the limit set of P at a.

(2) If L(a, P) Φ 0 where \a\ > 1, we say that a is an excep-
tional point of the power series P.

For instance, if P(z) = Σ~=o zk is the geometric series, it is clear
that L(a, P) ~ 0 for every point a with | a \ > 1, so that the geometric
series has no exceptional points outside the unit circle. On the other
hand, if P is a "universal series" as described in Theorem A, then
every point a outside the unit circle is an exceptional point of P and
L(a, P) — C, the entire complex plane. We first establish the follow-
ing result.
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404 C. K. CHUI AND M. N. PARNES

THEOREM 1. For every complex number a of absolute value greater
than one and for every closed set E in the complex plane, there is
a poiver series P in U such that L(α, P) = E.

Next, we observe that the behavior of a power series outside its
circle of convergence is like a "random walk". If P is a power series
in U with coefficients an and if | z | > 1, then lim sup | anz

n \ = oo so
that we can interpret that the walk of P(z) has "very large steps".
If P has no exceptional point, the walk of P(z), \ z \ > 1, can only
lead to infinity. On the other hand, zQ is an exceptional point of P
if and only if the walk of P(z0) enters a finite neighborhood infinitely
often.

We prove two more theorems in § 2. Theorem 2 gives a criteria
in terms of the coefficients of the power series to determine a region
of the plane with no exceptional points, and Theorem 3 contains an
analysis of when certain gap series have no exceptional points. The
entire section is very elementary and uncomplicated. In § 3 we prove
some results on diophantine equations, most of which are needed to
prove Theorem 6 of § 4.

The theorems we would like to have proved would say that if
a series is "active" enough to have exceptional points then L(z, P)
will usually be "as large as possible". We have no theorems of this
sort but only an example. The example is stated as Theorem 6 in
§ 4. Let

/«(*) =
1 - z 1 - zeίa

where 0 < a < 2π and let Pa denote the power series expansion of fa

in U. Then for all irrational multiple, a, of 2π the power series Pa has
the property that the set of exceptional points z = Re~ial2 with cor-
responding limit sets

L(z, Pa) = {fa(z) + -J* x : x real}
1 — z

where
λ - arg{[l - Re^/2]/[l - Re~ial2]}

and 0 ^ λ < 2π, is uncountable and dense in the ray Re~ial\ R > L
It seems to be a promising evidence for the type of result we seek.
However, in Theorem 6* of § 5 we present a version of Theorem 6
which seems to run counter to this view. In § 6 we shall try to
justify why we believe that Theorem 6* does not necessarily run
counter to the sort of theorem we should like to have proved.

We close our introduction with a historical note. Around the
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year 1910, R. Jentzsch started the study of the zeros of the sections
Pn of a power series P in U; and the related development of the
phenomenon of overconvergence was discovered by M. B. Porter in
1906 and was later rediscovered by R. Jentzsch in 1914 and A.
Ostrowski in 1921 [cf. 4 and 5]. Since then, this work has been
much generalized and followed up by many mathematicians. For
instance, there are fifteen articles in the Japanese Journal of Mathe-
matics between 1924 and 1928, contributed by S. Izumi, S. Narumi,
T. Shimizu, and M. Tsuji. Their results are somewhat related
{although from a different point of view) to ours in this paper.

2* Proof of Theorem 1; coefficient and gap series theorems*
To prove Theorem 1, we let | a | > 1 and let E be any closed set in
the complex plane. Let {b3} be a dense sequence of points in E. We
construct the power series P(z) = ΣΓ=o α&2fc in U as follows:

Let Pn(z) = Σϊ=o akz
k denote the (n + l)th partial sum of P. We

choose a sequence of integers {kn}, 1. <S fc: < k2 < , inductively so
that a \kι ^ I &i |, and for n = 2, 3, ,

where we choose simultaneously aό = 0 if j is not one of the kn

(n = 1, 2, •), and for each j = 1, 2, , we take αfc2i_1 = 1 and
define, inductively, ak2. = (l/ak2ή(bj — P^.^a)). Hence, Pk2j(a) = b5 and
Pjc^a) - Pk2jJa) = α ^ -i + P,2(i_1}(α), where j = 1, 2, . .. Therefore,
for each j = 1, 2, ,

^ (1/1 a \k*)(\ 6,-1 + 1 P2i_x(α) |)

Also, the other coefficients ar of the power series P are either zero
or one and the coefficient one appears infinitely often. Thus, P is
a power series in U.

Now for each beE, let {bj{n)} be a subsequence of our dense
sequence {bj} which converges to 6. Since Pk2j{n)(a) = 6i(w), we see
that beL(a, P). Hence, EaL(a, P). On the other hand, for each
integer N, PN(a) = Pkn(a) where kn <; N < fcw+1. If n is odd, say

+ bs, so% == 2

that
y + 1, then

I PΛa) I ^ a

PΛa) = a) = (

a \k2J+
i-i

' - Σ
r=l

Pk ((x) = α / ΰ 2

i

JΓ

kr\U') 1 2-j
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If n is even, say n = 2j, then PN(a) = Pk2j(a) = h e E. Since E is
a closed set, we have L(α, P) c i£, so that L(α, P) = £7.

