THE NON ABSOLUTE NÖRLUND SUMMABILITY OF FOURIER SERIES

G. Das and R. N. Mohapatra

The paper is devoted partly to the study of non-absolute Nörlund summability of Fourier series of $\varphi(t)$ under the condition $\varphi(t) \chi(t) \in A C[0, \pi]$ for suitable $\chi(t)$. The other aspect is to determine the order of variation of the Harmonic mean of the Fourier series whenever $\varphi(t) \log k / t \in B V[0, \pi]$.

1. Let L denote the class of all real functions f with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$ and let the Fourier series of $f \in L$ be given by

$$
\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} A_{n}(t),
$$

assuming, as we may, the constant term to be zero.
We write

$$
\begin{gathered}
\phi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} \\
g(n, t)=\int_{0}^{t} \frac{\cos n u}{\chi(u)} d u \\
h(n, t)=\int_{t}^{\pi} \frac{\cos n u}{\chi(u)} d u
\end{gathered}
$$

Let $\left\{p_{n}\right\}$ be a sequence of constants such that $P_{n}=\sum_{v=0}^{n} p_{v} \neq 0$ ($n \geqq 0$) and $P_{-1}=p_{-1}=0$. For the definition of absolute Nörlund or (N, p) method, see, for example, Pati [9]. When $\sum_{n=0}^{\infty} a_{n}$ is absolutely (N, p) summable, we shall write, for brevity, $\sum_{n=0}^{\infty} a_{n} \in|N, p|$.

We define the sequence of constants $\left\{c_{n}\right\}$ formally by $\left(\sum_{n=0}^{\infty} p_{n} x^{n}\right)^{-1}=$ $\sum_{n=0}^{\infty} c_{n} x^{n}, c_{-1}=0$.
2. One of the objects of this paper is to study the non-absolute (N, p) summability factors of Fourier series and generalize the following outstanding result of Pati in Theorems 1-2. Besides, the proof of Theorems 1-2 are short and simple and avoids the direct technique of Pati which is somewhat long and complicated.

If we write

$$
G=\left\{f: f \in L, \varphi(t) \log k / t \in A C[0, \pi] \text { and } \sum_{n=1}^{\infty} A_{n}(x) \notin\left|N, \frac{1}{n+1}\right|\right\}
$$

then Pati's theorem is in the following form:

Theorem P [9]. G is nonempty.

Mohanty and Ray [8] subsequently constructed an example of $f \in G$.

We now establish
Theorem 1. Let χ be a real differentiable function and $\left\{\varepsilon_{n}\right\}$ be a sequence satisfying the following conditions:

$$
\begin{equation*}
\dot{\phi}(t) \chi(t) \in A C[0, \pi], \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{\left|P_{n}\right|}|g(n, \pi)|<\infty \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\left|\chi^{1}(t)\right|}{\chi^{2}(t)} \nearrow \text { as } t \searrow 0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n^{2}\left|P_{n}\right|} \frac{\left|\chi^{1}(\pi / n)\right|}{\chi^{2}(\pi / n)}<\infty, \tag{4}
\end{equation*}
$$

$$
\begin{gather*}
\sum_{n=1}^{\infty}\left|\Delta\left(\frac{\varepsilon_{n}}{n P_{n}}\right)\right|<\infty \tag{5}\\
\varepsilon_{n}=0\left(n P_{n}\right)
\end{gather*}
$$

(7) $\exists a$ set $E: m E>0$ and $\exists a$ constant $\eta>0$ such that $\chi(t)^{-1}>\eta$ $\forall t \in E$.

Then

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{\left|P_{n}\right|}\left|A_{n}(t)\right|=\infty \quad(\forall t \in E) \tag{8}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n\left|P_{n}\right|}=\infty . \tag{9}
\end{equation*}
$$

Now, if we denote, $G^{*}=\{f: f \in L$, conditions (1) through (7) and (9) hold and $\left.\sum_{n=1}^{\infty} \varepsilon_{n} A_{n}(x) \notin|N, p|\right\}$ then we establish

Theorem 2. Let

$$
\begin{equation*}
\sum_{v=0}^{n}\left|p_{v}\right|=O\left(\left|P_{n}\right|\right), \quad \sum_{n=0}^{\infty}\left|c_{n}\right|<\infty \tag{10}
\end{equation*}
$$

Then G^{*} is nonempty.
In $\S 3$, we discuss some special cases of interest of Theorem 2.

Since Theorem 2 implies that the total variation of the (N, p) mean of the series $\sum_{n=1}^{\infty} \varepsilon_{n} A_{n}(x)$ is unbounded, the natural question now is to determine the order of the variation. And this is achieved in Theorem 3 in $\S 4$.
3. We need the following lemmas for the proof of Theorem 1.

