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ON THE STRUCTURE OF FINITE RINGS II

ROBERT S. WILSON

In this paper we develop a structure theory for modules
and bimodules over complete matrix rings over Galois rings,
and we use this module theory to study the additive structure
of the components of a Peirce decomposition of a general finite
ring.

We recall that any finite ring is the direct sum of rings of prime
power characteristic. This follows from noticing that when one
decomposes the additive group of a finite ring into its primary com-
ponents, the components are ideals of prime power characteristic
(cf. [4]). We thus restrict ourselves to considering rings of prime
power characteristic without loss of generality up to direct sum
formation.

We next recall the definition of a Galois ring. Let k, r be positive
integers and p be a prime integer. The Galois ring of characteristic
pk and order pkr is defined to be Z[x]/(pk, f(x)) [8], [10] where Z denotes
the rational integers and f(x) e Z[x] is monic of degree r and irre-
ducible. A Galois ring is uniquely determined up to isomorphism by
the integers p, h, and r, and we shall denote the Galois ring of
characteristic pk and order pkr by G(k, r). The prime p will generally
be clear from context. Note that G(l, r) ~ GF(pr) and G(k, 1) ~ Z/(pk).

If R is a finite ring of characteristic pk which contains a 1 then
R contains a Galois ring G(k, r) for some r which contains the 1 of
R. Indeed Z/(pk) 1 will always be such a ring. Therefore, any finite
ring of characteristic pk is thus a faithful left and right G(k, r)-module
for some r.

We now seek to develop a module theory for matrix rings over
Galois rings. In a sense, the theory is already developed in that a
matrix ring over a Galois ring is Morita equivalent to a Galois ring
and hence the categories of modules will be category isomorphic, and
a module and bimodule theory already is known for modules over
Galois rings [11], However, we seek slightly more information than
is given by the category isomorphism from Morita theory. In what
follows Q will denote the matrix ring Mn(G(k, r)).

PROPOSITION 1. Let M be a finitely generated left Q-module. Then
M is a direct sum of cyclic left Q-rnodules.

Proof. Every finitely generated left G(k, r)-module is a direct sum
of cyclic left G(k, r)-modules by Corollary 2 to Proposition 1.1 of [11].
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Therefore, by Proposition 2.7 of [9] every finitely generated left
Q-module is a direct sum of cyclic Q-modules.

We have thus reduced the study of Q-modules to the study of
cyclic Q-modules. Let Qx be a cyclic left Q-module. Consider the
map qv-+ qx from Q to Qx. This map is clearly a Q-module homo-
morphism and thus has a kernel L which is a left ideal of Q. We
are thus led to consider the left ideals of quasi-simple rings.

PROPOSITION 2. For j = 1, •••,%, let e3- denote the matrix whose
only nonzero entry is a 1 in the jjth position. Let L be a left ideal in
Q. Then L is isomorphic to Σ$ = 1 p^Qed for some choice of integers
0 ^ ilf , it < k and some t ^ n.

Proof. The proposition boils down to showing that L is isomorphic
to a sum of p{th multiples of columns of Mn(G(k9 r)). Let M denote
the set of all top rows of matrices in L. M is then, in a natural way
a left G(k, r)-module and is thus isomorphic to a direct sum of cyclic
left G(Jc, r)-modules. Say M ~ Σ5=i G(ky r)χo w ^ e r ^ the x/s are
n-tuples over G(k, r). In fact they are the top rows of certain matrices
in L. Note that, since M is contained in a G(k, r)-module which is
free on n generators, we must conclude that t ^ n. Let a3- be the
smallest positive integer such that pajχ3 = 0. Note that 0 < a3^ k
for all j — 1, , t. Now any left ideal of Mn(G(k, r)) is completely
determined by its set of top rows, because to multiply on the left
by elements of Mn(G(ky r)) is to perform operations on the rows of
matrices in L. Thus it follows that L ^ Σi=i Pk~ajQej, since the set
of top rows of the ideal on the right is isomorphic to the set of top
rows of L.