We like to point out that this result is quite specialized in that
we construct a different series for each point α, | a | > 1, and for each
closed set E.

Next, let us consider a class of all power series in U with
bounded coefficients:

P(z) = Σ ^zk f \ak\£M , fc = 0, 1, .

We observe that a subsequence of the coefficients of a power series
P of this class may have very small absolute values, so that even
though I z I > 1, some steps of the walk P(z) may be small enough
that the walk may enter a finite neighborhood infinitely often. For
instance the coefficients of Pa, aβπ irrational, are uniformly bounded
by 2 and the exceptional points of Pa are dense on the infinite ray
Re~α/2, R > 1, (cf. § 4). Hence, in order that the walk of the power
series

p(7\ _ v Π zk
Γ \ z ) — 2-L akZ

does not enter any finite neighborhood infinitely often for large values
of I z I > 1, we also require a positive lower bound for the nonzero

fc = 0, 1, . We have

THEOREM 2. Let

P(z) = vΣ
k = 0

where 0^nQ<nx< and 0<m^\ak\^M<oo for all k = 0, 1, .
Then P has no exceptional points in \ z | ^ r0, where r0 — 1 + M/m.
Furthermore, the value r0 — 1 + M/m is best possible.

Proof. Let
CO

P(z) — Σ akz
%k

where 0 ̂  n0 < nx < and 0 < m ^ | ak \ <̂  M < °o for all k = 0, 1,
Let Pn be the (^ + l)th partial sum of P and r0 = 1 + M/m. Suppose

that
that
as n

for some z with
\Pn(z)
= nk.

for each j ,

< 5 for a
= Ni9 j = 1

we write

z = r ^ r0, there
subsequence of w.

,2, . . . . Then

fc ι t -

1

exists
We i

•(2) 1 <

*•' + «

a number
write this

•^> ^ •*•>

B < co such
subsequence

2, . . . . Now
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and hence,

kj+1-l

B > I PN.Jz) I > -B + m \ z |^+* - M Σ I«\H

J i ~ t=kj+l

Since ^ . + 1 > wAy = iV; and nkj.+1^ ^ wfcj.+1 - 1 = Nj+1 - 1, we have

Now, r ^ r0 implies —M/(r
have

1) ^ —M/(r0 — 1) = — m. Hence, we

- 1) < 2JB ,

which is a contradiction if we take j —•* oo.
To prove that the value r0 = 1 + M/m is best possible, we con-

cider the following example. Let

pn(x) = m ^ - Mix71-1 + + 1) .

Then pn(ϊ) = m~ nM<0 and pn(r0) = m(l + M/m)n~ [m(l + M/m)%-l] =
1 > 0. Hence, considered as a polynomial of one real variable, pn

has at least one zero in (1, r0). Let xn be the largest zero of pn in
(1, r0). Then

mxl = M{xl - l)/(xn - 1) .

Hence, xl = M/[m(r0 — xn)\. Since pn(ΐ) —> — °°, x̂ —> oo or α;,,—>r0.
Let c be any real number such that 1 < c < r0. Then there is an %'
such that 2v has a zero in (c, r0). Let α?0 be this zero. We now
construct our power series P as

Σ
k=0

= Σ
j=0

where the N3 are so chosen that N3 3 ̂  > n'f j = 1, 2, Hence,
the coefficients ak can only be m or — M so that 0 < m ^ | ak |
Λf < oo, & = 0, 1, . Furthermore, since p.,(a?0) = 0, the power series
P overconverges to zero at the point x0. That is, the power series
P has an exceptional point xoe (c, r0). Since c is arbitrarily chosen in
(1, r0), we have completed the proof of the theorem.

Now, let us consider the class of all gap series

P(z) = Σ a,hz**
k=0

where | ak \ = 1, k = 0, 1, 2, and 0 ^ π 0 < ^ < . Since | ak \ = 1
for all Λ, the magnitudes of the steps of the walk of P(z) depend
only on | z \%k, \ z | > 1. Hence, one would expect that if the sequence
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{nk} tends to infinity very rapidly, the power series P should not
have any exceptional point in | z | > 1. However, let us consider the
following example.

Let p(z) = z2-z-l. Then if s0 = (1 +i/5)/2, | z0 \ > 1 and p(z0) = 0.
Consider the gap series

where Nk — Nk^ ^ 3, k — 1, 2, . Hence, 0 ^ n0 < nx < . It is
clear that P has an exceptional point at z0 even though the sequence
{Nk}, and hence {nk}, is allowed to tend to infinity arbitrarily fast.
For instance, a Fabry gap series (with l im^^ k/nk = 0) and a gap
series with Σ ϊ U l/w* < ô may have exceptional points in \z\ > 1.

