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CYCLIC MULTIPLICATION OPERATORS
ON L,-SPACES

H. A. SEID

Let (X, 2, 1) be a measure space. Suppose f is in L. (X,
2, 1). The operator M, on L,(X, 3, p) defined by M(g) =f-g,
for g in L,(X, 2, ) is called a multiplication operator. The
purpose of this paper is to characterize cyclic multiplication
operators and to relate their structure to the properties of
the measure space on which the underlying L,-space is defined.

In Ly(X, 3, ) any maximal abelian self-adjoint algebra of bounded
operators may be transformed isometrically to the algebra of all
multiplication operators on some L,-space (see, e.g. [9]). This is due
to the fact that among the L,-spaces, only L.,-possesses a sufficiently
rich collection of orthogonal projections. In fact, if p = 2, the only
“orthogonal” projections on L, are multiplications by characteristic
functions (shown by Sullivan [10] for real L,). As a consequence,
isometries between L,-spaces are related to o-isomorphisms between
the underlying measure spaces when p = 2. These relationships may
be exploited to characterize certain multiplication operatorson L, -spaces
where 1 < p < oo,

In 81, we present Sullivan’s theorem along with applications to
direct sum decompositions of L,-spaces and to surjective isometries
between L, -spaces.

Section 2 deals with the characterization of the operator M, on
L,(v), where v is a finite Borel measure with compact support in the
plane, defined by

M.f(z) = 2f(2)
for fin L,(v).

In 83 the concept of a normal measure space (introduced by
Halmos and von Neumann [3]) is used to relate the structure of
certain measure spaces (X, 2, ) to the structure of cyclic multipli-
cation operators on L, (X, ¥, p).

We mention that throughout, all measure spaces are assumed
to be o-finite. For notational ease, we denote L,(X, X, 1t) by L,(%)
when no confusion arises. The algebra of all multiplication operators
on L,(#) is denoted by _#.. Also if f is a measurable function on
(X, %), then supp (f) = {we X || f(x)| > 0} is called the support of f.

1. Structural and isometric properties of L, -spaces.

DEFINITION 1.1. A closed subspace R of L, () is a p-direct
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summand of L,(¢) if there exists a closed subspace S of L,(z) such
that L, (%) = R S algebraically and if re R and seS, then
|7+ s||*=||7|]* + ||s||*. In this event we write L,(#) = R, S.

We recall a relation due to Hanner ([4], Theorem 1, p. 239). If
S and g are in L,(X, %, p), p + 2, then

(1.1) Hf+gllP+ 1 f—gllP=2(F1”+1lgll")
if and only if f-g = 0 a.e.

THEOREM 1.1 (Sullivan). A closed subspace R of L(X, X, ) is
a p-direct summand of L,(t) if and only if B = My, (L,(tt) for some
oe>.

Proof. If L,(#)=R®,S, then for re R and seS, we have
|7 = s|]* = ||r]|” + ||s]||’. By Equation 1.1, it follows that r.s =0
a.e. There exists fye L,(#) such that supp (f,) = X a.e. Let f,=
7, + s, where r,e R and s, S. Then there exists ¢,€ ¥ such that
r, = fix(o,) a.e. and s, = f,X(X\o,) a.e. It follows that if re R and
se S, then we have » = r¢(g,) a.e. and s = sx(X\o,) a.e. We conclude
that R = My, (L,(#0). The converse is immediate.

Definition 1.1 extends in a natural way to any collection of closed
subspaces {L.}... 0f L,(#) and we say that L,(#) is the p-direct sum
of {Lu}ees (written @ues L) if L,(¢) = Pues L, algebraically and
| Secafall®” = Sacallfull”y where f,e L,. Clearly in this event, each L,
is a p-direct summand and for each sum .., f. at most a countable
number of summands are nonzero.

COoROLLARY 1.1. If {Lu}ucs s a collection of montrivial closed
subspaces of L,(), p # 2, such that L,(t) = @ues pLle then card
4) = W,

For a measure space (X, Y, ¢r) we set 2’ equal to 3/N, where
N, is the collection of all sets of measure zero in X. Then [o]e 3’
will be the class of all sets 7 in 3 such that 740 = ¢ a.e.

For [o] and [7], in 3’, let [] U [c] = [ec U 7], [e] N [z] = [o N 7], and
[e1\[7] = [o\7] = [¢] N [X\7]. These operations are all well defined. We
say that [c]c o] if tCo a.e.

