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ASYMPTOTIC APPROACH TO PERIODIC ORBITS
AND LOCAL PROLONGATIONS OF MAPS

ROBERT J. SACKER

This paper is concerned with a flow on a metric space, and
some topological properties of the set of orbits which are
asymptotic to a given invariant subset, with particular em-
phasis on the flow near an invariant Jordan curve (e.g., a
periodic orbit) in an orientable n-manifold J". The inves-
tigation began with the asking of the simple question: Can
a periodic orbit J of a vector field in K” be the w-limit set
of precisely one orbit distinct from J? It is shown that if
the periodic orbit J is a maximal element in the class of
invariant continuua lying in a neighborhood of J, then the
answer is negative and in fact the set of orbits asymptotic
to J as t > o has some of the same topological properties
already known from the stable manifold theorems in the case
of an elementary periodic orbit of a flow generated by a
smooth ordinary differential equation.

The assumption of maximality of J is replaced by an even weaker
condition and the notions of a local quasi-section and its associated
mapping are introduced to handle the case in which J is an invariant
Jordan curve. For such a mapping a local prolongation is defined
which proves useful in studying properties of the orbits asymptotic
to J.

Let m: M x R— M" be a flow, i.e. 7(x, 0) =2 for all xe M",
w(w(x, s), t) = n(x, s + t) and 7 is continuous. Denote =(x,t) by x-¢
and for FCc M" and ACR, E-A=U{x-t:xc K, te A}. Our initial
approach in the case J is a periodic orbit is to consider the induced
map T of a surface of section X at a point J, in J, J, thus being
fixed under 7. In §3 we introduce the notion of local prolongation
of a mapping in metric space and as a special case it turns out that
if there is a X-neighborhood U of J, such that J, is maximal in U
then there is a continuum I"c ¥ lying in U and extending from J,
to the boundary of U such that for all xel”, T"x — J, as n— co.
By maximal we mean that there is no continuum K with J,e KcU
which is invariant under T, i.e., TK = K, except for the obvious
choice K = J,. Thus in the maximal case the above question is an-
swered in the negative. With the condition of being maximal drop-
ped we construct an example (§3) of a map T: R*— R? leaving the
origin fixed and such that if 4 is the closed unit dise, then the
subset F'= {xe 4 — (0, 0): Tz — (0, 0) as n — o} is discrete, F = {w,,
Ty +--} with Tx, = x,.,. Thus, if we suspend this mapping to a
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continuous flow we obtain a periodic orbit J having precisely one
orbit (distinct from J) which is positively asymptotic to J.

Let X be a solid torus neighborhood of the periodic orbit J in
M™ and define A* = {xe X:2-[0, «)c X and w(x)cJ}. We assume
that there is an xe X — J such that w(@)cJ, ie., AT — J%# O.
If J is assumed to be a maximal element in the class of con-
tinua in X which are 7n-invariant, then there is a neighborhood U
in ¥ such that J, is maximal in U and it is easily seen that I will
then lie in A*. More can be said however about A*. In fact it will
be shown in §5 that there is an open solid torus neighborhood V of
J in M™ with V cint X and such that (X — V)N A* carries a Cech
l-cycle which is nonbounding in X and homologous over A* to the
basic 1-cycle carried by J. This is a generalization of the classical
case in which one assumes that 7 is generated by a sufficiently smooth
vector field in a smooth M™ and .J is a periodic orbit with #n — 1 of
its Floquet exponents having nonzero real parts. In that case it
follows [8] that for appropriately chosen X, A* is a smooth manifold
with boundary. For example taking n = 8, it is easy to show that
A* is either equal to X, an annulus or a mobius band and therefore
(X — V)N A*, for an appropriate open torus neighborhood V of J
satisfying V cint X, is either equal to X — V, a pair of disjoint annuli
or a single annulus. The existence of the continuum I" and the
Cech 1-cycle then follow by inspection.

Returning to the general case, it turns out that the foregoing
conclusions depend on the behavior of the flow near J and not in J
itself. For this purpose we introduce the notion of a local quasi-
section for an invariant set and show that if JJ is an invariant Jordan
curve which admits a local quasi-section 3 then under certain addi-
tional conditions the existence of the continuum 7I"c X and the 1-
cycle in (X — V)N A* are guaranteed. In what follows we even drop
the condition that J be maximal and replace it with much weaker
conditions. ,

Announcement of some of these results appeared in [9]. See also
Conley [3], and Churchill [2] for related results concerning invariant
sets which carry cohomology, a concept introduced in [3].