However, if the sequence {wj tends to infinity "uniformly fast",
say (nk — n^), k = 1, 2, , are also large, then the walk of the gap
series P{z), \ z | > 1, has to lead to infinity. We have the following

THEOREM 3. Let

P(z) = Σ

where \ak\ = 1, k = 0, 1, 2, and 0 ^ nQ < nt < - --. Then the
power series P has no exceptional points in \ z \ > 1, provided that
any of the following gap conditions is satisfied:

( a ) nk/nk^ ^ λ > 1, k = 1, 2, . . . .
( b ) Wfc — nk-x —> co a s A: —> oo .

(c) Lei a> 1 be arbitrarily chosen. For each r > 1, ί/^re is
cm iVr, s^cfe ^Λaί /or aZZ k ^ Nr,

nk — wfc_! Ξ> a — log (r — l)/log r.

(d ) For each r > 1,

The proof of this theorem is easy. It is clear that (a) ==* (b) => (c).
We also remark that (c) => (d). Indeed, if (c) is satisfied, then for
r > 1 and k ^ Nr, we have

γ _

where a > 1, so that

L r — 1 J
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Hence, (c) => (d). Now suppose that (d) is satisfied. Then for | z | =
r > 1, we have

aQzn° + + akz"k I > rnk - (rn° + + rnk~ή

> rΛ* - r**-1^ + r"1 + r~2 + •)

r — 1

That is, P has no exceptional point in | z \ > 1.

3* Results in related diophantine approximation* The follow-
ing investigation shall be used in § 4. Let R(x) > 1 be a nonincreas-
ing function on the closed interval [r, s] c (0, 1). As usual (cf. [1]),
let {x} be the fractional part of the real number x, that is, {x} = x —
[x], where [x] is the largest integer less than or equal to x. Let
αe(0, 1) be a irrational number and let δe(r, s). We must investi-
gate the diophantine inequality

(1) J*r-£ {na} - b £ A

R(b)« ~ ι J ~ R{bf

where A and B are arbitrarily chosen real numbers and n — 1, 2, .
Let ΘJa; B, A) be the set of b e [r, s] such that there exist infinitely
many n satisfying (1), and let

θR{a) = U θR(a; B, A) .
B<A

PROPOSITION 1. For any irrational number a on (0, 1), the set
θR(a; B, A) is of cardinality c (that of the continuum), of measure
zero and dense in [r, s].

Proof. Let Bn be the set of values b satisfying (1), and let
μ(Bn) be the Lebesgue measure of Bn. Then μ(Bn) ^ (A - B)jR(s)n.
If b is a solution to (1) for more than K different n's, then be
\Jn=κ Bn. Hence, θR(a; B, A) is a subset of \Jn =κ Bn for any K, and

B ) < y A~B
j
=K

for any K, so that μ(θR(a; B, A)) = 0.
To show that θR(a; B, A) is dense in [r, s], we take Jx = [αx, bλ] c

(r, s) where αx < 6X; and by the density of the sequence {na} in (0, 1)
and the fact that 1/Rn(s) tends to zero, we can find an nx such that
{n,a} - A/R(aJ*i, {n,a} - B/R(a^ni

9 {n,a} - AjR(b^ and {n,a} - BjRQ)^
all lie in Ix. (For convenience, we assume that A and B are both
positive. If they are both negative we have a similar proof, and if
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B is negative and A is positive the proof is even easier.) Then
from (1) and the fact that R{aλ) ^ R{x) ^ Rib,) for any xel19 we
have the following inequalities

(2) {n.a} - A/Ria^ ^ {n.a} - A/R(x)nί ^ {n.a} - A/Rib,)^ where each
respective quantity in (2) is smaller than the corresponding quantity
of the inequalities

(2') Kα} - B/Ria,)^ ^ Kα} - B/R(x)nί ^ {n.a} - B/R^fK Suppose
that

(3) {n.a}-BIR{b^> {n.a}-AIRia,)^ holds. Then (1) holds for
all x (in place of b) in Ix and in this case, we let
(4) a2 = {n.a} - A/Rib^, b2 = {n.a} - B/R(adni and take I2 = [α2, b2].
Since hal19 (1) holds for n = nx and for all x (in place of 6) in 72.

Suppose that (3) does not hold. Then we have to find a1 and bx

such that c&! < ffi < &Ί < &i and

(5) {^α} - ^/^(αO^1 < {n.a} - B\R(b^. To show that we can find
such aγ and bί9 we consider the following figure:

^ e > ^ {Wα}
 §

 bί'
When we move at slightly to the right to search for a19 the

interval [{n^a} - A/Ria^1, {n^} — BjR{a^\ moves to the left to
become the interval [{n^} — AIR(a^n\ {n.a} — B/Ria^1]. Similarly,
when we move bx slightly to the left to search for b19 the interval
[{nγa} - A/Rfa)*1, {n^a} — BjR{b^\ moves to the right to become the
interval [{n.a} - A/JBίδΊ)*1, {n,a} - B/Rib^]. It is not difficult to see
that we can move αx and bι as above such that the new intervals
overlap and ax < b19 where we choose either

( A )
\xe 1^. x < {n^} — n/ v [ and
I R(x)nι)

(= sup \xe 1^. x

or

and bx = inf ja? e J^ a?
' R(x)nί

We then let

and take J2 = [α2, 62]. Then i c ί : and (1) holds for all x (in place
of b) in I2 for w = Wi Hence, in any case, we can define I2 to have
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the desired properties. Now, we proceed inductively to define /3 in
a similar way, and so on. Then I1 => J2 3 , and diam In —> 0. Let
b be the common intersection of all the In.