Let (X, X, ) and (Y, @, v) be measure spaces.

DEFINITION 1.2. A map [I: 3 — @' is o-isomorphism if
(i) I is a bijection;

(ii) I([o\c]) = I([eD\['([z]) for [o] and [7] in 3;

(iii) if {[o.]}z. is a sequence of elements of 3’, then

r(Uled) = U red -
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It is convenient to regard I" as a map from X to @ by merely
setting I"(0) = @ where o € [0] and @ is a fixed representative of I"([g]).
Then this mapping is a o-isomorphism if we identify sets equal almost
everywhere.

DEFINITION 1.3. A surjective isometry J: L,(X, 2, ¢) — L,(Y, @, v)
induces a o-isomorphism I': 3’ — @' if [supp (J(f))] = I'([o]) whenever
fis in L,(#) and supp (f) = ¢ a.e. £.

We now give a generalization of part of a theorem due to
Lamperti ([7], Theorem 3.1, p. 361).

THEOREM 1.2. Let J: L(X, 2, ¢) — LY, @,v), p + 2, be a sur-
jective isometry. Then J induces a o-isomorphism I': X' — @ and
I’ preserves atoms.

Proof. Since J is a surjective isometry, it preserves p-direct
summands.

Define I': ¥ — @ by I'(6) = ® where J(My,,(L, (1)) = My (L,(»)).
Then I' is a o-isomorphism and hence I'" preserves atoms.

Suppose fe L,(¢#) and supp (f) =0 a.e. Clearly supp (J(f)) <
(o) a.e. v. If supp (J(f)) # I'(6) a.e., then there exists h = 0 in
My ron(L,()) such that h-J(f) = 0 a.e. v. By equation 1.1 it follows
that J7(2)-f = 0 a.e. ¢t and J (k) € My,,(L,(¢4)). This is contradiction.

REMARK 1.1. Suppose (X, 2, ) and (2, @, v) are such that there
exists a o-isomorphism I:3'— @'. The measure © defined by
o(®) = (I *([#])) for e @ is equivalent to v and & = dw/dv. Define
Jy: L(w)— L,(v) by J,(f) = h'*-f. Let J,: L,(#) — L,(w) be defined on
characteristic functions by Jy(X(0)) = x(I'(¢)). Extend J, by linearity
and continuity to all of L,(#). The map J, = JJ, is called the
canonical surjective isometry inducing I'.

DEFINITION 1.4. A bounded operator T on L (X, 2, tt) corresponds
to a bounded operator U on L, (Y, @, v) if there exists a surjective
isometry J: L,(¢) — L,(v) such that T = JUJ.

THEOREM 1.3. If J:L,(X, 2, ¢) — L,(Y, ®,v) is a surjective
isometry inducing a o-isomorphism I': X' — @', then the algebra of
multiplication operators _#, on L, V) corresponds bijectively to the
algebra of multiplication operators _#, on L,(v).

Proof. Since J induces 7, if 0 € 3, then My, = J "My r,)J. Since
J is linear, if se L. (%) is a simple function, say s = >, 7,%(d,), then
M, = J'M,J where r = 3.r, 7%(l(0;)) and || M,|| = || M,||. But the
multiplications by simple functions form dense subsets in both _#,
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and _#,. By continuity, it follows that _, corresponds bijectively
and isometrically to _Z under J.

DEFINITION 1.5. An algebra .o~ of bounded operators on L, (X,
X, ) is maximal abelian if

(i) &7 is commutative;

(ii) if T is a bounded operator which commutes with all the
elements of .97 then T is in o7

THEOREM 1.4. A bounded operator T on L, (1), p + 2, 1s in _#,
if and only if each p-direct summand of L, () is invariant for T.

Proof. Let R = My,/(L,(%) be an arbitrary p-direct summand
of L,(#). Suppose T is in _#,. Then we have TMy, (L,(%) =
My TMy o (L(Y), ie., TMy, = MyoyTM,, and thus R is invariant
for T.

Conversely suppose that each R = M, (L, (%)) is invariant for T.
Let S = (I — Myo)(Ly(#) = Myxo(Ly(#)). Then

(1-2) Ml(o) TM%(«;) = TMx(o)
and
(1-3) (I - MZ(a))T(I - wa)) = T(I - Ml(a)) .

