MAXIMAL PURE SUBGROUPS OF TORSION COMPLETE ABELIAN p-GROUPS

John Werth, Jr.

Let N be the set of nonnegative integers, and let $B=$ $\Sigma \oplus\left[b_{i}\right](\boldsymbol{i} \in N)$ be the direct sum of cyclic groups with $0\left(b_{2}\right)=$ p^{i+1}. Denote by \bar{B} the torsion-completion of B. This paper is concerned with pure subgroups of the group \bar{B}. If G is such a group, let
$I(G)=\left\{i \mid i^{\text {th }}\right.$ Ulm invariant of G is nonzero $\}$.
Beaumont and Pierce introduced a further invariant for G, namely,

$$
U(G)=\{I(A) \mid A \text { is a pure torsion-complete subgroup of } G\}
$$

$U(G)$ is a (boolean) ideal in $\mathscr{P}(N)$, the power set of N.
If \mathscr{F} is an ideal in $\mathscr{P}(N)$, then the canonical example of a pure subgroup, G, of \bar{B} with $U(G)=\mathscr{J}$ is constructed as follows:

$$
\begin{aligned}
& G=\mathscr{G}(\mathscr{F})=\Sigma A_{I}(I \in \mathscr{F}) \text { where } A_{I} \text { is the } \\
& \text { torsion-completion of } \Sigma \oplus\left[b_{i}\right](i \in I) .
\end{aligned}
$$

Beaumont and Pierce showed that if $\mathscr{P}(N) / \mathscr{F}$ has no atoms and \mathscr{F} is free, then there exist maximal pure subgroups G of \bar{B} such that $G \supset \mathscr{G}(\mathscr{F})$ and $U(G)=\mathscr{F}$. The purpose of this paper is to give necessary and sufficient conditions for the existence of such a G in the case that $\mathscr{P}(N) / \mathscr{F}$ is finite. In the process, some information is obtained about the number of nonisomorphic extensions of $\mathscr{G}(\mathscr{F})$.
I. Preliminaries. For the basic background on p-groups without elements of infinite height see [2] and [3]. The groups G that we consider in this paper will all be pure subgroups of \bar{B}, where B is a standard basic subgroup as above. The following definitions and facts may be found in [1].
(i) Definition. $I(G)=\{n \mid n$th Ulm invariant of G is not zero $\}$.
(ii) Definition. If $x \in \bar{B}$ and $x=\Sigma r_{i} b_{i}(i \in N)$, then $\delta(x)=$ $\left\{i \mid r_{i} b_{i} \neq 0\right\}$.
(iii) Proposition. If \mathscr{F} is an ideal in $\mathscr{P}(N)$, then $\mathscr{G}(\mathscr{J})=$ $\{x \in \bar{B} \mid \delta(x) \in \mathscr{J}\}$.
(iv) Proposition. $\mathscr{G}(\mathscr{F})$ is a pure subgroup of \bar{B} and $U(\mathscr{G}(\mathscr{F}))=$ F.
(v) Proposition. If \mathscr{F} contains all finite subsets of N (such an ideal is called free) and is maximal in $\mathscr{P}(N)$, then $\mathscr{G}(\mathscr{F})$ is a maximal pure subgroup of \bar{B}.

In [1] Beaumont and Pierce give an example to show that it is not always possible to extend $\mathscr{G}(\mathscr{F})$ to a maximal pure subgroup G
with $U(G)=\mathscr{J}$, when \mathscr{J} is the intersection of two maximal ideals. It turns out that this is the case which causes most of the difficulties, and the majority of the paper is devoted to showing that their example is typical of the situation where no such G exists.
II. Throughout this section \mathscr{F} will be the intersection of two maximal free ideals. Let \mathscr{V} and \mathscr{W}^{-}be distinct maximal free ideals of $\mathscr{P}(N)$ and let $\mathscr{J}=\mathscr{V} \cap \mathscr{W}$. Let $V \in \mathscr{Y}-\mathscr{J}$ and let $W=N-$ V. Then $W \in \mathscr{W}-\mathscr{I}$ and by the maximality of \mathscr{F} and \mathscr{W}^{\prime} we have $\mathscr{V}=[V, \mathscr{J}]$ and $\mathscr{W}=[W, \mathscr{I}]$. Note that $\mathscr{P}(V) \cap \mathscr{F}$ and $\mathscr{P}(W) \cap \mathscr{J}$ are maximal ideals of $\mathscr{P}(V)$ and $\mathscr{P}(W)$ respectively, and that $\mathscr{G}(\mathscr{J})=\mathscr{G}(\mathscr{V}) \cap \mathscr{G}(\mathscr{W})$.

Our purpose in this section is to give a necessary and sufficient condition for a group G with $\mathscr{G}(\mathscr{I}) \subset G \subset \bar{B}$ and $G / \mathscr{G}(\mathscr{J}) \cong Z_{p}(\infty)$ to be of the form $\mathscr{G}(\mathscr{V})$ or $\mathscr{G}(\mathscr{W})$.
II. A. Notation.
(i) Let A_{1} be the closure in \bar{B} of $\Sigma \oplus\left[b_{i}\right](i \in V)$.

Let A_{2} be the closure in \bar{B} of $\Sigma \oplus\left[b_{i}\right](i \in W)$.

$$
\begin{gather*}
\left.G_{1}=\mathscr{G}(\mathscr{P}(V) \cap \mathscr{F})\right) . \tag{ii}\\
\left.G_{2}=\mathscr{G}(\mathscr{P}(W) \cap \mathscr{\mathscr { F }})\right) . \\
v_{n}=\Sigma p^{i-n+1} b_{i}(i \in V \text { and } i \geqq n-1) . \tag{iii}\\
w_{n}=\Sigma p^{i-n+1} b_{i}(i \in W \text { and } i \geqq n-1) .
\end{gather*}
$$

(iv) $\mathscr{H}_{1}=\left\{G \mid G=\mathscr{G}(\mathscr{J})+\left[\left\{u_{n} \mid n \in N\right\}\right]\right.$, where $u_{n}-p u_{n+1} \in$ $\mathscr{G}(\mathscr{J})$ and $u_{n}=v_{n}+t_{n} w_{n}$ with $\left.0 \leqq t_{n}<p^{n}\right\}$.
$\mathscr{H}_{2}=\left\{G \mid G=\mathscr{G}(\mathscr{J})+\left[u_{n} \mid n \in N\right]\right.$ where $u_{n}-p u_{n+1} \in \mathscr{G}(\mathscr{J})$ and $u_{n}=w_{n}+s_{n} v_{n}$ with $\left.0 \leqq s_{n}<p^{n}\right\}$.