Lemma 1. (2) Suppose that $\left\{f_{n}(x)\right\}$ is measurable in (a, b) where $b-a \leqq \infty$, for $n=1,2, \cdots$. Then a necessary and sufficient condition that, for every function $\psi(x)$ integrable in the sense of Lebesgue over (a, b), the functions $f_{n}(x) \psi(x)$ should be integrable L over (a, b) and

$$
\sum_{n=1}^{\infty}\left|\int_{a}^{b} \psi(x) f_{n}(x) d x\right| \leqq K
$$

is that

$$
\sum_{n=1}^{\infty}\left|f_{n}(x)\right| \leqq K,
$$

where K is an absolute constant for almost every x in (a, b).
Lemma 2. Let condition (3) hold. Then

$$
h(n, t)=\frac{\sin n t}{n \chi(t)}+O\left(\frac{1}{n^{2}}\right) \frac{\left|\chi^{1}(\pi / n)\right|}{\chi^{2}(\pi / n)} .
$$

Proof. We have, by integration by parts, and second mean_value theorem,

$$
\begin{aligned}
h(n, t) & =\left(\int_{\pi / n}^{\pi}-\int_{\pi / n}^{t}\right) \frac{\cos n u}{\chi(u)} d u \\
& =\frac{\sin n t}{n \chi(t)}+\frac{1}{n}\left(\int_{\pi / n}^{\pi}-\int_{\pi / n}^{t}\right) \frac{\chi^{1}(u)}{\chi^{2}(u)} \sin n u d u \\
& =\frac{\sin n t}{n \chi(t)}+O\left(\frac{1}{n}\right) \frac{\left|\chi^{1}(\pi / n)\right|}{\chi^{2}(\pi / n)}\left(\int_{\pi / n}^{\zeta^{1}}-\int_{\pi / n}^{5}\right) \sin n u d u \\
& =\frac{\sin n t}{n \chi(t)}+O\left(\frac{1}{n^{2}}\right) \frac{\left|\chi^{1}(\pi / n)\right|}{\chi^{2}(\pi / n)}
\end{aligned}
$$

where $\pi / n \leqq \zeta \leqq \pi, \pi / n \leqq \zeta^{1} \leqq t$.
This completes the proof.
Proof of Theorem 1. We have, by integration by parts,

$$
A_{n}(x)=\frac{2}{\pi} \int_{0}^{\pi} \phi(t) \cos n t d t=F(0) g(n, \pi)+\int_{0}^{\pi} F^{\prime}(t) h(n, t) d t,
$$

where $F(t) \equiv \phi(t) \chi(t)$. Hence by condition (2) the statement (8) is
equivalent to proving that:

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{\left|P_{n}\right|}\left|\int_{0}^{\pi} F^{\prime}(t) h(n, t) d t\right|=\infty \quad(\forall t \in E) \tag{11}
\end{equation*}
$$

Since, by hypothesis (1)

$$
\int_{0}^{\pi}\left|F^{\prime \prime}(t)\right| d t<\infty
$$

by Lemma 1, the statement (11) is equivalent to proving that \exists a set $E: m E>0$ and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{\left|P_{n}\right|}|h(n, t)|=\infty \quad(\forall t \in E) . \tag{12}
\end{equation*}
$$

Whenever conditions (3) and (4) hold, by virtue of Lemma 2, the statement (12) is easily seen to be equivalent to proving that

$$
\begin{equation*}
M(t)=\frac{1}{|\chi(t)|} \sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n\left|P_{n}\right|}|\sin n t|=\infty \quad(\forall t \in E) \tag{13}
\end{equation*}
$$

Now, since

$$
|\sin n t| \geqq \sin ^{2} n t=\frac{1}{2}(1-\cos 2 n t)
$$

we have

$$
M(t) \geqq \frac{1}{2 \chi(t)}\left(\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n\left|P_{n}\right|}-\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n\left|P_{n}\right|} \cos 2 n t\right) .
$$

Using conditions (5) and (6) and using Dedekind's theorem we observe that the series

$$
\sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n\left|P_{n}\right|} \cos 2 n t
$$

is convergent for $0<t<\pi$. Hence ${ }^{*}(13)$ is equivalent to showing that

$$
\begin{equation*}
\frac{1}{\chi(t)} \sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{n\left|P_{n}\right|}=\infty \quad(\forall t \in E) \tag{14}
\end{equation*}
$$

Now the result follows from (14) by using the conditions (7) and (8).
Proof of Theorem 2. Das [4], in particular, proved that whenever condition (10) holds, then

$$
\sum_{n=1}^{\infty} \varepsilon_{n} A_{n}(x) \in|N, p| \Longrightarrow \sum_{n=1}^{\infty} \frac{\left|\varepsilon_{n}\right|}{\left|P_{n}\right|}\left|A_{n}(x)\right|<\infty
$$