2. Local quasi-sections. The following generalizes the notion
of a surface of section for a periodic orbit. Although the existence
of a local quasi-section is not explicitly assumed in the remainder of
the paper, its existence (together with the associated map) is sufficient
to verify the assumption called Condition A in §5 (see Remark 2
following Condition A).

DEFINITION. Let W be a metric space, m: W x R — W a flow and
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Ic W a compact w-invariant subset. Then I is said to admit local
quasi-sectton Y if there exists a compact subset ¥ c W satisfying
the following: (1) There exists an open neighborhood N of I such
that if N’C N is any open neighborhood of I then there exists an
open neighborhood N”c N’ of I and functions z7: N’ — I — (0, )
and 77t N’ — [—(— oo, 0) such that forallze N” — I, z- (0, ¥(%)) C
N — 2% and ¢-(z7(®), 0)c N’ — ¥ while z-7(x) and 2.7 (x)e 2N N'.
(2) For each ze (N ~ I)N X and ¢ > 0 there exists 9,0 <0 <e¢ and
an open W-neighborhood B of 2 such that

(a) for all a’e B there exists a te (—d, d) such that «’-te X and

(b) if §=a"-¢t then {£-[—0,00U&-(0, 0} N2 = .

REMARKS. (1) In the definition let N’ = N initially and let N¢
be the neighborhood guaranteed by (1) and z/: Ny — I— (0, ) the
corresponding function. Then it is easy to see that for any other
N’ the corresponding N and ¢+ satisfy ¢* = ¢ |N" — I Similarly
for 7.

(2) 77 and 77 restricted to Ny’ N 2 are continuous.

DerFINITION. If 3 is a local quasi-section for I we define the as-
soctated mapping T as follows: Let A=3N Tand U= N, N Y. Then
define T and 77U —- A— 23 by T@®) =x-7(x), T7'() = - 75 (2).
Clearly T~ is the inverse of 7, each is continuous and T%(x)— A
as ® — A. T represents the map which carries a point  to the point
T(x) at which the positive semiorbit through  next strikes J.

If [ is a periodic orbit and W locally compact then there exists
a compact local section at any point pe I, [1, p. 50], [7] and 3 is a-
fortiori a local quasi-section with A = p. In this case T is even
defined as a continuous function at A leaving A fixed. Even if we
modify the flow by placing stationary points on I, leaving orbits in
W — I intact, 3 is still a local quasi-section and T is still extendible
to A leaving A fixed. However, in general, for a local quasi-section,
T need not even be defined on A nor extendible to A as a continuous
mapping, e.g., let I be a 2-torus in R® with periodic coordinates 0 <
@, &, = 2r and y the normal coordinate, |y| < 9. Let I = {(x,, x,, v):
2 =0,0=2 =27 |y| <0} and A the circle on I defined by 2, = 0.
For the differential system

& = lsin%' + |yl
@ =1

y=—1y
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it is easily seen that for pe ¥ — A and p, € 4, lim,.,, T(p) = A.

3. Local prolongation of a mapping. In this section we in-
troduce the notion of a local prolongation which, roughly speaking,
accomplishes the following: Taking a simple situation, let A be a
fixed-point of a homeomorphism 7' defined in a neighborhood Y of
A. We wish to associate with A a closed subset P*C Y — A which abuts
on A and is positively invariant, TP* c P*. Under certain conditions
the set P+ (J A will then generalize the classical local stable manifold
of A. Only the most basic properties of local prolongations suitable
to the problem at hand will be established here. The local prolonga-
tion introduced here is similar to the first prolongation for a continuous
flow introduced by T. Ura and discussed in [1].

Let Y be a compact metric space and AcC X, A= @, a closed
subset. Let Yc X be the closure of an open neighborhood of A and
define Y=Y — A and 3'=3 — A. Suppose T is a mapping such
that Y’ Domain TN Domain 77" and T:Y' — T(Y’) and T™: Y —
T7*(Y’) are homeomorphisms. Further assume that 7 (and T
satisfies the condition: For every X-open neighborhood U of A there
exists a Y-open neighborhood V of A such that T(VNY)cUNY'.
Note that T need not even be defined on A. However, if T is a
homeomorphism defined on a Y-neighborhood of 4 with TA = A4 then
the above conditions are automatically satisfied.

Of particular interest is the case in which X is a local quasi-section
for an invariant set I, A= ¥ N I and T is the associated mapping.

For Pc @ we denote the relative boundary of P in @ by d,P =
PN @ — P and the relative interior int,P = P — 3,P. Let Comp F
denote -the collection of components of F.