The following proposition records the obvious connections between these objects.
II. B. Proposition.

$$
\begin{equation*}
A_{1} \oplus A_{2}=\bar{B} ; G_{1} \oplus G_{2}=\mathscr{G}(\mathscr{F}) . \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
A_{1}=\left[\left\{v_{n} \mid n \in N\right\}\right]+G_{1} . \tag{ii}
\end{equation*}
$$

$$
A_{2}=\left[\left\{w_{n} \mid n \in N\right\}\right]+G_{2} .
$$

$$
\begin{equation*}
A_{i} / G_{i} \cong Z_{p}(\infty) \quad \text { for } \quad i=1,2 \tag{iii}
\end{equation*}
$$

$$
\mathscr{G}(\mathscr{V})=\left[\left\{v_{n} \mid n \in N\right\}\right]+\mathscr{G}(\mathscr{F}) .
$$

$$
\mathscr{G}(\mathscr{W})=\left[\left\{w_{n} \mid n \in N\right\}\right]+\mathscr{G}(\mathscr{J})
$$

(v) G is a pure subgroup of \bar{B} with $G / \mathscr{G}(\mathscr{\mathscr { F }})=Z_{p}(\infty)$ iff $G \in$ $\mathscr{H}_{1} \cup \mathscr{H}_{2}$.

At this point we have explicitly realized $\bar{B} / \mathscr{G}(\mathscr{J})$ as $A_{1} / G_{1} \oplus A_{2} / G_{2}$ and have definite sets of representatives for $A_{1} / G_{1} \cong Z_{p}(\infty)$ and $A_{2} / G_{2} \cong$ $Z_{p}(\infty)$. By I.B.v. the groups G that we are interested in are obtained by taking a rank 1 summand of $A_{1} / G_{1} \oplus A_{2} / G_{2}$ and adding its represen-
tatives to $\mathscr{G}(\mathscr{F})$. Any such summand D will be complementary to either A_{1} / G_{1} or A_{2} / G_{2} (or both). Now if D is complementary to A_{2} / G_{2}, for example, let π_{1} and π_{2} be the projections into A_{1} / G_{1} and A_{2} / G_{2}, respectively, with respect to the decomposition $A_{1} / G_{1} \oplus A_{2} / G_{2}$. Then, of course, for $d \in D$ we have $d=\pi_{1}(d)+\pi_{2}(d)$ and ϕ defined by $\phi\left(\pi_{1}(d)\right)=$ $\pi_{2}(d)$ is an element of $\operatorname{Hom}\left(A_{1} / G_{1}, A_{2} / G_{2}\right)$. In fact, there is a one-toone correspondence between $H_{1}=\operatorname{Hom}\left(A_{1} / G_{1}, A_{2} / G_{2}\right)$ and \mathscr{H}_{1} and $H_{2}=\operatorname{Hom}\left(A_{2} / G_{2}, A_{1} / G_{1}\right)$ and \mathscr{H}_{2}. The following definition and proposition set forth the precise situation.
II. C. The Correspondence.
(i) Let $\dot{\phi} \in H_{1}$, then $\phi\left(v_{n}+G_{1}\right)=t_{n} w_{n}+G_{2}$. Let $u_{n}=v_{n}+t_{n} w_{n}$ and deflne $G[\dot{\phi}]=\mathscr{G}(\mathscr{J})+\left[\left\{u_{n} \mid n \in N\right\}\right]$.
(ii) If $G \in \mathscr{\mathscr { C }} \mathcal{P}_{1}$ with $G=\mathscr{G}(\mathscr{J})+\left[\left\{v_{n}+t_{n} w_{n} \mid n \in N\right\}\right]$, then define $\phi[G] \in H_{1}$ by $\phi[G]\left(v_{n}+G_{1}\right)=t_{n} w_{n}+G_{2}$.
II. D. Proposition. For $\phi \in H_{1}$ and $G \in \mathscr{H}_{1}$
(i) $G[\phi]$ is a uniquely determined element of \mathscr{H}_{1}.
(ii) $\phi[G]$ is a uniquely determined element of H_{1}.
(iii) $G[\phi[G]]=G$.
(iv) $\phi[G[\phi]]=\phi$.

By interchanging the roles of the w_{n} and v_{n} we get a similar one-to-one correspondence between H_{2} and \mathscr{H}_{2}. In fact, H_{1} and H_{2} coordinatize \mathscr{H}_{1} and \mathscr{H}_{2} with some overlap as the following proposition makes clear.
II. E. Proposition. If ϕ and ψ are distinct elements of $H_{1} \cup$ H_{2}, then $G[\phi]=G[\psi]$ iff ϕ and ψ are isomorphisms with $\phi=\psi^{-1}$.

Proof. This is the case where the summand defining $G[\psi]$ is complementary to both A_{1} / G_{1} and A_{2} / G_{2}.