PROPOSITION 3. Any finitely generated left Q-module is isomorphic
to a direct sum of pjth. multiples of columns of Mn(G(k, r)). Moreover,
any finitely generated indecomposable left Q-module is isomorphic to
a pjth multiple of a column of Mn(G(k, r)).

Proof. From Proposition 1 it suffices to prove the result for cyclic
left modules. As noted above a cyclic module is isomorphic to Q/L
for some left ideal L. Apply Proposition 2 and let L = Σ?=i PJiQei
where e{ is the element of Q corresponding to the matrix in Mn(G(k, r))
which has a 1 in the iith position and 0's elsewhere. Now 0 ̂  j19

•'" , On ^ k so define M = Σ?=i Pk~JiQet. It is easy to see that M ~ Q/L,
and Qβi is isomorphic to a column in MJG(k, r)).

To see that any finitely generated indecomposable left module is
isomorphic to a p5th multiple of a column of Mn(G(k, r)), let M be a
finitely generated indecomposable left Q-module. Then being finitely
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generated it is the sum of a finite number of modules isomorphic to
pdth. multiples of columns of Mn(G(k, r)). But clearly any column of
Mn(G(k, r)) is indecomposable. Therefore, applying the Krull-Schmidt
theorem we conclude that the decomposition of M as a sum of pjth
multiples of columns of Mn(G(k, r)) consists of one pJ"th column of
Mn(G{k, r)) and we are done.

We next turn our attention to bimodules over matrix rings over
Galois rings. Let Ql9 Q2 be two such rings. If M is a (Ql9 Q2)-module
then it is a left Qt ® z Q^-module where Q°2

P is a ring which has the
same additive group as Q2 but in which multiplication is defined by
a-b = δα, the product on the right being taken in Q2. But Q2 is a
matrix ring over a commutative ring and matrix rings over commuta-
tive rings are anti-isomorphic to themselves via the transpose map.

We now consider the tensor product of matrix rings over Galois
rings.

PROPOSITION 4. Let Qt = Mni(G(ku rx)), Q2 = M%2(G(k2j r2)). Let
d = gcd {rl9 r2}, k = min {kl9 k2}, m = lcm {rl9 r2}.
Then

Proof. In order to prune the hanging gardens of subscripts in
what follows we shall denote Z/(pk) by K. We first note that

MΛι{G{ku rθ) ®z Mn2(G(k2, r2)) = Mni(G(k, r j ) ® κ MnJfi{k, r2)) .

Thus

Q, ® z Q2 = Mnι(G(k, r i )) <g>* il42(G(A:, r2))

s MKl(ίΓ) <g)x G(A;, n) ®,, G(A;, r2) ® x MK2(iί)

= MK l(i:) ® x Σ G(A;, m) 0 , , Mn2{K)

(by Proposition 1.2 of [11])

= Σ * (G(fc, m) ®κ M%1(K) ® x ikfm2(iΓ))

= Σ MV2(G(k, m)) .

We are now able to obtain a description of {Qu Q2)-moclules where
and Q2 are matrix rings over Galois rings.



320 ROBERT S. WILSON

PROPOSITION 5. Let Q, = Mni(G(klf n)), Q2 = M%2{G{k29 r2)) and
k = min {kl9 k2}, m = lcm {rl9 r2). M is a (Ql9 Q2)-module. Then M is
of the form

where M%v%2{G{k9 m)) denotes the set of nx x n2 matrices over (G(k, m)).