Equations (1.2) and (1.3) imply that TM,, = My,T. Thus T
commutes with & = {M,,, |oce 3}. Since .77 generates ., which is
maximal abelian, we conclude that Te _,.

THEOREM 1.5. Let J;: L(X, ¥, 1t)— L,(Y, ®,v), © =1, 2, be two
surjective 1sometries which induce the same o-isomorphism I': 2" — @',
Then there exists fe L (v) such that |f| =1 a.e. v and J, = M;J,.
If in addition p = 2, then the conwverse is also true.

Proof. TFirst assume (X, X, ) is a finite measure space. Let
J.((X)) = g and J,(x(X)) = h. For oe 2, it follows that J,(y(o)) =

a(I'(6)) a-e. v and J(3(0)) = hy(I'(6)) a.e. v. We have & g7 dy =

[h|?dy for all pe @. Thus |g| = |h| a.e. v. Let f= h/g. Since
sapp (9) = supp (k) = Y a.e. v, we have | f| =1 a.e. v, and if s is a
simple function in L, (#¢), then Jy(s) = M;J,(s). By continuity, we
conclude that J, = M,J,.

In the standard way the theorem holds when (X, 2, ) is o-finite.
If p~ 2, then employing Theorem 1.2, the converse follows
immediately.
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2. Cyeclicity and extended cyclicity.

DEFINITION 2.1. A bounded operator T on L,(X, X, p) is cyclic
if there exists a function f,e L,(¢#) such that {p(T)(f))|p is a poly-
nomial in the variable z} is norm-dense in L,(#). The function f, is
called a cyclic function.

DEFINITION 2.2. A multiplication operator M, on L, (%) is ex-
tended cyclic if there exists a function g, in L,(#) such that {p(},,
M>)(g,) | (2, Z) is a polynomial in the variables z and 2} is norm-dense
in L,(#). The function g, is called an extended cyclic function. (Note
that Definition 2.2 is merely a special case of the usual definition of
the eyclicity of a normal operator on L,.)

Throughout the sequel, the triple (S, <Z(S), v) shall be a finite
measure space where S is a compact subset of C with Borel sets
(S) and v is a finite measure (hence regular) on <Z(S).

REMARK 2.1. Let 2:S—S be the identity function. The
Stone-Weierstrass theorem implies that M, is extended cyclic on
LS, #(S), v) with extended cyclic function x(S).

The essential range of a function fe L.(X, ¥, t) (written S;) is
defined in the usual way. It is easy to show that if M, is a multi-
plication operator on L, (X, %, tt), then S; is the spectrum of M.
Also, since C is a Lindelof space, there exists X, e 2, with p#(X;) =0,
such that f(X\X,)c<S;,.

REMARK 2.2. Let (X, 2, ) and (Y, @, v) be measure spaces. Let
I:3'— @ be a o-isomorphism. If there is a set Y, € @ with »(Y,) =0
and a measurable point mapping ¢: Y\Y,— X such that [67'(o)] =
I'([o]) for o€ 2, then 67" induces I". In this event, Jr: L,(#) — L,(v)
has the form J (9)(y) = h'"(y)(g-6)(y) a.e. v on Y\Y, for ge L,(v) and
h as in Remark 1.1.

THEOREM 2.1. Am operator M, of L (X, 3, tt), p # 2, corresponds
to M, on LS, £&(S), v) if and only if f~ induces a o-isomorphism
r. z'S)—2".

Proof. Suppose there exists a surjective isometry J: L,(v) — L, (%)
such that M,J = JM, where J induces a g-isomorphism /I": <Z’'(S) — 3.
There exists ke L.(¢) such that |k| =1 a.e. ¢ and J = M,Jr. Also,
there exists X,e¢ ¥, with #(X;) = 0, and a measurable point mapping
0:X\X,— S such that 6 induces I, (see, e.g., [8] Corollary 11, p. 272).
By constructing J, as in Remark 2.2 and noting that %(S)e L,(v) we
find that M, J(X(S)) = JM,(X(S)) implies that f = 6 a.e. ¢ on X\X,.



554 H. A. SEID

Conversely if £ induces that o-isomorphism I, it follows directly
that if we construct J, as in Remark 2.2 then J,.M, = M;Jr.