We are now ready for the fundamental definition and theorem of this section.
II. F. Definition. Let $S_{1}, S_{2}, T_{1}, T_{2}$ be abelian groups and let $\phi \in \operatorname{Hom}\left(S_{1} / S_{2}, T_{1} / T_{2}\right)$. We say that ϕ is liftable if there is a $\Phi \in$ Hom $\left(S_{1}, T_{1}\right)$ such that the following diagram commutes:

II. G. Theorem. Let $G \in \mathscr{H}_{1}$ with $G=G[\dot{\phi}]$ for $\phi \in H_{1}$. Then
$G=\mathscr{G}(\mathscr{V})$ if and only if ϕ is liftable. A similar theorem holds for $G \in \mathscr{H}_{2}$.

Proof. Clearly $G=\mathscr{G}(\mathscr{Y})$ if and only if there is a pure torsioncomplete subgroup A of G with $I(A)=V$.
(i) If ϕ is liftable, then $\Phi \in \operatorname{Hom}\left(A_{1}, A_{2}\right)$ by definition of liftable. Now Φ can be thought of as an endomorphism of \bar{B} by taking $\Phi\left(A_{2}\right)=$ 0 . With this understanding, Φ is height increasing on $\bar{B}[p]$, since if $k \in W$, $\Phi\left(p^{k} b_{k}\right)=0$, and if $k \in V$, then $\delta\left(\Phi\left(p^{k} b_{k}\right)\right) \subset W$, so $k \notin \delta\left(\Phi\left(p^{k} b_{k}\right)\right)$. Let $A=(1+\Phi)\left(A_{1}\right)$. Then $A \oplus A_{2}=\bar{B}$, so A is a pure torsioncomplete with $I(A)=V$. If $x \in A_{1}$, then $x=g+r v_{n}$, where $g \in G_{1}$ and $0 \leqq r<p^{n}$ for some n. Consequently, $(1+\Phi)(x) \in G$ since Φ liftable implies $\Phi\left(G_{1}\right) \subset G_{2}$ and $v_{n}+\Phi\left(v_{n}\right) \in G$. It follows that $A \subset G$.
(ii) Assume that there exists a pure torsion-complete A with $A \subset G$ and $I(A)=V$. Since $U(A) \cap U\left(G_{2}\right)=\mathscr{P}(V) \cap(W \cap \mathscr{J})$ is empty, we have $A+G_{2}$ is pure and the sum is direct. We claim that, in fact, $A \oplus G_{2}=G$. To see this note that $U\left(A \oplus G_{2}\right)=\mathscr{P}(V)+(W \cap \mathscr{J})$ so $U\left(A \oplus G_{2}\right)$ is free. Hence any basic subgroup of $A \oplus G_{2}$ will be a basic subgroup of \bar{B}. One such basic subgroup is $B^{\prime}=B_{1} \oplus B_{2}$ where B_{1} is a basic subgroup of A and $B_{2}=B \cap G_{2}$. One sees easily that with respect to $B^{\prime}, A \oplus G_{2}$ is of the form $\mathscr{G}(\mathscr{V})$. Hence $\bar{B} /\left(A \oplus G_{2}\right)=Z_{p}(\infty)$ by 4.2 in [1]. And since $A \oplus G_{2} \subseteq G, \bar{B} / G=Z_{p}(\infty)$, and both G and $A \oplus G_{2}$ are pure in \bar{B}, we have $A \oplus G_{2}=G$. Now $\bar{B}=A \oplus A_{2}$ since $I\left(A \oplus A_{2}\right)=N . \quad$ Let Φ be $-\left(\pi \mid A_{1}\right)$ where π is the projection of \bar{B} on A_{2} associated with this decomposition of \bar{B}. To show that Φ is a lifting of ϕ we must show the following two things:
(a) $\Phi\left(G_{1}\right) \cong G_{2}$. This is clear because $G=A \oplus G_{2}$ implies $(A \oplus$ $\left.G_{2}\right) \cap A_{1} \supseteqq \mathscr{G}(\mathscr{I}) \cap A_{1}=G_{1}$ and Φ maps into A_{2} which is the closure in \bar{B} of G_{2}.
(b) $\Phi\left(v_{n}\right) \equiv t_{n} w_{n} \bmod G_{2}$ where $G=\mathscr{G}(\mathscr{J})+\left[\left\{v_{n}+t_{n} w_{n} \mid n \in N\right\}\right]$. Because $v_{n}+\Phi\left(v_{n}\right) \in A \subset G$, it follows that $\left(v_{n}+\Phi\left(v_{n}\right)\right)-\left(v_{n}+t_{n} w_{n}\right)=$ $\Phi\left(v_{n}\right)-t_{n} w_{n} \in G$. Therefore, since $\delta\left(\Phi\left(v_{n}\right)\right) \subset W, \Phi\left(v_{n}\right)-t_{n} w_{n} \in G \cap A_{2}=$ G_{2}; that is, $\Phi\left(v_{n}\right) \equiv t_{n} w_{n} \bmod G_{2}$.
II. G. Remark. Note that it is not possible for $G=G[\phi] \in \mathscr{H}_{1}$ to be isomorphic to $\mathscr{G}(\mathscr{W})$ if $\operatorname{Ker} \phi>0$. This is the case because $G \cong \mathscr{G}\left(\mathscr{W}^{\prime}\right)$ implies that there is a pure $A \subset \mathscr{G}\left(\mathscr{W}^{-}\right)$with $A \cong A_{2}$ and $\operatorname{Ker} \phi>0$ implies that $A_{1}[p] \subset G$ which would give $G[p] \subset A_{1}[p]+$ $A[p]=\bar{B}[p]$. The purity of G would now give $G=\bar{B}$, a contradiction. If $\operatorname{Ker} \phi=0$, then we might have $G \cong \mathscr{G}(\mathscr{W})$, this will occur if $\phi^{-1} \in H_{2}$ is liftable. Therefore, this theorem together with the corresponding theorem for $G \in \mathscr{H}_{2}$ give a necessary and sufficient condition for G to be isomorphic to $\mathscr{G}(\mathscr{V})$ or $\mathscr{G}(\mathscr{W})$.
III. In this section we state the main theorems of the paper. The notation remains the same as that of II.
III. A. Definition. For $\dot{\phi} \in H_{1} \cup H_{2}$ let $K(\phi)=n$ if $|\operatorname{Ker} \phi|=p^{n}$.
III. B. Proposition. Let $\phi, \psi \in H_{1}$. If $K(\phi)=K(\psi)$, then $G[\phi]$ is isomorphic to $G[\psi]$ and similarly for H_{2}.