DEFINITION. A set E is said to dominate the set A, written £ >
A if ED A and for each E,c Comp E there exists A,e Comp 4 such
that E, D A,.

We mention some elementary properties for arbitrary subsets
E, F, G, A, of the space Y:

(31l) E> E;if E> F and F> FE then E=F; if E> F and
F> @G then E > G.

(B.2) If A,> A for all a@e .o, an arbitrary index set, then
Uies 4o > A. ~

(8.3) It E>» A then E > A.

(3.4) Let {A,C Y, ae .o} be a collection of closed subsets of a
a compact ¥ where .7 is totally ordered and a < B implies A, C A,.
If for some closed subset AcCY, 4, > A for all @e . then

nAa.>»A.

ae s
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(8.5) If follows from the above that if .o/ is totally ordered
and {E,CY’, ac .7} is an arbitrary collection of subsets such that
E,UA> A for all «c .o then (lim... E,)UA> A where

m Ea = n ‘SLJ E,e .

(3.6) If EcY is connected and FN A= @ then EUA > A.
We state without proof the following

LEMMA 3.7. Let FC Y’ be such that T FCY' and FUA> A.
Then (TT'FYU A > A. A similar statement holds for T.

We next define certain positively and negatively invariant subsets
of Y. Let

IN(Yy={FcY:Fisclosed, FUA>» A, TFC F}
I(Y)={(FCcY:Fis closed, FUA>» A TT'F'C F}
I(Y)=I(Y)n I"(Y) .

DEFINITION. For an arbitrary Ec X’ define E).Y’ to be the
maximal subset E° of KN Y’ having the property that E°U 4 > A.

We next define a prolongation operator P*: I*(Y') — I*(Y’). Let
FeI'(Y’) and let {G(a) C Y: 0 < a < 1} be a collection of open subsets
such that Myc,eiG(@) = FU A and if @ < 8 then G(a)C G(B) and
there exists ve (0, ) such that G(v) = G(8). In the relative topology
of Y’ we then have, for G'(a) = G(a) N Y, G'(v) = G(B) for such a v
and lim,c., G'(@) = F. For each ac(0,1) we define a sequence of
subsets of Y’ by letting Gi(a) = G'(@) N. Y’ and

Gn+1(a’) = [T_IG”(CK)] ﬂA Y.
Then define

co

P(F) = U G

and
P(F) = Tim P;(F) .

ae(0,1)

THEOREM 3.8.

(1) P* is a mapping from IN(Y’) to I*(Y’) and for FcF,
both in I'(Y"), Fc P+(F)c P+(F).

(2a) If for some FeI(Y') and some ve(0,1) it is true that
T"G'(Y)C Y’ for all integers n = 0 then PT(F)e I(Y’) and there exists
an F*e I'(Y") and o subset G Y’ such that FCGc G = F*.

2b) In particular if P (F)NJI.Y = @ then there exists such
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a v and in addition F*Cint; Y.

(2¢) Further, if Y 4s locally connected at each point of FFU A
then the subset G may be chosen to be open in Y’ and such that GU A
18 open in Y.

Proof. (1) Clearly P* is well defined, i.e., it does not depend
on a particular choice of G(a). It is also clear that for

Fc F, PH(F)c P~(F) .

For all a, G(a) UA > A and since G'(w) DF and FU A > A we have
Gya) D F. Since Fe I'(Y"), T7'Gy(a) D T7'F D F and therefore G,(a) U
A > Aand G(a) D F. Continuing inductively we see that for all # =0,
G, (@) UA > Aand G, (o) DF. Using the properties of “>” mentioned
above we see that P;(F)U A>» A and P;j(F)DF and finally P*(F) U
A> A and P*(F)DF. To finish the proof of (1) we show that TPC P
where P = P*(F). Let xe P. If z¢ F then T(x)e FC P and we are
done. If xc P — F then there exists @< (0, 1) such that for all ae
0, Q), x ¢ Gy(e). But e P implies v e P;(F) = U, G.(a) for all ae
0, 1). Thus ¢ U=, G.(a) for all ac (0, @). Thus for each fixed a < (0,
@) there exists a sequence , — 2, ¢, € G, (@) for some sequence of
integers n, = 1. But then T(z,) — T(x) and T(x,) € G,,—.(a) and there-
fore T(x)e P;(F). But a < g implies P;j(F)c P/ (F) and therefore
T(x) e PF(F) for all ac(0,1). This proves T(x)e P = Nucwon Pi(F).