Now the result follows from Theorem 1.
4. In this section we apply Theorem 2 to some special cases. If we take $\chi(t)=\log k / t, E=\{t: k / e \leqq t<\pi\}$ we get

Corollary 1. Let $\left\{\varepsilon_{n}\right\}$ satisfy the conditions:
(i) $\varepsilon_{n}=O(\log n)$,
(ii) $\sum_{n=1}^{\infty}\left|\varepsilon_{n}\right| / n \log ^{3}(n+1)<\infty$,
(iii) $\sum_{n=1}^{\infty}\left|\Delta \varepsilon_{n}\right| / n \log (n+1)<\infty$,
(iv) $\sum_{n=1}^{\infty}\left|\varepsilon_{n}\right| / n \log (n+1)=\infty$.

Then

$$
\varphi(t) \log k / t \in A C[0, \pi] \Longrightarrow \sum_{n=1}^{\infty} \varepsilon_{n} A_{n}(x) \notin\left|N, \frac{1}{n+1}\right| .
$$

Proof. Since the Fourier series of the even periodic function ($\log k /|t|)^{-1}$ is absolutely convergent (see Mohanty [7]) we get that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\int_{0}^{\pi} \frac{\cos n u}{\log k / u} d u\right|<\infty . \tag{15}
\end{equation*}
$$

It may be observed that if we take $\varepsilon_{n}=1, p_{n}=1 /(n+1)$ in Corollary 1 , then we get Theorem P.

Corollary 2. Let $\varphi(t) \in B V[0, \pi]$ and let conditions (5), (6), and (9) hold. Then $\sum_{n=1}^{\infty} \varepsilon_{n} A_{n}(x) \notin|N, p|$.

Take $\chi(t) \equiv 1, E=[0, \pi]$ in Theorem 2. In this case $g(n, \pi)=0$.
Remark. Corollary 2 in the case $\varepsilon_{n}=1$ gives that

$$
\varphi(t) \in B V[0, \pi] \Longrightarrow \sum_{n=1}^{\infty} A_{n}(x) \notin\left|N, \frac{1}{n+1}\right| .
$$

This interalia establishes the result that $\varphi(t) \in B V[0, \pi]$ is not sufficient to guarantee the absolute convergence of the series $\sum_{n=1}^{\infty} A_{n}(x)$. See Bosanquet (1) who showed this by taking an example.
5. Throughout this section we consider the case $p_{n}=1 /(n+1)$ only. We write t_{n} and τ_{n} respectively for the ($N, 1 /(n+1)$) means of the sequences $\left\{\sum_{v=1}^{n} \varepsilon_{v} A_{v}(x)\right\}$ and $\left\{n \varepsilon_{n} A_{n}(x)\right\}$. It follows from a result of Das [4] Theorem 6 on general infinite series that

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|\tau_{n}\right|}{n}=O(1) \text { if and only if } \sum_{n=1}^{m}\left|t_{n}-t_{n-1}\right|=O(1) \tag{16}
\end{equation*}
$$

Proceeding as in the proof of above result we in fact get that for any positive nondecreasing sequence $\left\{\lambda_{n}\right\}$

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left|\tau_{n}\right|}{n}=O\left(\lambda_{m}\right) \text { if and only if } \sum_{n=1}^{m}\left|t_{n}-t_{n-1}\right|=O\left(\lambda_{m}\right) \tag{17}
\end{equation*}
$$

Since Theorem P implies that the variation of $\left\{t_{n}\right\}$ is of unbounded order, we are immediately confronted with the problem of determining the order of variation of $\left\{t_{n}\right\}$. Because of relation (17) this problem simplifies to determining the order of $\sum_{n=1}^{m}\left|\tau_{n}\right| / n$ and this is achieved in

Theorem 3. If $g(t) \equiv \varphi(t) \log k / t \in B V[0, \pi]$. Then

$$
\sum_{n=1}^{m} \frac{\left|\tau_{n}\right|}{n}=O(\log \log m)
$$

Proof. We have

$$
\tau_{n}=\frac{2}{\pi P_{n}} \sum_{v=1}^{n} p_{n-v} \nu \int_{0}^{\pi} \varphi(t) \cos \nu t d t
$$