Proof. $G[\phi]=\mathscr{G}(\mathscr{P})+\left[\left\{v_{n}+t_{n} w_{n} \mid n \in N\right\}\right]$ and $G[\psi]=\mathscr{G}(\mathscr{F})+$ $\left[\left\{v_{n}+s_{n} w_{n} \mid n \in N\right\}\right]$. Let $m=K(\phi)=K(\psi)$. Then $t_{n}=p^{m} t_{n}^{\prime} \bmod p^{n}$ and $s_{n}=p^{m} s_{n}^{\prime} \bmod p^{n}$ for $\left(t_{n}^{\prime}, p\right)=1$ and $\left(s_{n}^{\prime}, p\right)=1$ for $n>m$. Let r_{n} be such that $r_{n} t_{n}^{\prime}=s_{n}^{\prime} \bmod p^{n}$. Define α by:

$$
\begin{aligned}
& \alpha\left(b_{k}\right)=b_{k} \quad \text { for } \quad k \in V \cup\{h \in W \mid h<m-1\} \\
& \alpha\left(b_{h}\right)=r_{h+1} b_{h} \text { for } h \in W \text { and } h \geqq m-1 .
\end{aligned}
$$

III. C. Definition.

(i) $n_{1}(\mathscr{Y}, \mathscr{W})=\min \left\{K(\phi) \mid \phi \in H_{1}, U(G[\phi])=\mathscr{V}\right\}$ if this exists, and ∞ otherwise.
(ii) $n_{2}(\mathscr{V}, \mathscr{W})=\min \left\{K(\phi) \mid \phi \in H_{2}, U(G[\phi])=\mathscr{W}\right\}$ if this exists, and ∞ otherwise.
III. D. Proposition. Let $\phi \in H_{i}$. Then ϕ is liftable if $\infty>$ $K(\phi) \geqq n_{i}(\mathscr{Y}, \mathscr{W})$.

Proof. Let $a=n_{1}(\mathscr{Y}, \mathscr{Y})$. By III. B. we have $G[\phi] \cong \mathscr{G}(\mathscr{Y})$ for every $\phi \in H_{1}$ with $K(\phi)=a$. By II. G. every such ϕ is liftable. If $K(\phi)>a$, then there is a $\psi \in H_{1}$ with
$p^{K(\phi)-a} \psi=\phi$ and $K(\psi)=a$. Then $p^{K(\phi)-a} \Psi=\Phi$ is a lift of ϕ.
III. E. Definition. If $I \subset N$ and n any integer, then we write $I-n$ for $\{i-n \mid i \in I\} \cap N$. If \mathscr{V} is an ideal of $\mathscr{P}(N)$, then $\mathscr{V}^{n}=$ $\{I-n \mid I \in \mathscr{V}\}$.
III. F. Proposition. Let \mathscr{V} be a maximal free ideal of $\mathscr{P}(N)$. Then
(i) \mathscr{V}^{n} is a maximal free ideal of $\mathscr{P}(N)$.
(ii) If $n \neq m$, then $\mathscr{V}^{n} \neq \mathscr{V}^{m}$.
(iii) $n_{1}\left(\mathscr{\mathscr { V }}, \mathscr{V}^{m}\right)=m ; n_{2}\left(\mathscr{\mathscr { }}, \mathscr{V}^{m}\right)=0$.

Proof. (i) Clearly \mathscr{V}^{n} is free. If $V \subseteq N$ and $V \nsubseteq \mathscr{V}^{n}$, then $V+$ $n \notin \mathscr{V}$. Since $N-(V+n \cup(N-V)+n)$ is finite we have $(N-$ $V)+n \in \mathscr{V}$ by maximality of \mathscr{V}. Therefore, $N-V \in \mathscr{V}^{n}$ by definition and \mathscr{V}^{n} is maximal.
(ii) If $I \notin \mathscr{V}$, then $I-m \notin \mathscr{V}^{m}$ and $I-n \notin \mathscr{V}^{n}$. Consequently, if $\mathscr{V}^{m}=\mathscr{V}^{n}$, then $I-m \cap I-n \notin \mathscr{V}^{m}=\mathscr{V}^{n}$ where $I-m \cap I-n=$ $\left\{k-m \mid\right.$ there is a $k^{\prime} \in I$ with $\left.k-m=k^{\prime}-n\right\}=\{k-m \mid$ there exists $k^{\prime} \in I$ with $\left.k-k^{\prime}=m-n\right\}$. However, since \mathscr{V} is free, there exist I^{\prime} s such that $I \notin \mathscr{V}$ and having the property that if $k, k^{\prime} \in I$ with $k \neq k^{\prime}$, then $\left|k-k^{\prime}\right|>m-n$. For such an I we actually have $I-m$ and $I-n$ disjoint.
(iii) Let $V \subset N$ be such that $V \notin \mathscr{V}$ and $V \cap(V-m)$ is empty. Let $W=(V-m) \cup(N-V), \mathscr{W}=\mathscr{V}^{m}$ and use the notation of $\S 2$.

Let $\phi \in H_{2}$ with $\phi\left(w_{n}+G_{2}\right)=v_{n}+G_{1}$. A computation shows that the following Φ is a lift of ϕ :
$\Phi\left(b_{j}\right)=p^{m} b_{j+m}$ for $j \in V-m$ and $\Phi\left(b_{j}\right)=0$ for $j \in W-(V-m)$. For this Φ we have $K(\phi)=0$, so $n_{2}\left(\mathscr{V}, \mathscr{V}^{m}\right)=0$.