Proof. It is instructive to first ask how Mni(G(ku r j) acts as a
ring of left operators on Mni,n2(G(k, m)) and how M%2{G{k29 r2)) acts as
a ring of right operators on Mni,ns(G(k, m)). Well, since

G(klf n) ®z G(k29 r2) = Σ G{k, m)
1

where d = gcd {rlf r2) by Proposition 1.2 of [11] it follows that G(kl9 n)
acts as a ring of left operators and that G(k2, r2) acts as a ring of
right operators on G(k, m). We can thus impose a (Qu Q2)-module
structure on Mnv%2{G(k, m)) by defining

if [aι3] e Mni(G(kl9 n ) ) , [bi3] e MH,n2(G(k9 m)) and

if [6<y] e Mnvn2{G{k9 m)) and [C<J] 6 M%2(G(k29 r2)).
Now let Λί be a (Qx, Q2)-module. Then M can be considered as

a Qi ®z Q2

p-module and as Qlp ~ Q2 it can be considered as a left
Qi®zQ2-module. Let el9 -- 9ed be a complete set of orthogonal
primitive central idempotents for Σ#f Mnin2(G(k9 m)). Then since
0i + + ed = l,M=lM=(e1+ + ed)ilf = e,M + + edM and
this sum is direct since the e{ are orthogonal idempotents. Moreover,
each eM is a left Mnι%2{G{k9 m))-module. We then conclude that M
is isomorphic to a direct sum of ^ ' th multiples of columns of the com-
ponent matrices Σ # f Mnin2(G(k9 m)).

It thus suffices to show that a column of a component matrix in
Σ ' ί Mninz(G(k9 m)) = Q1 ®^ Qi* is isomorphic to Mnv%2{G{k9 m)) as a
(Qi, Q2)-module. We first note the isomorphism from Mnγ(G{kl9 rx)) ®z

M%2{G{k29 r2)) into

'c, m)) = MV2( Σ ' G(k, m)) = Mnι%2(G(ku r,) ®^ (G(k2, r2))

is defined by [ai3] (g) [bpq]
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α n (x) bn α n (x) 6% 2 l a1%1 (x) 6 n α 1 Λ l (g) 6»2l ^

«n (x) &i«2 «ii ® &%2%2 αi*! (x) K2 α 1 Λ l (x) 6Λ2«2

One can check by straightforward computation that a column in this
matrix ring, i.e., something of the form

alη 6ξ) bΌl

anij (x) bp

is isomorphic to the matrix whose iqth. entry is ai3 (x) bpq as a (Ql9 Q2)~
module. But

au (x) bpl

bpι

an

a,j e G(kly rx), bpg e G(k2, r2)

has a decomposition as a sum of indecomposable modules as a
direct sum of d columns of Mnv%2(G(k, m)) and the (Ql9 Q2)-module
M%v%2(G(ku r j) ®^ (G(k2, r2)) which is isomorphic to A has a decompo-
sition as a sum of indecomposable (Ql9 Q2)-modules as a direct sum of
d copies of Mnv7l2(G(k, r)). The Krull-Schmidt theorem tells us then
that a column of a component matrix in Σ ' ί M%ι%2{G{k, m)) is iso-
morphic as a (Qlf Q2)-module to Mnv%2{G(k, m)).

We now apply these results to the study of the additive structure
of an arbitrary finite ring. But in order to do this we must first
obtain the existence of a subring of our ring, which is a direct sum
of matrix rings over Galois rings and which contains all of the
idempotents. The existence of such a subring and its uniqueness up
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to inner automorphism follows directly from Theorem 33 of [1] which
was viewed by Azumaya as a generalization of the Wedderburn-
Malcev theorem [3; §72.19]. In addition Clark [2] recently proved
the existence of such a subring of a finite ring using elementary
methods. However, in the case of a finite ring more can be said
about this subring than existence and uniqueness up to inner auto-
morphism. Specifically we have:

PROPOSITION 6. Let R be a finite ring with 1 of characteristic
pk and radical J. Then R contains a subring Q isomorphic to a
direct sum of matrix rings over Galois rings such that Q/pQ = R/J
and a (Q, Q)-submodule M of J such that R = Q + M with Q Γι M = {0}.