(2a) If for some Fe I*(Y’) and some ye (0, 1), T"G'(y)c YY" for
all # = 0 then G,(v) = G'(v) N. Y’ satisfies the condition G,(v) N 4 > A.
Since T7'G,(v)c Y’ Lemma 3.7 implies T7'G,(v) UA > A. Thus the
definition of G.(v) reduces to G,(v) = T7'G,(v). Repeating this we see
that G,(v) = T"G,(v)c Y’ and G,(v) UA> A for all n=0. Thus
G,.(v) = T7'G,(v) and hence T7'P,;(F)c P, (F'). Taking lim sup we get
T'P*(F)c P*(F). This and part (1) implies P*(F)e I(Y'). Define
G = P/(F) and F* = G. It was shown in the proof of (1) that G U
A > A and therefore F* JA > A. Also from T7'G < G follows

TTF*cC F*.

(2b) If P*(F)cint. Y’ then P*(F)U AcC (int-.Y')U A = int; Y.
But PH(F) U A = Naewy [PS(F) U A] and since Y is compact there
exists a ve(0,1) such that P,/ (F)U ACint;Y, ie., F* = Pf(F)C
inty;, Y’ thus proving the assertion.

(2e) If Y is locally connected at each point of F'U A then each
G(a) may be chosen to satisfy the additional condition, G(a) > A.
To see this, by the local connectedness assumption there is a con-
nected open U,C Y, ze U, for each x¢ F U A. Define

GQ1)= U U..

zeFUA
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From properties (3.6), (3.2), and (3.1) we see that U, UFUA> FUA>
A and therefore G(1) = U,erua (U, U FU A) > A. Assume G(1/n) has
been defined and let U< Y be open such that Ac Uc Uc G(1/n) and
d(4, Y—U) <1/(n +1). Again for each xe F U A there is an apen
connected U, Y, xe U,C Y. Define GA/(n + 1)) = U,er,4 U,. Finally
for ae(l/(n + 1), 1/n) define G(a) = G(1/n).

Now G'(0) = G(a) N Y’ is open in Y’ and G'(a) U 4 = G(a) > A.
Thus in the proof of (2a) G,(v) = G’(v) and it follows that G is open
in Y. To see that GU A is open in Y let Z=Y — G U A. Since
G(y)UA =G'(») UA = G() is open in Y then defining

E=Y - [G() U Al

we see that E is closed Yand ECcY — A =Y'. Since G(a)CG, ZC
Y—-G@UA=FandalsoZ=(Y -GN -A4A)=(Y-GNnY =
Y’ — G implies Z is closed in Y’. This and Zc EcC Y’ implies Z is
closed in Y. This completes the proof.

REMARKS. (1) Clearly by replacing 7' by T throughout we may
construct P~(F) for Fe I (Y) and a similar theorem holds.

(2) The empty set @ e I"(Y’). However, P7(®) need not be
empty. For example take A = {0} the origin in R™ and let A be an
asymptotically stable fixed point of a homeomorphism 7T: R"— R*,
ie., TMx) »0asl— . Let ¥ = {||z]| =2} and Y = {||z]| =< 1}. Then
PH@)=Y - A=Y".

COROLLARY 3.9. If for some Fe I'(Y'),Y is locally connected at
each point of FU A and if there exists an x € ¥ — Y such that T"(x) —
FUA as n— oo, then P (F)N0:Y = ©.

Proof. If not then from part (2) of the theorem there exists
F* = GeI(Y') where G U A is open in Y. For n sufficiently large
then z= T"(x)eG. But then = T7"z and T'F*C F*CY’ leads
to a contradiction since ze 3 — Y =23"—Y".

DerFINITION. Let A, Y, and T be defined as before. Then A4 is
said to satisfy property M in Y with respect to T if I(Y’) = {2}.
In particular if A is connected and T is a homeomorphism defined in
a neighborhood of A leaving A invariant, TA = A, then A satisfies
property M if and only if A is maximal in the class of T-invariant
continuua contained in Y, or stated more simply, A is maximal in ¥
with respect to T.

LEMMA 3.10. If A satisfies property M and Ee I'(Y') then
N T"E = @. In particular for all xc E, d(T"(x), A)— 0 an n— .
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A similar statement holds for Eec I"(Y) with T replaced by T .

Proof. Ny T"E e I(Y") follows from the fact that TEC E, E |
A > A, Lemma 3.7 and property (3.4.)

Another immediate result of Theorem 3.8 is

CoROLLARY 3.11. If A satisfies property M then either PH(Q) =
@ or P(@)No-Y= @.