Let $\phi \in H_{1}$ with $\phi\left(v_{n}+G_{1}\right)=p^{m} w_{n}+G_{2}$. Define a lifting Φ of ϕ as follows.
$\Phi\left(b_{i}\right)=b_{i-m}$ for $i \in V$ and $i \geqq m$
$\Phi\left(b_{i}\right)=0$ for $i \in V$ and $i<m$.
Once again, a straightforward check shows that Φ is a lift of ϕ. Hence, $n_{1}\left(\mathscr{Y}, \mathscr{V}^{m}\right) \leqq m$. By III. G. (ii) below, if $n=n_{1}\left(\mathscr{V}^{(} \mathscr{V}^{m}\right)<m$, we have $W=\mathscr{V}^{n}=\mathscr{V}^{m}$ in contradiction to III. F. (ii).

We now show that if $\mathscr{G}(\mathscr{J})$ possesses at least one extension of the form $\mathscr{G}(\mathscr{V})$ and at least one of the form $\mathscr{G}(\mathscr{W})$ (other than the ones corresponding to the zero homomorphisms in H_{1} and H_{2}), then $\mathscr{W}=\mathscr{V}^{n}$ for some n, or vice-versa.
III. G. Theorem. Let \mathscr{Y} and \mathscr{W} be maximal free ideals. If $n_{1}(\mathscr{Y}, \mathscr{W})<\infty$ and $n_{2}(\mathscr{Y}, \mathscr{W})<\infty$, then
(i) $n_{i}(\mathscr{Y}, \mathscr{W})=0$ for one of $i=1$ or $i=2$.
(ii) If $n_{2}(\mathscr{Y}, \mathscr{W})=0$, then $\mathscr{W}=\mathscr{V}^{n}$, where $n=n_{1}(\mathscr{Y}, \mathscr{W})$.

Proof. Deferred to §IV.
III. H. Corollary. If \mathscr{V} and \mathscr{W} are maximal free ideals with $\mathscr{J}=\mathscr{V} \cap \mathscr{W}$, then there does not exist a G with $\mathscr{G}(\mathscr{J}) \subset G, G / \mathscr{G}(\mathscr{J}) \cong$ $Z_{p}(\infty)$, and $U(G)=\mathscr{J}$ if and only if $\mathscr{W}=\mathscr{V}^{1}$ or $\mathscr{V}=\mathscr{W}^{1}$.

Proof. (i) If $\mathscr{W}=\mathscr{V}^{1}$, then $n_{1}(\mathscr{Y}, \mathscr{W})=0$ and $n_{2}(\mathscr{Y}, \mathscr{W})=1$ by III. F., so $G \in \mathscr{H}_{1}$ implies $G \cong \mathscr{G}(\mathscr{V})$ and $G \in \mathscr{H}_{2}-\mathscr{H}_{1}$ implies $G \cong \mathscr{G}(\mathscr{W})$.
(ii) If the G mentioned does not exist, then for every $G \in \mathscr{H}_{1} \cap \mathscr{H}_{2}$ we have either $G \cong \mathscr{G}(\mathscr{V})$ or $G \cong \mathscr{G}(\mathscr{W})$. Hence, one of the $n_{i}(\mathscr{V}, \mathscr{W})$ is zero and the other is 1. By III. G. we have either $\mathscr{V}=\mathscr{W}^{1}$ or $\mathscr{W}=\mathscr{V}^{1}$.
III. I. Theorem. If $\mathscr{V}_{1}, \cdots, \mathscr{V}_{n}$ are distinct maximal free ideals
and $\mathscr{J}=\bigcap \mathscr{V}_{i}(1 \leqq i \leqq n)$, then there is a G, pure in \bar{B}, with $\mathscr{G}(\mathscr{F}) \subset$ $G, U(G)=\mathscr{F}$ and $\bar{B} / G \cong Z_{p}(\infty)$ if and only if there is no pair i, j with $\mathscr{V}_{j}=\mathscr{\mathscr { V }}_{i}{ }^{1}$.

Proof. As in the case of $n=2$ we may choose I_{i} such that $I_{i} \notin \mathscr{V}_{i}$, $N=\bigcup I_{i}(1 \leqq i \leqq n)$ with I_{i} and I_{j} disjoint for $i \neq j$. Define A_{i} as the torsion-completion of $\Sigma \oplus\left[b_{j}\right]\left(j \in I_{i}\right)$ and G_{i} as $\mathscr{G}\left(\mathscr{P}\left(I_{i}\right) \cap \mathscr{F}\right)$. For each $k \in N$ and each $1 \leqq i \leqq n$ let $v_{i, k}=\Sigma p^{j-k+1} b_{j}\left(j \in I_{i}\right)$. Then $\left\{v_{i, k} \mid k \in N\right\}$ is a canonical set of generators for $A_{i} / G_{i} \cong Z_{p}(\infty)$. Let $H_{i j}=\operatorname{Hom}\left(A_{i} / G_{i}, A_{j} / G_{j}\right)$ and $\mathscr{E}_{i j}=\left\{G \mid G\right.$ is pure in $A_{i} \oplus A_{j}$ with $\left(A_{i} \oplus A_{j}\right) / G \cong Z_{p}(\infty)$ and $\left.G \supset G_{i} \oplus G_{j}\right\}$.

Since our earlier theorems could have been stated and proved for a standard subbasic we know that $H_{i j}$ coordinatizes $\mathscr{\mathscr { C }}_{i j}$, that if $G \in \mathscr{H}_{i j}$ then $G \cong A_{i} \oplus G_{j}$ if and only if the associated $\phi \in H_{i j}$ is liftable, and that Theorem III. G. holds.