THEOREM 2.2. Let it and v be two o-finite measures on the Borel
sets of S, a compact subset of C. Then M, on L, (tt) corresponds to
M, on L, (v) if and only if ¢t is equivalent to v.

Proof. If p =2, this result is known and follows from the
uniqueness of resolutions of the identity (see, e.g. [2], Theorem 1,
p. 65).

Suppose » = 2 and M, on L, (%) corresponds to M, on L,(v) under
a surjective isometry J: L,(#)— L,(v), inducing a o-isomorphism
I': #(S)/|N,~ #(S)/N,. Then by Theorem 2.1, ¢ and vy are equiva-
lent.

Conversely if ¢ and v are equivalent, then the identity mapping
2: S — S induces the identity o-isomorphism 7°;: <& /N (S) — <Z [N.(S).
Constructing J,: L,(#) — L,(v) as in Remark 2.2, we find that
MJ, = J.M,.

LEMMA 2.1. An operator M; on L,(X, X, tt) corresponds to M, on
LS, & (8S), v) if and only if M, is extended cyclic.

Proof. If p = 2, this is a special case of a well known theorem
for cyclic normal operators ([2], Theorem 1, p. 95).

If p+ 2 and if M, corresponds to M, then there exists a sur-
jective isometry J: L,(v) — L,(#) such that M,J = JM, and J induces
a o-isomorphism I: &Z'(S)— 3>/. Let {s,} be a sequence of simple
functions in L. (%) such that s, —f as w— c in L. (#). Then {M,}
converges to M; in _#, and {J 7'M, J} converges to M,. Therefore,
the sequence {J'M; J} converges to M;, i.e., M5J = JM:.

If ¢ is a polynomial in the variables z and %, then J'q(M;, M7)J
equals q(M,, M;). Let g = J(X(S)). Then it follows that

JeM., M=)XT(9)) = o(My, M5)(9) -

Thus M, is extended cyclic with extended cyclic function g.

Conversely let A = {p(M,;, M5) = M,;,7 | p(#, Z) is a polynomial in
2z and z}. Let .o~ be the operator norm closure of A. Then it
follows that under the involution induced by complex-conjugation,
7 is isometrically x-isomorphic to C(S,), the continuous functions
on S;, under an algebra isomorphism z: .97 — C(S;) such that z(I) =1,
(M) = z, and ©(M3) = Z where z is the identity mapping on S;. Let
ge L,(#) be an extended cyclic function for M, Define a linear
functional L on & = {q(z, Z)| ¢ is a polynomial in the variables z
and z} by
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L(g) = | a0, My)X0) |9 P~ sgn (e = | a(£, ) g " dpe

It follows from Holder’s inequality that the integral exists and
[ L@ | = llgllllgllz. We extend L to all of C(S;) by continuity and
observe that L is a positive linear functional. There exists a regular

positive Borel measure v € C*(S;) such that L(k) = S hdy for he C(S;).
Since |k |”e€ C(Sy), it follows that

Lnp) = {1rprdy = (111 = | 105)-g P dee = 10913

Let W = {o(M;, M7)(9) | ¢(M,, M7)e A}. Then L, () is the p-norm
closure of W. Define J: W— L,(v) by J(a(M;, M7)g)) = q(?, )€ .
J is an isometry on W. Extend J by continuity to a surjective
isometry on all of L, (#). We conclude that M,J = JM, since this is
true on W.

The proof of this lemma follows that employed by Kalisch [6]
in his proof of the above mentioned p = 2 cyclicity theorem of
Halmos.

REMARK 2.3. By standard methods, one can show that a function
ge L,(¢) is an extended cyclic function for an extended cyclic multi-
plication operator M, on L, () if and only if |g| > 0 a.e.

Bram ([1], Theorem 6, p. 85) has shown that for p =2, M, on
LS, & (S), v) is cyclic in the sense of Definition 2.1. An examination
of the proof of this result shows that it is not dependent on the
properties of Hilbert space. By use of Remark 2.1, Lemma 2.1 and
an obvious modification of Bram’s proof, one obtains:

THEOREM 2.3. A multiplication operator on L, () is extended
cyclic if and only if it is cyclic. (However, in gemeral a cyclic
multiplication operator has a larger collection of extended cyclic
Sfunctions than cyclic functions.)