However, our interval Ix was chosen arbitrarily. Hence, the set
θR(a; B, A) of the elements b is dense in [r, s].

By modifying the proof a little, we can actually prove that the
cardinality of ii Π θR(a; B, A) is c. This is done by using the familiar
technique of constructing nested nondegenerated closed intervals such
that each closed interval contains two disjoint ones. Hence, every
chain of nested nonempty intervals converge to a different point and
there are c many different chains. This completes the proof of the
proposition.

REMARK. Since all proofs concerning measures, density and cardi-
nality are similar to the above proof, we shall only devote our atten-
tion to proving existence in the remaining propositions.

It is clear that θR(a) = \J~=iθB(a\ —n, n), so that we have the
following

COROLLARY. If a is irrational, then θR(a) is of cardinality c, of
measure zero and dense on [r, s].

Next, we make the following

DEFINITION. Let L*(&, a) be the set of all accumulation points
of the sequence kn where kn is defined by {na} — b = kn/R(b)n. If
L*(&, α) is the whole real line, we say that L*(b, a) is full.

PROPOSITION 2. For any irrational a on (0, 1), the set of b, such
that L*(b, a) is fully is of cardinality c, of measure zero and dense
on [r, s].

Proof. Let rlf r2, be a dense sequence of real numbers. We
proceed by induction as in the proof of the above proposition, except
that we change the constants A and B to be the constants rn + 1/n
and rn — 1/n respectively in the wth induction step. It then follows
routinely that this will work.

We refer to the final section for further comments on the above
proposition.

We now close this section with a result in a slightly different
direction. If in (1) we hold b fixed instead, then we have the following

PROPOSITION 3. Let 0 < b < 1 and let f be a positive function
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defined on the positive integers. Then there are uncountably many
values of a with the property that for each of these a, there exist
infinitely many pairs of integers n and mn such that \na — b — mn\ <
nf(n). If Σ/(%) < oo, the set of values a is of measure zero.

Proof. Choose a0 and ε0 such that 0 < ε0 </(l), and that α0 =
b — ε0 is a nonnegative rational number. Let n0 — 1, and define,
inductively, the nonnegative rational numbers ajf the positive ε̂  and
the positive integers %, such that for each k — 1, 2, ,

— -ek = ak, Σ αy = —
nk i=o nk

Σ
k

<f(nk) .

Here, mk and wΛ are not necessarily relatively prime, and mk is a
function of nk and the rational number Σylo &i Then

nk

where we define

3 = 0

It is not difficult to see that the set of all a which work is uncount-
able and dense in (0, 1).

4* Main examples and related results* It is natural to ask
what are the behaviors of some power series in U, less artificial
than those obtained in Theorems A and One concerning their excep-
tional points outside the unit circle and the corresponding limit sets.
We first make the following observation concerning power series
which are somewhat like the geometric series. Its proof is almost
trivial and also follows trivially from a well-known theorem of
Jentzsch [cf. 4].

Observation. Let f be a function holomorphic in a neighborhood
of the closed unit disc with an exception of a pole on the unit circle.
Then the power series expansion of f in U has no exceptional point
outside the unit circle.

If the function / has more than one pole on the unit circle, then
its power series expansion in U may have exceptional points outside
the unit circle as we shall see in the following theorems. In this
direction, we should like to mention that, however, if / has a finite
number of algebraic singularities of fairly general type on the unit
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circle, then Shimizu [8] and Tsuji [9] have shown that the set of
exceptional points of the power series expansion of / in U has linear
measure zero. To obtain more specific informations, we examine the
functions

1 — z 1 — zeia

where 0 < cc < 2π, and let Pa denote the power series expansion of
fa in U. We obtain the following results.

THEOREM 4. Let a/2π be a rational number, say a/2π — p/q where
(pf q) — 1 and 0 < p < q. Let na = (q — p)/2 — 1 if (q — p) is even
and na = (Q ~ V ~ l)/2 if (q — p) is odd. Then the power series Pa

has exactly na distinct exceptional points in \ z | > 1, where na may
be zero. If z* is an exceptional point of Pa, then z* = Re~~ία/2 for
some R> 1 and L(z*, Pa) = {fa(z*)}. Furthermore, if z0 = 1 + e~ia

lies outside the unit circle, then it is one of these exceptional points.