We can realize $\bar{B} / \mathscr{G}(\mathscr{P})=D$ as $\Sigma A_{i} / G_{i}(1 \leqq i \leqq n)$. Observe that if G is a pure subgroup of \bar{B} with $\bar{B} / G \cong Z_{p}(\infty)$ such that $G \supset \mathscr{G}(\mathscr{J})$, then G is obtained by taking a rank $n-1$ summand D_{G} of D and adding a set of representatives for D_{G} to $\mathscr{C}(\mathscr{J})$. Since D_{G} is of rank $n-1$ there must be at least one summand of the form A_{i} / G_{i}, with $D=\left(A_{i} / G_{i}\right) \oplus D_{G}$. For $j \neq i$ let $\phi_{j, i}=-\pi_{j, i}$ where $\pi_{j, i}$ is the projection of A_{j} / G_{j} into A_{i} / G_{i} associated with this decomposition. Then $D_{G}=\Sigma \oplus Z_{j}(j=1, \cdots, n$ and $j \neq i)$ where a complete set of generators for Z_{j} is $\left\{v_{j, k}+\phi_{j, i}\left(v_{j, k}\right) \mid k \in N\right\}$. Alternatively if $S_{j, i} \in \mathscr{H}_{j, i}$ is the group associated with $\dot{\phi}_{j, i} \in H_{j, i}$, then G is the group generated by $\left\{S_{j, i}\right\}$.

In fact, G will contain other groups of the form $S_{j, h} \in \mathscr{H}_{j, h}$. If $i \neq j \neq h \neq i$ and $K\left(\dot{\phi}_{j, i}\right) \geqq K\left(\dot{\phi}_{h, i}\right)$, then let $\dot{\phi}_{j, h} \in H_{j, h}$ be the map defined by $\dot{\phi}_{j, k}\left(v_{j, k}\right)=r_{k} v_{h, k}$ if $\dot{\phi}_{j, i}\left(v_{j, k}\right)=r_{k} \dot{\phi}_{h, i}\left(v_{h, k}\right)$. If $S_{j, h} \in \mathscr{H}_{j, h}$ is the group associated with $\phi_{j, h}$, then we have $S_{j, h} \subset G$. It follows that for every pair j, h with $1 \leqq j, h \leqq n, G$ contains an element of either $\mathscr{H}_{j, h}$ or $\mathscr{H}_{h, j}$. Consequently, in view of III. H., if $U(G)=\mathscr{F}$, then we cannot have $\mathscr{V}_{i}=\mathscr{Y}_{j}^{1}$ for any pair i, j.

Suppose now that we do not have $\mathscr{V}_{i}=\mathscr{V}_{j}^{1}$ for any pair i, j. Then for every pair i, j either $n_{1}\left(\mathscr{V}_{i}, \mathscr{V}_{j}\right) \geqq 2$ or $n_{2}\left(\mathscr{V}_{i}, \mathscr{V}_{j}\right) \geqq 2$. A simple combinational argument shows we may assume that $n_{1}\left(\mathscr{V}_{i}^{\prime}, \mathscr{V}_{j}\right) \geqq$ $2|j-i|$. For $i>1$ choose $\phi_{i, 1} \in H_{i, 1}$ with $K\left(\phi_{i, 1}\right)=i-1$ and let $S_{i, 1} \in$ $\mathscr{\mathscr { H }}_{i, 1}$ be the group associated with $\phi_{i, 1}$.

If G is generated by $\left\{S_{i, 1} \mid i=2, \cdots, n\right\}$, then G is pure, $\bar{B} / G \cong$ $Z_{p}(\infty)$ and $G \supset \mathscr{G}(\mathscr{J})$. We claim that $U(G)=\mathscr{\mathscr { F }}$. If not, then $I_{i} \in$ $U(G)$ for some i. Note that $I_{i} \neq I_{1}$ since this would mean that there existed a pure torsion-complete A with $A \subset G$ and $I(A)=I_{1}$. However, $A \oplus A_{2} \oplus \cdots \oplus A_{n}=\bar{B}$ and $\left(A_{2} \oplus \cdots \oplus A_{n}\right)[p] \subset G$ by construction, so $A \subset G$ would imply $G[p]=\bar{B}[p]$. Since G is pure this would give
$G=\bar{B}$, a contradiction.
As noted above, for every pair k, j, G contains a subgroup of $\mathscr{H}_{k, j}$ or $\mathscr{H}_{j, k}$. Because of our assumed ordering of $\mathscr{V}_{1}, \cdots, \mathscr{V}_{n}$ we know that for $j<k, G \supset S_{k, j} \in \mathscr{H}_{k, j}$. Let T be the group generated by $\left\{S_{k, j} \mid k \neq i \neq j\right\}$. Then clearly $G=T \oplus S_{i, 1}$. On the other hand, $U(T)$, $U(A)$, and $U\left(G_{1}\right)$ are pairwise disjoint, so $T \oplus A \oplus G_{1}$ is pure and since $\left(A_{1} \oplus \cdots \oplus A_{i-1} \oplus A_{i+1} \oplus \cdots \oplus A_{n}\right) /\left(T \oplus G_{1}\right) \cong Z_{p}(\infty)$ we have $G=$ $T \oplus A \oplus G_{1}$. Hence $S_{i, 1} \cong A \oplus G_{1}$. But this contradicts our choice of $S_{i, 1}$. Hence $U(G)=\mathscr{I}$.
IV. In this section we provide the proof of Theorem III. G.

For simplicity, the following remarks and proposition will be stated for $\phi \in H_{1}$ The case of $\phi \in H_{2}$ is exactly the same. The notation is that of II.

Let $\phi \in H_{1}$ and assume that Φ is a lift of ϕ, with $\Phi\left(b_{k}\right)=\Sigma m_{k, h} b_{h}(h \in$ W) for each $k \in V$. If r is any integer, then we can write $\Phi=\Phi_{1, r}+$ $\Phi_{2, r}, \quad$ where $\Phi_{1, r}\left(b_{k}\right)=\Sigma m_{k, h} b_{h}(h \in W$ and $h<k+r)$ and $\Phi_{2, r}\left(b_{k}\right)=$ $\Sigma m_{k, h} b_{h}(h \in W$ and $h \geqq k+r)$ with the understanding that either of these sums is zero if its index set is empty. Clearly $\Phi_{1, r}$ and $\Phi_{2, r}$ are elements of $\operatorname{Hom}\left(A_{1}, A_{2}\right)$.
IV. A. Lemma. $\Phi_{1, r}\left(G_{1}\right) \subseteq G_{2}$ and $\Phi_{2, r}\left(G_{1}\right) \subseteq G_{2}$.