We now obtain immediately:
THEOREM 2.4. A bounded operator T on L,(X, 2, t1), p + 2 cor-
responds to M, on L,(S, (S),v) if and only if each p-direct summand

of L,(¢) is invariant for T and T s cyclic.

THEOREM 2.5. Amn operator M;e _#, is cyclic on L, (1), p # 2, if
and only if M; is cyclic on L,(%).

Proof. We may assume that (X, ¥, ¢) is a finite measure space
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with #(X) =1. Then if 1 < p < p' < oo, we have Li() is p-norm-
dense in L,(¢) and if fe Liy), then || £]l, = I £ ll-

Suppose M, is cyclic on L,(#¢), with cycliec function g and p > 2.
The set &= {q(M/)]|q is a polynomial in 2} is norm-dense in L (t).
Thus it is norm-dense in L,(t).

If p <2, there exists a surjective isometry J: L,(#t)— L,(S, <Z(S), v)
such that M,J = JM,;. Thus the dual mapping J*: Li(v)— Li(#) is
such that J*M} = M:J*. But M7 = M, on L) and M} = M; on
Li(g). So M; is cyclic on L}(#4) and hence on L,(%).

The converse is proved similarly.

From Theorems 2.2 and 2.5 we conclude immediately that Theorem
2.1 holds for p = 2.

3. Cpyeclicity and univalence. Let (X, ¥, 1) be a o-finite meas-
ure space.

DEFINITION 3.1. A subset 4 of ¥ is called a o-algebra contained
i 2 (written 4 X) if 4 is itself a o-algebra.

THEOREM 3.1. Let fe L. (). There exists a c-algebra A, X
depending on f such that f isin L.(X, 4;, 1) and M; is cyclic on
p(X /'lfy #! )

Proof. Consider 4, = {f7(B)|Be . (C)}. Then AC2 is a o-
algebra. Restrict ¢ to 4,. There exists G,e 4, such that p(g3,) =0
and f |y, ©S;. Define v on Z(S;) by v(v) = #(f7'(7)). Let v’ be
a finite measure equivalent to v. Then we see that f~' induces a
o-isomorphism I': ZZ(S/)/N, — A;. Hence M; on L,(X, 45, [*];,) corre-
sponds to M, on L,S;, £2(S;), v') and thus M, is cyclic.

DEFINITION 3.2. A measurable function f is essentially univalent
if it is univalent on the complement of some set of measure zero.

We observe that M, is cyclic on LS, &(S),v) and z is a
univalent function. It is reasonable to ask whether all cyclic multi-
plication operators on L, (X, Y, ¢) arise from essentially univalent
L_-functions and conversely. The answer in general is negative.

ExampLE 3.1. Consider ([0, 1], .=Z([0, 1]), \), the usual Borel
measure space on [0, 1]. Let f be defined by

-

f(t):‘lt_l,
2

o
A

t

A
= |

2o =
AN
I\
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Then fis in L.,(\)and S; = [0, 1/2]. There exists 4, c <Z([0, 1]) such
that M, is cyclic on L,([0, 1], 4;, N |4,), but f is not essentially univalent
on ([0; 1]9 Afy A ]Af)‘

We shall show that essential univalence of fe L_(#) need not
imply that M, is cyclic on L, (¢) after some preliminaries (see Example
3.21f.). In addition we will determine when essential univalence of
an L.-function f is equivalent to the cyclicity of M, on L,.

DEFINITION 3.3. A o-finite measure space (X, %, #) is called
proper if:

(1) it is complete and nonatomic;

(ii) there exists 4 ¥ such that (X, 2, ) is properly separable
with respect to 4;

(iii) 4 has a separating sequence.

The c-algebra 4 is called the Borel sets of 3 and a 4-measurable
function is called a Baire function. All italicized terms are defined
as in [3]. We denote a proper measure space by (X, 2, 4, ).

DEFINITION 3.4. A proper measure space (X, X, 4, ) is normal
(c-normal) if to each real-valued (complex-valued) univalent Baire
function f, there corresponds a set X, in X depending on f such that
#(X,,) = 0 and such that f(X\X, ) is a Borel subset of R(of C).

REMARK 3.1. By duplicating the proofs of Lemmas 1-4 which
Halmos and von Neumann proved for real-valued functions on proper
and normal measure spaces ([3], pp. 337-339), we obtain:

THEOREM 3.2. A proper measure space (X, 2, 4, ¢) is normal if
and only if it is c-normal.