THEOREM 5. Let a/2π be an irrational number. Then the power
series Pa has an uncountable number of exceptional points in \ z \ > 1.
These points all lie on the ray Re~ίa'2, where 1 < R < °o, and form
a dense set of linear measure zero on this ray. Furthermore, if
z = Re~W2 with R > 1 and

λ = arg {[1 - Reial2]/[1 - Re~ia'2]} ,

0 ^ λ < 2π, then the limit set L(z, Pa) is contained in the straight
line

{f{) + f x :
1 — z

We can be a little more precise about these limit sets, as in the
following

THEOREM 6. For each irrational number a/2π, the power series Pa

has the property that the set of exceptional points z — Re~ία/2 with
corresponding limit sets

L(z, Pa) = {fa{z) + ψ x: x real}
1 — z

is uncountable, of measure zero and dense in the ray Re~ial\ R > 1,
where λ is as defined in the above theorem.

To prove these theorems, we consider the (N + l)th partial sum
of Pa:
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Σ

( 6 ) 1 - z 1 - zeia

Hence, for each z with | z \ > 1, we see that L(z, Pa) Φ 0 if and only
if there exists a sequence of positive integers N3- such that

( 7 ) (1 - zeia) - eiN>'a(l - z) = 0(1/] z \Nή

as Nj-^oo. Suppose that | z | = R > 1 and (7) is satisfied. Then

e<*i« -> e** = (1 - 2eία)/(l - z) for some /9, 0 ^ /9 ^ 2ττ. Let s - Reί/?.
Then taking the arguments of both sides of the equality

we have

(β + τr)/2 = (0 + a) + 09 - a + ττ)/2 (mod 2ττ),

or θ = -a/2 (mod 2π). Hence, we conclude that if z φ Re~ial\ R > 1,
ί/^w L(a;, Pα) = 0 /or eαc/& α, 0 < a < 2π. Thus, to find the excep-
tional points of Pa, 0 < a < 2π, we only consider 2 = Re~ία/2 with
R > 1. By (7), we see that z = Re~ία/2, -B > 1 is an exceptional point
of Pa if and only if there is a sequence of positive integers N3 such
that

( 8 ) e™*'* - 1 ~ R e , ^ 2 = 0(1/22*0

as Nj —> co. Let

( 9 ) eίλ = -1 ~ R β _ ^ 2 , 0 ^ λ < 2 π.

Then it can be shown, by using some geometric argument, that
λ = X(R) is a strictly decreasing continuously differentiable function
on the interval [1, 00) with λ(l) = π + α/2 and λ(°o~) = a. Also, it
is clear that | eiN*a - eiλ\ = 0(l/RNή if and only if

I N3 a/2π - X/2π \ (mod 1) - 0(1/22*0

Let a = a/2π and b = b(R) = X(R)/2π, 0 < a < 1. Then z = Re~ία/2 is
α^ exceptional point of Pa if and only if

( I ) a < b < (α + l)/2, cmd
(II) ί/iere eα isί positive integers Nj with

- b) (mod 1) = 0(1/22*0



LIMIT SETS OF POWER SERIES OUTSIDE THE CIRCLES OF CONVERGENCE 415

as Nj—*°°. Furthermore, the number of different values of b = b(R)
satisfying both (I) and (II) is exactly the same as the number of dis-
tinct exceptional points of Pa in \z\ > 1. The rest of the proofs of
Theorems 4, 5, and 6 is now divided into two cases:

The rational case. Let a/2π = a = p/q be a rational number,
where p and q are relatively prime with 0 < p < q. Then np/q (mod 1),
n = 1, 2, , yields each kfq(k = 0, , q — 1) infinitely often; while
Jc/q — b = 0(1/Rn) as n —• ©o along a subsequence of positive integers
if and only if b = &/g (fc = 0, , q — 1). Hence, the number of dif-
ferent values of b satisfying (I) and (II) is the number of k =
0, , q - 1 such that p/q < fc/g < (1 + p/q)/2. This number is naf

which is (q — p)β — 1 if (q — p) is even and (q — p — l)/2 if (q — p)
is odd. Also, since k/q — b = 0(l/Rn) if and only if k/q = 6, using
(6), we see that if z* is an exceptional point of Pa then L(z*, Pa) =
{/«(«*)}• Furthermore, if s0 = 1 + e~ία, then

^+V β {β ί ^- 1 ) ϊ "^ - 1} =fa(z0)

for JV = q — 1, 2g — 1, 3g — 1, . This completes the proof of
Theorem 4.

irrational case. We now let a = a/2π be irrational, 0 < a < 1.
Since X(R) = 2πb = 2πb(R), it follows from (9) that R(b) is a strictly
decreasing continuously differentiable function on the interval [α, (α +
l)/2] and has values greater than one there. We will use the C1

property of R(b) in the next section. Hence, we can apply Proposi-
tion 2 with [r, s] = [α, (α + l)/2], and conclude that the set of all
exceptional points of Pa in | z | > 1 is contained in the ray Re~ία/2, R > 1,
and is uncountable, of measure zero and dense on this ray.