THEOREM 3.12. Let A be a fixed point of T which is maximal
n Y. IfY is locally connected at A then either PH(@)N0:Y = &
or A is asymptotically stable under T7'.

Proof. If PH(@)Nd:Y = ¢ then from Theorem 3.18 (2b) there
exists an open G <Y’ such that G = F*e I(Y) and G U A is open
inY. Let VcY be an open neighborhood of A. We must find an
open neighborhood U of A such that T-"UcV for all » =0 and
dTU, A)— 0 as n— . From Corollary 3.10 N T™"(GUA) = A
and therefore there is an #, such that T-"(G U 4) = N, TG U
A)c V. Simply define U= T "(G U A) and the theorem is proved.

COROLLARY 3.13. Under the condition of Theorem 3.12 if there
exists an x€ X such that d(T"x, A)— 0 as n— o then there exists a
continuum of such points extending from A to d:Y.

If the “maximal” assumption is dropped, Corollary 3.13 is no
longer true as illustrated by the following

ExampLE. We construct a mapping T: R*— R* such that the
origin is fixed and At = {pe R*— (0, 0): T"p— (0, 0) as n— o} is
discrect. Define f: [0, <) — [0, 1] to be continuous, f(27%) = 1/(j + 1)
for je Z*, f is linear on each interval [2797% 27/] and f({) =1 for
t = 1. Clearly f is monotone increasing. Define F = {(», ¥) e R 2 =
0 or 27", ne Z*} and let 6: R*— R be the distance from E, i.e., é(x, y) =
d((z, y), E). Finally define T by T(z, y) = (,, y,) where

v =y — f(0(z, v))

&, = %w .
The y — axis consists of fixed points and A+ = {(27, 0):je Z}. To see
this note that for points (x, y) € E, T"(x, y) — (0, ) as n — oo and only

those in A* approach (0, 0). Further, for (z,, ¥,) ¢ £ we will show that
T™,, ¥,) becomes unbounded. For = sufficiently large T*(x,, ¥,) is in
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the strip x| < 1 for all £ = n so we might as well assume |z,] <1
to start with. Then d(x, ¥,) = 6, where 27" <, < 27'** for some
integer { = 1 and if (%, ¥,) = T"(®, Yo), 0(X,, ¥.) = 270, = 27""%. There-
fore, f(0(x,, y.)) = F2™") = 1/(n + 1 + 1). But yy =y, — 205 f(0(z,,
Y,) = Yo — 2m=s 1/(n + 1 + 1) shows that yy— — « as N — co,

If we take 3 = R* and Y the unit disc 4 = {(z, y)e R:2* + y* <
1} and A = (0, 0) we see that I'(Y’) = I(Y’) and Fe I*(Y’) implies
F={09):a=<y<p8 y+#0} for some aand 8, -1 sas0=p=1.
For all Fe I'(Y"), P*(F) = {(0, ¥): 0 £y <1} U F. Of course A fails
to be maximal.

Taking >=FE,Y=4N E and A=(0, 0) we see that I"(Y’) is the
same but P*(F) = F for all Fe I'(Y’). Thus the assumption of local
connectedness in Corollary 3.9 cannot be dropped.

4. Flows. We now consider the behavior of a flow 7: X x R—
X near a compact invariant subset I X a metric space. Suppose
K is a compact neighborhood of I and define

At ={xeK:x-R*C K and w(x)c I},

the stable set associated with I.

DErFINITION. We say I is maximal in K with respect to n if
whenever FF< K is closed, w-invariant and F > I then F = 1. In
particular if I is connected then I is maximal if it is a maximal
element in the class of closed m-invariant continua contained in K.

LemmA 4.1. If I is maximal in K then A* is closed.

Proof. Let x,€ A", 2, —x. Then clearly x- R* < K and hence
@(x) is compact and therefore connected. There exists a subsequence,
again call it z,, and sequences ¢, and 7, in R*, ¢, < 7, such that
Iim,_. «,t, = o()and lim,__ z, - 7, = I’ I for some nonempty subset
I' of I (this follows directly from the continuity of the flow). Define
F=Im,..2,-[t, t.]. Then F is clearly closed and since w(x) is
connected so is Fand FDOw(x) U I'. Defining F” = F U I, let us show
that F” is invariant. If suffices to show F’ — w(x) U [ is invariant.
Let ye I — w(x) U I. Then there is a sequence s, € (t,, 7,) such that
®,-8,— Y. Since I and w(x) are invariant, s, — t,— >~ and 7, —
8, — o with . Now let T > 0 and let N be so large that z, — s, >
T for all w = N. Then forn = N, ,-(s, + T)ex, - [t., ©.] and there-
fore y-T =lim®,-(s, + T)e F! — w(@)U I. Similarly for T < 0.
Therefore, F” — w(x) U I and hence F” is invariant. Clearly F” is
closed and since F' is connected and FUIDI =+ @ it follows from
(3.6) that F” > I,i.e., FFU > I. But I maximal implies F'C I and there-
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fore w(z) c I completing the proof.