Proof. Since $\Phi\left(G_{1}\right) \subseteq G_{2}$ we need only show that $\Phi_{1, r}\left(G_{1}\right) \subseteq G_{2}$. Let $x \in G_{1}$ and assume $\Phi_{1, r}(x) \notin G_{2}$. Then for some $J \in \mathscr{V}, x=\Sigma m_{k} b_{k}(k \in J)$ with $m_{k} b_{k} \neq 0$. If $J_{s}=\left\{k \in J \mid 0\left(m_{k} b_{k}\right)=p^{s+1}\right\}$ and $x_{s}=\Sigma m_{k} b_{k}\left(k \in J_{s}\right)$, then $x=\Sigma x_{s}(0 \leqq s \leqq n-1)$ where $0(x)=p^{n}$. Since $\Phi_{1, r}(x) \notin G_{2}$, there exists an s such that $\Phi_{1, r}\left(x_{s}\right) \notin G_{2}$. Hence we may assume that $x=x_{s}$ and $J=J_{s}$.

Since $0\left(m_{k} b_{k}\right)=p^{s+1}$ for $k \in J$, we may write $m_{k} b_{k}=p^{k-s} l_{k} b_{k}$ where $\left(l_{k}, p\right)=1$. It follows that

$$
\begin{equation*}
\Phi_{1, r}\left(m_{k} b_{k}\right)=\Sigma p^{k-s} l_{k} m_{k, h} b_{h}(k-s-1<h<k+r) \tag{1}
\end{equation*}
$$

because $h \leqq k-s-1$ implies $p^{k-s} b_{h}=0$.
For $0 \leqq t<s+r+1$ let $K_{t}=\{t+n(s+r+1) \mid n \in N\} \cap J$. Since the K_{t} are pairwise disjoint and $J=\bigcup K_{t}(0 \leqq t<s+r+1)$ we have $x=\Sigma x_{t}(0 \leqq t<s+r+1)$ where $x_{t}=\Sigma m_{k} b_{k}\left(k \in K_{t}\right)$. It follows that there exists a t with $\Phi_{1, r}\left(x_{t}\right) \notin G_{2}$. Hence, we may assume that $x=x_{t}$ and $J=K_{t}$. As a consequence, if $j \in J$ and $k \in J$ with $j \neq k$, then j and k differ by at least $s+r+1$ in absolute value and by (1) above $\delta\left(\Phi_{1, r}\left(m_{j} b_{j}\right)\right)$ and $\delta\left(\Phi_{1, r}\left(m_{k} b_{k}\right)\right)$ are disjoint.

We now know that the $\delta\left(\Phi_{1, r}\left(m_{k} b_{k}\right)\right)$ are pairwise disjoint for $k \in J$ and that their cardinality is less than $s+r+1$. Hence, $\delta\left(\Phi_{1, r}(x)\right)=$
$\mathbf{U} \delta\left(\Phi_{1, r}\left(m_{k} b_{k}\right)\right)(k \in J)$ and, since $\Phi_{1, r}(x) \notin G_{2}, \delta\left(\Phi_{1, r}(x)\right) \notin \mathscr{P}(W) \cap \mathscr{J}$. Therefore, it is possible to choose one integer t_{k} from each $\delta\left(\Phi_{1, r}\left(m_{k} b_{k}\right)\right)$ such that $\left\{t_{k} \mid k \in J\right\} \in \mathscr{P}(W) \cap \mathscr{F}$. For $k \in J$ we define $n_{k} b_{k}$ inductively as follows:
(i) $n_{k} b_{k}=m_{k} b_{k}$ if k is the least element of \mathscr{F}.
(ii) $n_{k} b_{k}=0$ if $w_{k} \in \delta\left(\Phi\left(\Sigma n_{j} b_{j}\right)\right)$ for $j<k$ and $j \in J$
$n_{k} b_{k}=m_{k} b_{k}$ if $w_{k} \in \delta\left(\Phi\left(\Sigma n_{j} b_{j}\right)\right)$ for $j<k$ and $j \in J$.
Let

$$
y=\Sigma n_{k} b_{k}(k \in J)
$$

Then $\delta(y) \subset J$ so $y \in G_{1}$. On the other hand, $\delta(\Phi(y)) \supset\left\{w_{k} \mid k \in J\right\}$ since $i \in \delta\left(\Phi\left(m_{k} b_{k}\right)\right)$ implies $i>k-s-1$ and $w_{0} \leqq k-s-1$ for $j<k$ and $j \in J$. Hence $\Phi(y) \notin G_{2}$ and this is a contradiction to the assumption that Φ is a lift of $\dot{\phi}$.
IV. B. Proof of III. G. Let $n=n_{1}(\mathscr{Y}, \mathscr{V})$ and $m=n_{2}(\mathscr{V}$, $\mathscr{W})$. Choose $\phi \in H_{1}$ with $\dot{\phi}\left(v_{k}+G_{1}\right)=p^{n} w_{k}+G_{2}$ and $\psi \in H_{2}$ with $\psi\left(w_{k}+G_{2}\right)=p^{m} v_{k}+G_{1}$. Let Φ and Ψ be the lifts of ϕ and ψ. In the notation of Lemma IV. A., let $\Phi=\Phi_{1,1}+\Phi_{2,1}$ and $\Psi=\Psi_{1,1}+\Psi_{2,1}$. By IV. A., $\Phi_{2,1}$ and $\Psi_{2,1}$ induce maps $\phi_{2} \in H_{1}$ and $\psi_{2} \in H_{2}$. If $\left(\psi_{2} \dot{\phi}_{2}\right)\left(v_{k}+\right.$ $\left.G_{1}\right)=r_{k} v_{k}+G_{1}$, then $\theta\left(b_{k}\right)=r_{k+1} b_{k}$ for $k \in V$ is a lift of $\left(\psi_{2} \dot{\rho}_{2}\right)$ since $b_{k}=v_{k+1}-p v_{k+2}$ for $k \in V$ by definition.