Now, let z = Re~ία/2, R > 1, be an exceptional point of Pa. By
(II) we see that there is a subsequence N3 such that

2RN sin [(Na - λ)/2]

converges to some real number x as N = JV, —> CXD. But by (6),

J£Ng-iNaJ2
ίjV~l,α(^) — / α W + —^ (g*(^«- ) _ 1)

1 — 3

= /β(2) + ™~%Nal2e*{Na~λ)!\RN g i n [ ( j ^ _ λ ) / 2 ] .

1 — z

Hence, we have
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L — Z

as N= Ns-+ oo, where z = Re~ία/2 and λ = X(R) is defined by 0 ^
λ < 2τr, and

That is, we have proved that the limit set of Pa at z = Re~ία/2 is
contained in the straight line

{Λ(s) + ^ α: a? real} .
1 — 2

This completes the proof of Theorem 5.
Let L**(λ, a) be the collection of all finite limit points of the

convergent subsequences of the sequence

k% = 2RN sin [(Na - λ)/2] .

Then as a corollary of Proposition 2, we see that the set of all λ,
a < λ < π + a/2, with L**(λ, α) = R is uncountable, of measure zero,
and dense in (a, π + a/2). Hence, for each a, the set of exceptional
points z = Re~ial\ R > 1, such that

L(z, Pa) = {fa(z) + ψ^x: xeR}

is uncountable, of measure zero and dense on the ray Re~iaί\ R > 1.
This completes the proof of Theorem 6.

EXAMPLES. By using Theorem 4, it follows that the power series
Pχiz(z) — ΣΓ=o(1 — ik)zk has a unique exceptional point in | s | > l ,
namely at 1 — i, and the limit set of Pπ/2 at 1 — i is L(l — i, Pπ/2) =
{fφ{l — i)}. It also follows that P27r/3 and Pπ have no exceptional
points in | z \ > 1. It may be interesting to note that if a1 =
2τr(49/100), α2 - 2π(499/1000), •••, then α t ->ττ, and Pak has 2.5 x 10*
exceptional points while the limit Pπ has none. On the other hand,
by Theorem 5, if a/2π is irrational and ak/2π are rationals such that
ak—+a, then each Pa]c has a finite number of exceptional points,
while the limit Pa has uncountably many exceptional points in | z | > 1.

Finally, we remark that if / is any function, holomorphic in a
neighborhood of | z \ S 1 with an exception of two simple poles on

z\ = l, then the power series of / in U has properties similar to
those of P in the above theorems, except that its exceptional points
lie on a circle (which may be a straight line). If the two poles of /
are not simple but are of the same order, then the power series of /
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may also have exceptional points in | z \ > 1, but if the orders of the
two poles are different then it has no exceptional points in | z | > 1.

5* Some improvement of Proposition 2 and Theorem 6* In
the introduction we have stated that the sort of general result we
like to obtain would say roughly that if a walk defined by a power
series is active enough to have limit points, then the set of limit
points ought to be "usually as large as possible". At first glance,
Theorem 6 would support such a conjecture. Unfortunately, one may
refine Proposition 2 to Proposition 2* and conclude Theorem 6* as
below. For the setting, we refer the reader back to § 3, and we
assume further that R(x) is continuously differentiate on [r, s].

PROPOSITION 2*. Every real number α, with an exception of a
set of measure zero, has the property that if S is any closed set on
the real line then the set {b: L*(δ, a) = S} is of cardinality c, of
measure zero and dense on [r, s\.

As an immediate consequence, we have the following

THEOREM 6*. For almost all a, the power series Pa has the
property that if S is any closed set on the real line then the set of
exceptional points z = Re~ial2, R > 1, whose corresponding limit set is

L{z, Pa) = {fa(z) + ψ x: x e S} ,
1 — z

where λ is as defined in Theorem 6, is uncountable and dense on the
ray Re~ia'\ R > 1.

We now devote the rest of the section to discuss our proof of
Proposition 2*. If we were to proceed as in Proposition 2, letting
n, r2> * be a sequence of real numbers such that for each N, the set
{rN, rN+ι, •••} is dense in S, we would find our ί>'s such that SQ
L*(δ, a). In the proof of Proposition 2, we did not have to worry
about picking up extra points since the limit set was full. The
argument that for almost all α, the 6's exist such that S = L*(b, a)
is elementary but quite complicated. If we look at the proofs of
Propositions 1 and 2, we see that the b constructed was such that it
is the intersection of the InJ where Il9 I2j were defined inductively.
To each n > 1 in the induction, there corresponded an n^x such
that for any x e I{ (let us again always assume for convenience that
r4 > 0) such that for any xe Ii

(xy^ ^ {n^a} - x ^ (r, + λ
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Now for m, such that n^ ^ m <nf our potential b is any point in
In and therefore our potential km is in the set Km defined by

Km = {t: Ix e I% such that tjR(x)m = {ma} - x} .

Thus, SaL(b, α ) c Π ϊ = i \J™=N Km. If we can insure that inf {] t\:te Km)
goes to infinity as m, m Φ niy i = 1, 2 , tends to infinity, then

and we would have L(δ, a) = S.
To give a punch to these ideas, we need a condition on a to

guarantee that the corresponding values ma do not get too close to
our potential 6's too often. Thus, we now take a diversion to discuss
what condition we need on α. We state the following lemma without
proof.