It is easily seen that if we define F = [),ep+ A7+t then F is
invariant and F' > I. Thus if I is maximal in the neighborhood K
we have F = I, i.e., A" satisfies

Condition B. A subset D, Ic Dc K, satisfies Condition B if
Niczt D-t = I. Consider also

Condition B’. A subset D, Ic Dc K, satisfies Condition B’ if
for all x ¢ D — I there exists f(x)e R~ such that - f(x)e X — K.

DEFINITION. A subset DcC K is relatively megatively invariant
(relative to K) if for all x € D and ¢ € B~ we have [¢, 0]-o < D whenever
[¢,0]-2c K. The set A* is an example of such a subset.

LemMmA 4.2. Comnsider a subset D, Ic DcC K.

(1) If D s positively invariant and satisfies Condition B’ then
it satisfies Condition B.

(2) If D is relatively megatively invariant and satisfies Con-
dition B then tt satisfies Condition B'.

Proof. (1) If not, there exists x € Nyer+ D+t — I. If 7 > 0 then
rxeD-.7 implies z-[—7, 0lcD-7-[—7, 0] = Useycn D-(t + 0) D
since 7 + 0 = 0 and D is positively invariant. Thus for all = > 0,
%-[—7, 0] D contradicting Condition B’.

(2) If not, there is an v € D — I such that - R~ < K and since
D is relatively negatively invariant, - R~ c D. Thus for all ¢ =0
there is a ye D — I such that y-¢ =2, namely vy = x-(—¢t). But
then xe D-¢t for all ¢ = 0 and therefore x ¢ .cx+ D -t contradicting
Condition B.

LEMMA 4.3. Let D K be a closed, positively itnvariant subset
which satisfies Condition B. Then (1) there exists an open neighbor-
hood V of I such that VC K and for allze VN D, x-R*N, K=
and (2) for any open meighborhood V of I with V C K, there exists a
t, > 0 such that D*.[t, ) V.

Proof. (2) This follows directly from Condition B. (1) If not,
there exist «,e D', t,e¢ R* such that x,— I and z,-t,e D" N K.
Then ¢, — o since [ is invariant. Let y, = x,-t,. By compactness
there is a subsequence, again call it ¥,, such that y, - ye D* N0, K.
Now v, [—t,, 0] < DT implies that y- R~ D*. Thus since D™ is also
positively invariant, y- Rc D*. But y-.R is invariant which con-
tradicts N D*-¢t = I and completes the proof.
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5. Flow near an invariant Jordan curve. In this section we
consider an n-dimensional manifold M* and a flow 7: M" x R— M*
which admits a Jordan curve J as an invariant set. Assume X is a
closed neighborhood of J which is a solid torus having J as “center
line”, i.e., there exists a homeomorphism 4: V"™ x S'— X such that
h({0} x S§) = J where V"' = {xe R*": ||x|| < 1} is the closed unit » —
1 ball and S'={Ze C:|Z| =1}. Henceforth, by an open (closed)
tubular neighborhood of J we will mean the image A(V, x S') where
V,c R" is the open (closed) » — 1 ball of radius »,0 <r < 1.

Define A* = {xe Xiw- Rt C X, w(x) C J} and assume there exists
D+c A* which is a closed, positively invariant and relatively nega-
tively invariant subset of X satisfying Condition B (and hence also
Condition B’ by Lemma 4.2). If J is maximal in X we may simply
choose D* = A*. By Lemma 4.3 we may choose an open tubular
neighborhood V of J such that for all xe VN D+, z-R*NX = Q.
Under an additionavl condition (Condition A) we will prove that (X —
V) N D* carries a Cech 1-cycle Z which is homologous over D* to the
basic 1-cycle carried by J. In the case in which X is convex to the
flow [6] we may take D* = A* and apply the results repeatedly using
a sequence V,C V,., such that UV, =int X. Then by applying a
continuity argument to the nested compact subsets K, = (X — V,) N
A+ we obtain a l-cycle on N K, = A* N oX which agrees with the
result of [3] in which J is a periodic orbit of a continuous vector
field in R® and in addition J is assumed to be isolated as an invariant
set.