REMARK. Once we have the existence of Q it is immediate that
Q is a direct summand of R when R is considered either as a left
or a right Q-module because Q is quasi-Frobenius. However, it does
not seem immediately obvious that a complementary left Q direct
summand will be a right Q-module or that any complementary module
can be chosen to be contained in J.

Proof of Proposition 6. Suppose R/J ~ Σ"Γ=i Mni{GF{prfy and let
el be the multiplicative identity of the simple component of R/J
isomorphic to Mn.(GF(pri)). Then Tlf , ~e~m is a finite set of orthogonal
idempotents in R/J. Let el9 , em be orthogonal idempotents of R
such that ei

JrJ~~eiy and such that eι

Jr + em = 1 (Proposition 5
on p. 54 of [7]). Consider the Peirce decomposition of R with respect
to this set of orthogonal idempotents.

R = Σe. Rβi + ΣeJfei

As is easy to check each ezRe3- is a left Σ'ίU βt^-module and a right
Σ £ i βi-Berinodule so this is a (ΣίU ei^eu ΣS=i e^e^-module direct sum
decomposition of R. Now, as in the proof of Theorem 2 on p. 56 of
[7] the βiBβi are primary rings which annihilate each other in pairs
and for all i Φ j eiReύ c J. Since each ê ifo* is primary, again using
Theorem 1 of p. 56 of [7] we have that each e{Rei is isomorphic to
a complete matrix ring over a completely primary ring Ct9 βiReJβiJβi ~
Mn.(GF(prί)) so by lifting idempotents again we conclude that etRet =
Mni(d). Let J, be the radical of C< with 0,/J, = GF{p% and the
characteristic of Ct be ph\ Then by Theorem 8 of [10] we have
that Ci contains a subring isomorphic to G(kif r*), we define
Q = ΣT=i Mn.(G(ki9 r,)). Now by Proposition 2.2 of [11] each d con-
tains a (G(ki9 r^)), (G(kif r^-submodule Nt with Ni c J* such that d =
G(kt9 r<) + N<. Thus e.Re, = Mn.(d) = Mni(G(ku r,)) + M%i(Nt) with
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a (Mn.(G(kίf r,))), Mn.(G{kiy n))-submodule of Mni(C<). Since the
βtRβi annihilate each other in pairs we conclude that each Mn.(N%) is a
(Q, Q)-submodule. Now each ezRe3 is a (Σ£=i βiRβu Σ£=ietjBβ<)-submodule
so it is a fortiori a (Q, Q)-submodule, and we have the following
{Q, Q)-module direct sum decomposition.

R = Q + Σ* Mn.(Nτ) 4- Σ" e^e,-

withM= ΣA'T^Mn.iNJ + Σ^βiRe,' c J. Moreover, Q = ΣΓ= ιMn.(G(ki9 r%))
and pθ = Σ*=i M%i(pG(ki9 rt)). Hence

m m

- ΣMn.(G(kιy rt))/Σ*M

= Σ Mni(GF(pr*) ~ R/J .

In the classical Wedderburn-Malcev theorem we have R = S + J
where S is semi-simple and S Π e/ = {0}. The question arises: in the
decomposition we obtained, R — Q + M can we take M = J? Well
ikf c J so surely R = Q + J. However, one can see that Q Π e/" = pQ
and so if Q f] J = (0) then the characteristic of Q, hence of R is j),
since Q contains the multiplicative identity of R. So we ask instead,
can we assume that M is an ideal of R, or at least a subring? First
we note that since R — Q + M and M is a (Q, Q)-submodule of R,
that M will be a two-sided ideal of R if and only if it is a subring
of R. If the characteristic of R is p then R is an algebra over the
field Z/(p)f and since any finite extension of a finite field is a separable
extension, the hypotheses of the classical Wedderburn-Malcev theorem
are satisfied and the answer is yes. However, in general the answer
is no, as is shown by the following counterexample. Let

G M2(Z/(A)) \a,b,c,de Z/(4)