Since

$$
\int_{0}^{\pi} \varphi(t) \cos \nu t d t=g(0) \int_{0}^{\pi} \frac{\cos \nu t}{\log k / t} d t+\int_{0}^{\pi} d g(t) \int_{t}^{\pi} \frac{\cos \nu u}{\log k / u} d u,
$$

we get

$$
\begin{aligned}
\sum_{n=1}^{m} \frac{\left|\tau_{n}\right|}{n} \leqq & \frac{2}{\pi}|g(0)| \sum_{n=1}^{m} \frac{1}{n P_{n}}\left|\int_{0}^{\pi} \frac{d t}{\log k / t}\left(\sum_{\nu=1}^{n} p_{n-\nu} \nu \cos \nu t\right)\right| \\
& +\frac{2}{\pi} \int_{0}^{\pi}|d g(t)| \sum_{n=1}^{m} \frac{1}{n P_{n}}\left|\int_{t}^{\pi} \frac{d t}{\log k / t}\left(\sum_{\nu=1}^{n} p_{n-\nu} \nu \cos \nu t\right)\right| \\
= & \frac{2}{\pi}\left\{|g(0)| G_{m}+H_{m}\right\} .
\end{aligned}
$$

Since the series $\sum_{n=1}^{\infty} \int_{0}^{\pi} \cos n u / \log k / u d u$ is absolutely convergent (see (15)) and therefore it is absolutely ($N, 1 /(n+1)$) summable, we get that $G_{m}=O(1)$ by using relation (16).

Since $\int_{0}^{\pi}|d g(t)|<\infty$, using Lemma 2 with $\log k / t$ in place of $\chi(t)$ we get that

$$
\begin{aligned}
H_{m}= & O(1) \sum_{n=1}^{m} \frac{1}{n \log (n+1)}\left|\sum_{\nu=1}^{n} \frac{\sin \nu t}{n-\nu+1}\right| \\
& +O(1) \sum_{n=1}^{m} \frac{1}{n \log (n+1)} \sum_{\nu=1}^{n} \frac{1}{(n-\nu+1) \log ^{2}(\nu+1)}=H_{m}^{(1)}+H_{m}^{(2)} .
\end{aligned}
$$

By a result of McFadden ([6], Lemma 5.10) we get

$$
\sum_{\nu=1}^{n} \frac{\sin \nu t}{n-\nu+1}=O(\log \tau),(\tau=[k / t])
$$

and consequently

$$
H_{m}^{(1)}=O(1) \frac{\log \tau}{\log k / t} \sum_{n=1}^{m} \frac{1}{n \log (n+1)}=O(\log \log m)
$$

On change of order of summation in $H_{m}^{(2)}$ and by use of the fact that

$$
\sum_{n=\nu}^{m} \frac{1}{(n-\nu+1) n \log (n+1)}=O\left(\frac{1}{\nu+1}\right)
$$

we get

$$
H_{m}^{(2)}=O(1) \sum_{\nu=1}^{m} \frac{1}{\nu \log ^{2}(\nu+1)}=O(1) \quad(m \longrightarrow \infty) ;
$$

and this completes the proof.
Remarks. In view of Corollary 1, one is naturally led to determine suitable sequences $\left\{\varepsilon_{n}\right\}$ such that $g(t) \in B V[0, \pi] \Rightarrow \sum \varepsilon_{n} A_{n}(x) \in$ $|N, 1 /(n+1)|$. But in view of Theorem 3 it is enough to determine the sequence of factors $\left\{\varepsilon_{n}\right\}$ such that $\sum_{n=1}^{\infty} \varepsilon_{n} A_{n}(x) \in|N, 1 /(n+1)|$ whenever $\sum_{n=1}^{m}\left|\tau_{n}\right| / n=O(\log \log m)$. Such a result is contained in the more general result of Das [5].

References

1. L. S. Bosanquet, The absolute Cesàro summability of a Fourier series, Proc. London Math. Soc., (2), 41 (1936), 517-528.
2. L. S. Bosanquet and H. Kestleman, The absolute convergence of a series of integrals, Proc. London Math. Soc., (2), 45 (1939), 88-97.
3. G. Das, On the absolute Nörlund summability factors of infinite series, J. London Math. Soc., 41 (1966), 685-692.
4. -, Tauberian theorems for absolute Norlund summability, Proc. London Math. Soc., (3), 19 (1969), 357-384.
5. On a theorem of Sunouchi, J. Indian Math. Soc., (to appear).
6. L. McFadden, Absolute Nörlund summability, Duke Math. J., 9 (1942), 168-207.
7. R. Mohanty, A criterion for the absolute convergence of a Fourier series (2), Proc. London Math. Soc., 51 (1949), 186-196.
8. R. Mohanty and B. K. Ray, On the non-absolute summability of a Fourier series by a Nörlund method, Proc. Cambridge Phil. Soc., 63 (1967), 407-11.
9. T. Pati, The non-absolute summability of Fourier series by a Nörlund method, J. Indian Math. Soc., 25 (1961), 197-214.

Received October 27, 1972.
Sambalpur University, Jyoti Vihar, Burla, Orissa, India
AND
American University of Beirut, Lebanon