We claim that $\psi_{2}=0$ or $\dot{\phi}_{2}=0$ or, equivalently, that $\Psi_{2,1}\left(A_{2}\right) \subset G_{1}$ or $\Phi_{2,1}\left(A_{1}\right) \subset G_{2}$. To show this we need only prove that $\psi_{2} \dot{\phi}_{2}=0$ since the images of ψ_{2} and $\dot{\phi}_{2}$ must be either $Z_{p}(\infty)$ or zero. If $\psi_{2} \dot{\phi}_{2} \neq 0$, then $\left\{k \mid r_{k+1} b_{k} \neq 0\right\} \notin \mathscr{P}(V) \cap \mathscr{F}$ since θ is a lift of $\psi_{2} \phi_{2}$. If $j \in$ $\delta\left(\Psi_{2,1} \Phi_{2,1}\left(b_{k}\right)\right)$, then $j>k$ since $h \in \delta\left(\Phi_{2,1}\left(b_{k}\right)\right)$ implies $h>k$ and $j \in \delta\left(\Psi_{2,1}\left(b_{h}\right)\right)$ implies $j>h$ by definition of $\Phi_{2,1}$ and $\Psi_{2,1}$. Hence $\left(\theta-\Psi_{2,1} \Phi_{2,1}\right)\left(b_{k}\right)=$ $r_{k+1} b_{k}+y_{k}$ where $j \in \delta\left(y_{k}\right)$ implies $j>k$. Since $\left\{k \mid r_{k+1} b_{k} \neq 0\right\} \notin \mathscr{P}(V) \cap$ \mathscr{F}, a construction exactly like the one at the end of Lemma IV. A. produces an $x \in A_{1}-G_{1}$ with $\left(\theta-\Psi_{2,1} \Phi_{2,1}\right)(x) \in A_{1}-G_{1}$. However, θ and $\Psi_{2,1} \Phi_{2,1}$ are both clearly lifts of $\psi_{2} \phi_{2}$, so $\left(\theta-\Psi_{2,1} \Phi_{2,1}\right)\left(A_{1}\right) \subset G_{1}$. This contradiction shows that $\psi_{2} \dot{\phi}_{2}=0$.

Assume that $\phi_{2}=0$. It follows that $\Phi_{1,1}$ is a lift of $\dot{\phi}$. Let $\theta_{t}=$ $\Phi_{1,-t+1}-\Phi_{1,-t}$ for $0 \leqq t \leqq n-1$ and $\theta_{n}=\Phi_{1,-n+1}$. Then $\theta_{t}\left(G_{1}\right) \subseteq G_{2}$ since $\Phi_{1, r}$ has this property for every r. Therefore, θ_{t} induces $\theta_{t} \in H_{1}$ and, since $\Phi_{1,1}=\Sigma \theta_{t}(0 \leqq t \leqq n)$ we have $\dot{\phi}=\Sigma \theta_{t}(0 \leqq t \leqq n)$.

If $\theta_{t} \neq 0$, then there is a k with $\theta_{t}\left(v_{k}\right) \equiv s_{k} w_{k} \not \equiv 0 \bmod G_{2}$. Since $\theta_{t}\left(v_{k}\right)=\Sigma \theta_{t}\left(p^{j-k+1} b_{j}\right)=-\Sigma p^{j-k+1} m_{j-t} b_{j-t}(j \in V)$, we have

$$
V^{\prime}=\left\{j \in V \mid p^{j-k+1} m_{\jmath-t} b_{j-t} \neq 0\right\} \notin \mathscr{P}(V) \cap \mathscr{\mathcal { P }}
$$

and $W^{\prime}=V^{\prime}-t \notin \mathscr{P}(W) \cap \mathscr{F}$. However, since $\theta_{t}\left(G_{1}\right) \subseteq G_{2}$, it follows that for any subset K of $V^{\prime}, \Sigma p^{j-k+1} b_{j}(j \in K)$ is an element of G_{1} if and only if $-\Sigma p^{j-k+1} m_{j-t} b_{j-t}(j \in K)$ is an element of G_{2}. Equivalently,
$K \in \mathscr{P}\left(V^{\prime}\right) \cap \mathscr{I}$ if and only if $K-t \in \mathscr{P}\left(W^{\prime}\right) \cap \mathscr{F}$. Since $V^{\prime} \subset V, W^{\prime} \subset$ $W, V^{\prime} \notin \mathscr{J}$ and $W^{\prime} \notin \mathscr{J}$ we clearly have $\mathscr{W}=\mathscr{V}^{t}$. By III. F. (iii) we have $n=n_{1}(\mathscr{Y}, \mathscr{W}) \leqq t \leqq n$. It follows that $\theta_{t}=0$ for $t<n$ and, since $\phi \neq 0, \theta_{n}=\phi$ which implies $\mathscr{W}=\mathscr{V}^{n}$.

References

1. R. A. Beaumont and R. S. Pierce, Some invariants of p-groups, Michigan Math. J, 11 (1964), 137-149.
2. L. Fuchs, Abelian Groups, Pergamon Press, New York, 1960.
3. J. Irwin and T. Koyama, On Tpological Methods in Abelian Groups, Studies on Abelian Groups, Springer-Verlag, New York. 1968.

Received September 26, 1972. This paper is a revision of a portion of the author's Doctoral Thesis, written at the University of Washington under the direction of R.S. Pierce.

New Mexico State University