One can check that J? is a completely primary finite ring with radical

~2α b

_2c 2d_

In this ring we can take

a°]eM2(Z/(4))\aeZ!(4)
u a_

and for all invertible x e R x~ιQx = Q. So M is a direct complement
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of Q, M c J so every element of M is of the form

Γ2a b

\2c 2d

Now

2 Oj

so there must be some element of M of the form

2a 1

2 2a

for some αe£/(4). But then

2a 1 "

2 2α

2 0

0 2

o

and we conclude that M is not a subring.
Finally, we conclude with remarks on the additive structure of

general finite rings of characteristic pk. Let R be a finite ring of
characteristic pk.

Let / be the radical of R. Lift the multiplicative identity of
R/J to an idempotent e e R. (If R = J then we take e = 0.) Then
eRe is a finite ring of characteristic p3' for some j ^ k and with a
multiplicative identity. So we apply Proposition 6 to eRe and obtain
a subring Q and a (Q, Q)-submodule iSΓ c eJe which satisfy the proper-
ties of Proposition 6. We let Mx = {ea — eaee R \ ae R), M2 = {αe -
eαβ G JS I a e i?} and J?o = {α — αβ — ea + eαβ e iί | a e R}. Then R =
ei2β + -Mi + Λf2 + i?0 is an (eϋίe, βi2β)-module direct sum decomposition
hence a fortiori a (Q, Q)-module decomposition of iϊ. We consider R
as a (Z/(pk), Z/(pk))-mod\ile, Mx as a right £/(pfc)-module and Λf2 as a
left i?/(pfc)-module via the module structures they inherit as additive
subgroups of a ring of characteristic pk. We then let Q = Q 4- Z/(pk)
and define a (Q, Q)-module structure on R by (q, ^)(rx + mt -I- m2 + r0) =
gn + qm1 + ^m2 + zr0 and (rx + mx + ra2 + ro)(g, ^) = r& + m ^ + m2q +
roa; where qeQ, ze Z/(pk)f rγ e eRe, mγ e M19 m2 e ilί"2,_and r0 e Ro Then
the decomposition R = βi2e + M1 + M2 + i?0 is a (ζj, Q)-module direct
sum decomposition, Jlίi is a (Q, ^/(^fe))-module M2 is a (Z/(pk)9 Q)-module
and Ro is a nilpotent subring which is also a (Z/(pk)f j?/(p&))-submodule.
If eRe — Q + N is the decomposition given by Proposition 6 then if
we define N = N + M1 + M2 + Bo then R = Q + JV is a (Q, Q)-module
direct sum decomposition of ϋ? into a quasi-semi-simple ring and a
(Q, Q)-submodule of /.
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We thus have a Peirce decomposition of a general finite ring of
characteristic pk

m m m

R = Σ etBet + Σ erfe,- + Σ (1 - e)Bet
i = l iφj i=l

+ Σ esB(l - e) + (1 - e)Λ(l - e) ,
i

where e:, , em are a complete set of orthogonal idempotents which
are central modulo the radical, and where e1 + + em = e. The

ĵββi are matrix rings over completely primary finite rings and com-
pletely primary finite rings were studied in § 3 of [11]. If the com-
pletely primary finite rings of e^R^ is C, and its radical is Jt with
CJJi = GF(prί) and the characteristic of d is pk^ and etRet ~ Mn.(Ci),
then βi-Rej is a (Mni(G)(ki9 rt)), Mn.(G(kjf ?v))-module, and the structure
of such modules was studied in Propositions 1-5. Each (1 — e)Reι is
a right Mn.(G(kif rt))-module and each etR(l - e) is a left Mn.(G{kif r,))-
module and a structure theory for such modules was also developed
in Propositions 1-5. Finally (1 — e)R{l — e) is a nilpotent finite ring
and nilpotent finite rings were also studied in § 3 of [11].

NOTE. I am deeply indebted to Prof. B. R. McDonald for his
many detailed suggestions in regard to these and other results.
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