LEMMA. Let a be a irrational number between 0 and 1 and let
k be a positive integer. Then

inf inf | {(n + q)a) — {(n + p)a} | = inf q — — a

where the infima are taken over integers.

This lemma makes it convenient to define a function

Ψa(n) = inf I p — qa

where a e (0, 1) is irrational. Then for each α, Ψa(n) is a nonincreasing
positive function of n and it is not difficult to see that it approaches
zero as n tends to infinity. It is also not difficult to show that given
a nonincreasing positive function Ψ defined on the positive integers,
there is an irrational number a such that Ψa{n) < Ψ(n) for infinitely
many n. However, by a theorem in [1] (page 120) we know that if
Σ Ψ(n) converges then the set

{a: Ψa(n) ̂  Ψ(n) for infinitely many n}

is of measure zero. For a e (0, 1) and a fixed x, we define φa(x) to be
the smallest integer n such that Ψa(n) ^ x. By our previous remarks
about Ψ, for any φ(x), which increases as x J 0, there is an a such
that φa(Xj) > φ(Xj) for a sequence x3- J 0.

For instance, if Ψ{n) = l/n2, then for almost all α, there exists Na

such that Ψa(n) > l/n2 for n ^ Na; and for such an α, we have
φa(l/n2) ^ n for all sufficiently large n, and in particular, for all
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n ^ Na. For such α, Proposition 2* holds. This ends the diversion
and we continue the poof of Proposition 2*.

Let us proceed inductively on the i corresponding to /̂  = [aif 6J,
choosing the n{ so large that the followings are satisfied. First, nγ is
so chosen that for m ^ nγ we have

φa(l/m2) ^ m and R(s)m > 104m5 .

We again assume that ri > 0 and make sure that 0 < ri ^ n{ for all
i. Let

A = [Ui — (lO^.i)"4, δ{ + (IOTV^)" 4]

and λ(J) stand for the length of the interval J . Then λ(/ί) ^
2/iR(bi)

ni-i, and

so that 9α(λ(A)) ^ ^i-i Thus, if n^x < m < w< and {ma} ί Dif then
for any te Km, there is an ^ e /{ such that

t I = I {mα} - x I i?(x)w ^ i2(s)w/(lθ7^_1)
4 ^ m .

Therefore, 111 goes to infinity with m and we need only worry about
m when {ma} e Ώ{. Suppose m1 = n^ + A: is the smallest integer
greater than ni_ι that lies in D^ Then if {m^}, {mji} — (Ti + l/ij/Rib^1,
{m.a} - (n - l/ΐ)/i2(δ,)mS {m^} - (r, + l/i)/R(ai)

m^ and {m.α} - (r, -
l/i)/i?(a,)Wi all lie in /,-, we can proceed as in the proofs of Proposi-
tions 1 and 2. If these conditions are not satisfied, then by cutting
off a section of the interval /̂  of length 5i/R(bi)

mi from one end or
the other, we achieve a new interval /• = [α , δ ] cz Ĵ  c A> such that
for a e Γi and ί e ϋΓmΐ, then \t\}>i.

If {m^} G [at + 5ί/2R(s)mi, b - 5i/2R(s)mί], then the five points
mentioned above lie in I; and the induction could be completed as in
Propositions 1 and 2. Otherwise, we get II by cutting /; from the
end of α< or bi7 whichever is closer to {mλa}. We now proceed to the
next integer m2 such that {m2a} e Dt and test to see if the induction
can proceed as described by Propositions 1 and 2 with L in place of
Iiy or we perform another cutting of I\ to form I " by cutting off
a piece of length 5ilR(b^mκ We continue with this second induction
until we find that we are in a situation in which we can define Ii+ί

as in Propositions 1 and 2. To see that we must reach such a stage,
let us add up the pieces cut off if the induction on the j of m, con-
tinues with i held fixed. The total length of the pieces cut off is
less than
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hi ^ hi ^i 1 ^ lOi

Therefore, since the {wα} are dense in [0, 1], the second induction
must end provided only we can show that

If we go back to Proposition 1, we see that we can take λ(JQ to be

- « • =

For instance, if R{a,) - 22(6^ = R > 0, then 6, - at = 2/iRn^ which
is clearly greater than 10i/jB(6i)Λ«-i for large values of ί. However,
if J?(α<) ̂  i2(δf ), we need a more delicate argument. To do this, let
us define the following three functions

- (r(r, - i-

fix) = {n^a} - (r { + —

and consider their graphs on Lk) — [αf}, 6|fc)] which we shall call I{ =
[aiy bi] for convenience. Then for each i, we have /^δ^) ̂  b{ and
/sί î) έ α ί ? so that there is an α' e I{ such that /2(α') = α'

Let /ί+1 be determined by the largest rectangle lying between fx and
/3 with the line f(x) — x as diagonal (cf. the above figure). Then
λ(I m ) is not too far from 2R(a')-~nί/(i + 1). For instance, if we assume
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that R{x) is continuously differentiate and wf is large enough, ele-
mentary estimates give λ(Lί+1) > l/[2(ΐ + l)R(a')ni] (since the deriva-
tives are very close to zero). It seems that the hypothesis of con-
tinuous differentiability is unnecessary but we do not press the matter
to remove it. However, we do not know whether we can do this for
all α.

