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THE NON ABSOLUTE NORLUND SUMMABILITY
OF FOURIER SERIES

G. D A S AND R. N. MOHAPATRA

The paper is devoted partly to the study of non-absolute
Norlund summability of Fourier series of <p(t) under the con-
dition <p(t)X{t)eAC[0, π] for suitable l(t). The other aspect is
to determine the order of variation of the Harmonic mean of
the Fourier series whenever φ{t) log k/teBV[0, π],

1* Let L denote the class of all real functions / with period 2π
and integrable in the sense of Lebesgue over ( — π, π) and let the
Fourier series of fe L be given by

Σ (an cos nt + bn sin nt) = Σ An(t) ,
n—l n=l

assuming, as we may, the constant term to be zero.
We write

g(n, t) = Γ
JO

cos nudu

X(u)

Let {pn} be a sequence of constants such that Pn — Σ?=o Pv Φ 0
(n ^ 0) and P β l = p^ — 0. For the definition of absolute Norlund or
(N, p) method, see, for example, Pati [9]. When Σ ϊ U α * is absolutely
(N, p) summable, we shall write, for brevity, Σn=oαne \N, p\.

We define the sequence of constants {cn} formally by (Σ~=o Pn%n)~L —

2 One of the objects of this paper is to study the non-absolute
(N, p) summability factors of Fourier series and generalize the follow-
ing outstanding result of Pati in Theorems 1-2. Besides, the proof
of Theorems 1-2 are short and simple and avoids the direct technique
of Pati which is somewhat long and complicated.

If we write

G=\f:feL, φ{t) log kft e AC[0, π] and Σ

then Pati's theorem is in the following form:

49

N,
1

n + 1
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THEOREM P [9]. G is nonempty.

Mohanty and Ray [8] subsequently constructed an example of
feG.

We now establish

THEOREM 1. Let X be a real differentiate function and {εn} be
a sequence satisfying the following conditions:

(1) φ(t)X(t)eAC[O,π],

(2)

( 3 )

( 4 )

( 5 )

( 6 )

(7) 3 a set E: mE > 0 and 3 a constant "Q > 0 such that X(t)~ι > η
VteE.

Σ
n — l

l\t)
X\t)

ξ-y I g(n, π) I < oc

1 as t \ 0 ,

i \π\n) i

Σ (-**-)\nPJ

Then

( 8 )

if and

( 9 )

only if

f |e.l An(t) (VteE),

n=i n\ Fn I

Now, if we denote, G* = {f:feL, conditions (1) through (7) and
(9) hold and 'ΣΛ7=,1εnAn(x)$ \N, p\} then we establish

THEOREM 2. Let

n oo

v=0 n=Q

Then G* is nonempty.

In §3, we discuss some special cases of interest of Theorem 2.
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Since Theorem 2 implies that the total variation of the (N, p) mean
of the series ΣϊU £nAn(x) is unbounded, the natural question now is to
determine the order of the variation. And this is achieved in Theorem
3 in §4.

3. We need the following lemmas for the proof of Theorem 1.

LEMMA 1. (2) Suppose that {fn(x)} is measurable in (a, b) where
b — a ^ oo, for n = 1, 2, . Then a necessary and sufficient condi-
tion that, for every function ψ(x) integrable in the sense of Lebesgue
over (α, 6), the functions fn(x)ψ(x) should be integrable L over (α, b) and

Σ <f(x)fn(x)dx
a

K

is that

Σ \f.(x) \^K,

where K is an absolute constant for almost every x in (α, 6).

LEMMA 2. Let condition (3) hold. Then

Proof. We have, by integration by parts, and second mean'value
theorem,

nX(t) n\l*in JnJ X\u)
_ sin nt . QI 1 \ | X\π/ri) \ /{ζί

nX(t) \n J X2{πjri) V J *in

__ sin nt , Q(_J_\ I Wjπ/ri) \
nX{t) \n2/ X2(π/n) '

where π/n ^ ζ ^ π, π/n ^ ζ1 ^ ί.
This completes the proof.

Proof of Theorem 1. We have, by integration by parts,

AJx) = — (^^(ίjcos^ίdΐ = F(0)g(n, π) + Γ.F'(ί)fc(w, ί)dί ,
7Γ Jo Jo

where F(t) Ξ φ(t)X(t). Hence by condition (2) the statement (8) is
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equivalent to proving that:

(11) Σ \*F'(t)h(n, t)dt
Jo

(Vί e E) .

Since, by hypothesis (1)

\'\F'(t)\dt
JO

by Lemma 1, the statement (11) is equivalent to proving that 3 a
set E: mE > 0 and

(12) (Vί 6 E) .