We now describe Condition A and the results. Let E=V""x
R be the covering space of V"' x S*' with projection p’: E— V"' x §*
defined by 2'(y, t) = (y, e¥%). Then E covers X with projection p =
hop'. Let q: E— R be projection onto the second factor, (z, t) — t.
Since p is a local homeomorphism we have the local covering flow #
in E defined as follows: Let U be a neighborhood in E such that
(p|U):U—p(U)c X is a homeomorphism. For (y,¢)e U x R such
that =(p(y), [0, t]) C p(U) define #(y, t) = (p|U)"'n(p(y), t)e U. One
can easily verify that 7 is continuous for all (y, t) such that w(p(y),
[0, ¢]) c int X.

Define functions ¢+, t7: D* — (J U 0X)— R~ as follows:

() =inf{t <0:2-[t, 0] D* N int X}
ttx) =sup{t < 0:2-(t (x), t)c D*Nint (X —V)}.
Since D™ satisfies Condition B’, for any ze D* — (J U 0X) the point

% -t must leave X for some ¢<0 and therefore ¢t (x) > — « and
x-t~(w)edX. Also it is clear that ¢ (x) < t* ().

LEMMA 5.1. If V 4s chosen as above thenm t~ is wupper-semicon-
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tinuous and t* is lower-semicontinuous on D+ — (JU0X). Further
there exists an M > 0 such that tT(x) + t~(x) < M for aoll xe D+ —
J U aXx).

Proof. Let e >0 and 7 =t(x) +e. Then z-[r,0]cint X and
by continuity there is a neighborhood N of x such that for &¢ N,
&.[r,0]cintX. Thus ¢t (§)<7 for all £ N, i.e., t” is upper-semi-conti-
nuous at . Now let ¢ > 0 be such that ¢ (z) <t*(x) —e <t*(x). From
the upper-semicontinuity of ¢~ choose a neighborhood N of z such
that ¢t () < tf(x) —¢ for ée N. Let v =t"(x) —¢. Then - (t (x),
tlc Dt Nint (X — V). We claim there exists a neighborhood N'c N
of ¢ such that £¢e N’ implies ¢ (t7(¢), 7l D* Nint (X — V). Granting
this for the moment we then have ¢7(§) = ¢ for e N’ i.e. t* is
lower-semicontinuous at . To prove the claim, from the given con-
dition on V there is an open U such that Vc Uc Ucint X and for
all ye VN D", y-Rt*cU. Hence if ye D*Nint(X — U) we have
¥t (y), 0lc D*N(X — V). Now choose se (¢7(x), 7) such that

z-(t(x), sjc DT Nint (X —0)

and a neighborhood N’c N such that é.sc D*Nint (X — U) and
&-[s,7]c D* Nint (X — V) for all £€ N’. Applying the previous state-
ment to y = &§-s we get

£-8-(t7(§-8),01=¢-(t7(),s]lcD"Nint (X - V).

Combining the inclusions in the last two sentences we obtain the
claim. To prove the last assertion of the lemma we argue negatively
and assume there exists a sequence z,€ D™ — (J U 0X) and times ¢,
s, such that t(x,) <t, <s, <t"(x,) where g,=3s, —t,— . But
then z, - [t,, s.] € D" N(X — V) and therefore there exist points y, =
Z,-t,e DN (X —V) such that y,-[0,0,]cD*N(X-V). From
compactness of the latter there exists yclimy, such that y-R*cC
D+ N (X — V) contradicting Condition B and the lemma is proved.
Define

d=p(DYCE J=p'(J)={0} x RCE 4=4—(JUp X))

and the lifted functions T%, T~: 4— R~ by T*(y) = t*op(y). Assume
that our dynamical system satisfies

Condition A. There exists a bounded connected subset I" 4
and a sequence y,< I" such that ¢(y,- T~ (y,)) — — <.

REMARKS. (1) We do not exclude the possibiliy that some trajec-
tories in A* could be asymptotic as ¢ — <« to critical points on J.
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(2) We do not require that J admits a local (quasi) section.
However, if it does admit one of the form X = p(V"™* x {0}) and if
AT — J %= @ and J is assumed maximal in X, then applying Corollary
3.9 we may choose I" to be any component of p~'(P*(¢) — 0X) such
that p(I") contains the singleton 4 = ¥ NJ. Condition A is then
satisfied by choosing any sequence ¥, <€ I" such that p(y,) — A.