6* Final remarks* In conclusion, we propose some problems
and try to justify a statement in our introduction.

If P is a power series in U, the set of all exceptional points of
P in I z I > 1 will be called the exceptional set of P. One question
is: What are the possible exceptional sets? It is easy to see that
a necessary condition for a set S to be exceptional set of a power
series P in U is that S is both a Gδσδ and Faδσ set. This follows since
S must be the complement of a set of the types,

Π U Π if- I z I > 1 and | Pn(z) \ > M)
M k n^k

and

Π U Π {*: I z i > 1 and | Pn(z) | ^ M) .Π U
M k

Examples in this paper show that S may be very complicated.
As mentioned in the first section, the spirit of this paper is that

of looking at examples of random walks in the complex plane with
large steps. If the steps go to infinity slowly enough, it is not hard
to see that under reasonable general conditions, one gets that the
set of nonexceptional points is of measure zero; in fact, almost all
points would have the property that the walk enters every neighbor-
hood infinitely often. Also, one can put conditions on the growth
steps to guarantee that no finite neighborhood is entered infinitely
often. On the other hand, there are conditions under which the
growth of the steps is such that one can expect the set of exceptional
points to be of measure zero. Suppose we restrict ourselves to this
latter case. Are there any probabilistic statements one can make
relative to the set of exceptional points? For instance, let us suppose
that we have a power series P(z) in U and let f(z) be its analytic
continuation to the largest possible domain in the plane. Let B(P)y

the set of exceptional points of P{z), be of measure zero. What is
the relative probability (relative to B(P)) of those points whose limit
sets consist only of values gotten by analytic continuation, and what
is the relative probability that the limit set is a particular closed set?

Most of this paper deals with the "simplest" examples which may
give a hint to the answers to these types of questions, namely the
case where P(z) = Pa(z) and the closely related results on diophantine
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approximations. For instance, it may be conjectured that in some
probabilistic sense, the set {z: L(z, P) = {f(z)}} is "larger" than the
set {z: L(z, P) — {p}} where p is any point different from f{z). This
conjecture seems to be supported by Theorem 4 and the classical
view point of over convergence. Another possible conjecture is roughly
that L(z, P) is probably as large as it can be. This is what we
intuitively take as the idea of fullness.

We close with a result, namely Theorem 7, to try to justify our
feeling to the above statements. We first state a result obtained
in [7].

LEMMA. There exists a function ρ(A, B) defined for any subset
A of [0, 1] and any nonempty set B with the following properties:

( a ) p(A,A) = l, 0^p(A,B)£l,
(b) p(A, B) = p(A Π B, B),
( c ) p(A\jB,C) = p(Ay C) + p(B, C),
(d ) if A c B c C, p(A, B)p(Bf C) = p(A, C),
(e ) if A and B are Lebesgue measureable and λ is the Lebesgue

measure then p(Af B)X{B) = λ(A Π B) and
( f ) p(A + a, B + β) = p(A, B), if AaB and A + aczB + β

(addition is taken mod 1).
Let R > 1 and a be any irrational on (0, 1). For a closed set

E, let B(a, R, E) = {b: L*(b, a) = E}, and let θR{a) = \JEB(a, R, E)
(cf. definition in § 3).

THEOREM 7. Let E be a closed set with RE Φ E and let p be
any conditional probability function as described in the above lemma.
Then

p(B(af R, E) , θR(a)) - 0 .

To prove this, we let beB(a, R, E). Then L*(δ, a) = E. Write
lcn = ({na} — b)Rn. Then E is the set of limit points of kn. Consider
L*(α + 6, a) and define ϊcn = ({na} — (a + b))Rn. For a subsequence of
n, K = ({(n - l)α} - b)Rn, so that K = RK^. Thus, L*(δ + α, a) =
RL*(b, a) and

a + B(a, R, E) s B(a, R, RE) , 2α + B(a, Ry E) s B(a, R, R2E),

ma + B(a, R, E) g 5(α, R, RmE),- . By the translation invariance
of p, we have p(ma + B(α, E, E), θB(a)) =• p(B(a, R, E), θB(a)) for all
m. Since B(a, R, RmE), m = 0, 1, , are pairwise disjoint, we have,
by finite additivity in the first coordinate of p,

kp(B(a, B, E), θR(a)) = Σ P(ma + B(a, R, E\ θR(a))

= p(U (ma + B(a, R, E)), θR(
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This holds for all k, and hence, p(B(a, R, E), θR(a)) = 0.
We want to point out that the case E = {0} is closely related to

the classical interpretation of overconvergence and the case where
E — RE is closely related to our idea of fullness.
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