Whenever conditions (3) and (4) hold, by virtue of Lemma 2, the
statement (12) is easily seen to be equivalent to proving that

(13)

Now, since

we have

I sin wί I =

I sin nt \ ̂  sin2 nt = —(1 —

Using conditions (5) and (6) and using Dedekind's theorem we observe
that the series

v _ϋ
ZΛ 7
*=i n\

• cos 2nt

is convergent for 0 < t < π. Hence?(13) is equivalent to showing that

(14) J-±ΛiA-7= oo (vteE).

Now the result follows from (14) by using the conditions (7) and (8).

Proof of Theorem 2. Das [4], in particular, proved that whenever
condition (10) holds, then

Σ' »An(x) e\N,p An(x) I < oo .

Now the result follows from Theorem 1.
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4* In this section we apply Theorem 2 to some special cases.
If we take X(t) = log k/t, E = {ί: k/e^t < π} we get

COROLLARY 1. Let {εn} satisfy the conditions:
( i ) e, = O(log n),
(ii) Σ?«i I e. IM Iog3(^ + 1) < oo,
(iii) Σ~=i I Δεn \/n log (w + 1 ) < oo,
(iv) Σ?=i I e IM log (n + 1) = oo.

9>(ί) log Λ /ί G AC[0, 7Γ]
+ 1

Proof. Since the Fourier series of the even periodic function
(log k/\ 11)"1 is absolutely convergent (see Mohanty [7]) we get that

(15) cos nu
log k/u

du < oo .

It may be observed that if we take εn = 1, pn = l/(τι + 1) in Corollary
1, then we get Theorem P.

COROLLARY 2. Let φ(t)eBV[0, π] and let conditions (5), (6), and
(9) hold. Then ΣϊU ε»Λ(») ί IJV, p |.

Take Z(ί) = 1, E = [0, π] in Theorem 2. In this case #(w, TΓ) = 0.

REMARK. Corollary 2 in the case εn — 1 gives that

1
N,

+ 1

This interalia establishes the result that φ(t) e BV[O, π] is not sufficient
to guarantee the absolute convergence of the series Σ*=i-4*0&) See
Bosanquet (1) who showed this by taking an example.

5* Throughout this section we consider the case pn — l/(n + 1)
only. We write tn and τn respectively for the (N, l/(n + 1)) means
of the sequences {Σϊ=i εvAv(x)} and {nenAn(x)}. It follows from a result
of Das [4] Theorem 6 on general infinite series that

(16) Σ - ^ - = 0(1) if and only if Σ | ίn - *»-i I = 0(1) .

Proceeding as in the proof of above result we in fact get that for
any positive nondecreasing sequence {Xn}
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(17)
»=i n

= O(λm) if and only if Σ I *• — *-i I = O(λm) .

Since Theorem P implies that the variation of {tn} is of unbounded
order, we are immediately confronted with the problem of determin-
ing the order of variation of {tn}. Because of relation (17) this problem
simplifies to determining the order of Σ*=i I τ% IM and this is achieved in

THEOREM 3. // g(t) = <p(t) log k/t e BV[0, π]. Then

Σ i l s i = O(log log m) .
n

Proof. We have

Σ P»-v» <P(t) cos vtdt .

Since

φ{t) COS Vtdt = 0(0)

o Jo log k/t

cos:
log ft/w-

we get

V I 6"
»=i n

+

7Γ

_2_p
π Jo

log A /ί

Σ Jί Λlog k/t
P-J> COS

Since the series Σ?=i \ cos ^u/log λ/w- ώu is absolutely convergent (see
Jo

(15)) and therefore it is absolutely (N, l/(n + 1)) summable, we get
that Gm = 0(1) by using relation (16).

I dg(t) \ < oo9 using Lemma 2 with log k/t in place of X(t)
0

we get that

Hm = 0(1)
*=i n log (π + 1)

sin vt
n — v + 1

0(1) Σ •Σ-
- log (w + 1) t=\ (n-v + 1) log2 (v + 1)

By a result of McFadden ([6], Lemma 5.10) we get

Σ shlVt. =O(Iogr),(r =
v=i n + 1

and consequently
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Hΰ = 0(1) J2I_L_ ± _ ^ _ i = O(log log m) .
log fc/ί *=i w log (n + 1)

On change of order of summation in H{£ and by use of the fact that

Σ»=* (π — y + ϊ)n log (w + 1) V P + 1

we get

H% = 0(1) Σ -^ j-77 7T- = 0(1) (m > oo)
=̂i y log2 (v + 1)

and this completes the proof.

REMARKS. In view of Corollary 1, one is naturally led to deter-
mine suitable sequences {εn} such that g(t)e BV[0, π]=>ΣεnAn(x)e
I JV, l/(Wr + 1) ]. But in view of Theorem 3 it is enough to determine
the sequence of factors {en} such that Σ»=i enAn{x) e | N, l/(n + 1)!
whenever Σ?=i I r« IM = O(loglogm). Such a result is contained in
the more general result of Das [5].
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