THEOREM 5.2. Let V be an open tubular metghborhood of J such
that for all e VN Dt we have - RT*NdX = @ and suppose that
Condition A holds. Then (X — V)N Dt carries a Cech 1-cycle which
18 homologous over D* to the basic l-cycle carried by J. Here the
coefficient group G is taken to be either the reals R, the rationals Q
or the reals mod 1, R,.

Proof. Define K = (X —V)N D*. Among all open covers a of
X we consider only those which are finite and have the property that
it U, ---, Uyea are such that UN K= @,1=1, .-+, [, then N, U;
is nonempty if and only if N, U. N K= @. By [11] and the com-
pactness of X these covers form a cofinal subcollection of the collec-
tion of all open covers.

Let « be an open cover of X and denote by X, the nerve of «
and by K, the nerve of the induced cover on the closed subset
Kc X. Assume « is so fine that H,(X;) = G for all covers B> a,
i.e., which refine a. Define Z = D* — (J UoX) and consider the
functions ¢*, t7: Z— R~ defined earlier. Since ¢* and ¢~ are respec-
tively lower and upper-semicontinuous on Z, a normal, countably
paracompact space and ¢t (x) < t*(z) for all xe¢ Z we have (Dowker
[5]) a continuous function ®:Z— R~ such that ¢ (x) < o(x) < t7(x)
for all e Z. Clearly then x.-®(x)e K for all xe Z. Let Y = p™'(Z)
and define ¥: Y— R~ by ¥(y) = #op(y). By Condition A there is a
bounded connected subset I"c Y and a sequence ¥,c I’ such that
9, T (y,)) = — . From the second assertion of Lemma 5.1 we
see that 0 < ¥(y,) — T (y,) < M and therefore q(¥,- ¥(y,)) — — oo.
Thus if we define the function »: 1" — Y by y — vy - ¥(y) we see that
M is continuous and letting C = M{") we see that C is connected,
Cc p”(K) and C is noncompact. Define K’ = p(C)c K. Then K’
is compact and connected.

Now let 8> a be an open cover of X. We claim that there
exists a nontrivial class ve H,(K;) such that v is not in the kernel
of the inclusion induced map 7,: H(K;) — H,(X;). To prove this define
U =U{Uep:UNK" = @}. It suffices to show the existence of a
map f:S'— U, which is not null-homotopic over X. For letting
J: U,— X be inclusion, then j o f is homotopic over X to a map 0: S'—J
of degree n == 0. This in turn implies that the subset Im (jo f)c X
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carries a cycle of Z/(X;) generating a nontrivial class in H,(X;). But
Im(f)c U, and by our choice of covers, any cycle on X, having
vertices Ue B such that UN K = © is actually a cycle on K; which
establishes the claim.

To verify the sufficient condition let U = U, be the component
containing K’ and arguing negatively assume every map f:S'— U is
null-homotopic. Then every closed curve in U can be lifted to a
closed curve in the covering space E. But then (Spanier [10]) p~(0)
is a disjoint union of subsets each homeomorphic to U viap, i.e.,
there is a homeomorphism ¢: U — W E where W is the component
of p~(U) containing C. Since K’c U is compact, g(K’) is a compact
subset of E. But Cc g(K’) contradicting the fact that C is non-
compact. Thus the claim is proved.

Since the coefficient group G is divisible and H,(X;) = G we see
that the sequence Hl(Kﬂ)LHL(Xﬂ)—m is exact. Now form the
Cech homology groups H, by taking inverse limits along the cofinal
sequence of open covers described earlier. Since all groups involved
are either finite dimensional vector spaces or compact topological
groups, and the inverse limit of exact sequences of such groups is
itself exact, we see that the following sequence of Cech groups is
exact:

H(K) — H(X)—0 .

The flow induced map h,: D™ — D*.t given by h(z) =x-¢t is a
homeomorphism and from Condition B, .», D" -t = J. Thus, taking
the inverse limit as ¢t — o in the sequence

H(D" -5, J) M gDt J)e— - ——lim H(D* - ¢, J)

and using the continuity of the Cech theory we obtain

H(D*, J) = lim H(D*-t,J) = H(J,J) = 0.

The commutative diagram (all maps inclusion induced)
H(K)
| Sa@)—m@, D
H,(X)

l

0

with exact column and H,(X) = G shows that we have constructed
a Cech 1-cycle on K which does not bound in X but when considered
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as a cycle on D+, it is homologous over D* to the basic cycle carried
by J. This completes the proof of the theorem.
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