Let (X, 2, ¢) and (Y, @, v) be measure spaces.

DEFINITION 3.5. A bijective mapping 6: X\X,— Y\Y,, where
X)) = v(Y,) = 0, is a point isomorphism if 6 and 0 are measurable
and ¢ induces a o-isomorphism /: 3'— @', In this event we say that
(X, 2, ) and (Y, @, v) are point isomorphic. If in addition we have
o) = v(I'(c)) for oe X, then 6 and I are said to be measure pre-
serving.

Let (X, 3, ¢t) be a measure space. Then we shall denote by
(X, 3, i) the measure space where 5 is the completion of 3 and 2
is the completion of .

Throughout the remainder, the usual Borel measure space ([0, 1],
([0, 1]), ») shall be denoted by [0, 1] and the usual (normal) Lebesgue
measure space ([0, 1], <2([0, 1]), <Z([0, 1]), X) will be denoted by [0, 1]".
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REMARK 3.2. Halmos and von Neumann have proved the follow-
ing:

THEOREM. A proper measure space (X, X, 4, 1) with (X) =1
18 normal if and only if it is measure preserving point isomorphic
to [0, 1]7. (See [3], Theorem 2, p. 339.)

It follows from this and the fact that all measure preserving
set automorphisms on [0, 1]7 are induced by measure preserving
point isomorphisms ([3], p. 340) that if (X, 3, 4, #) and (Y, @, 7, v)
are normal measure spaces, then each ¢-isomorphism [I: 3’ — @' is
induced by a point isomorphism =.

REMARK 3.3. It follows from a Theorem proved by Halmos and
von Neumann ([3], Lemma 3, p. 338) that if (X, X, 4, ¢#) and (Y, @, ¥, v)
are normal measure spaces, then any point isomorphism between them
may be so constructed as to take Borel sets to Borel sets.

DEFINITION 8.6. A measure space (X, 2, u) is pre-normal if there
exists 4 X such that (X, £, 4, fi) is normal.

REMARK 3.4. The measure space (S, <Z(S), v), where v is a non-
atomic measure on <Z(S) with supp (¥) = S, is pre-normal and <Z(S)
serves as the Borel sets ([5], Theorem XIII, p. 304).

LEmMA 8.1. Let (X, 3, ) be pre-normal. Then fe L. (1) s
essentially univalent if and only if M, is cyclic.

Proof. Suppose fin L.(#)is essentially univalent. Since (X, 3, 1)
is pre-normal, there exists a o-algebra 43 such that (X, 5, 4, f)
is normal; and thus clearly 4 = 5. The function f is S-measurable.
So there exists X, e 4 with #(X;) = 0 and f |x\x, is 4-measurable uni-
valent, and rge (f|xx,) ©S;. We conclude that there exists X, e 4
such that X, D X, fi(X,) = 0, and f(r) is a Borel subset of S; when
te A and 7 is a subset of X\X, ([3], Lemma 3, p. 338).

Define a function v’ on <#(S;) with range in the extended real
numbers by

Vi(B) = A(f7(B) N (X\X) = A(f7(B)) -

Then v’ is a measure on <#(S;). Let v be a finite measure on <Z(S;)
equivalent toy’. We see that £~ induces a g-isomorphism I": &Z'(S;)—
A'=3". Thus M;on L,X, 3, i) corresponds to M, on L,S;, ZZ(S,), v).
Hence M; is cyclic on L, (X, X, t).

Conversely suppose M, is eyclic on L, (X, ¥, ¢). Then M; cor-
responds to M, on LS, <#(S),v). So f' induces a o-isomorphism
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I: #'(S)— 3. Now I' extends to a og-isomorphism I*: Z'(S) — 5"
defined by I'([y]) = I'([8]) where 7 = fU 7 for Be <Z(S) and 7 a
subset of a set of v-measure zero. Since v is nonatomie, it follows
that (S, é(S), (S), ) is normal. Since (X, 2, ¢#) is pre-normal,
there exist X,e 3 and N,e <#(S) with f#(X,) = £(IN,) = 0 and a point
isomorphism 6: X\X, — S\N, such that 6 induces I.

Now 6 is S-measurable on X\X,. There exists X, ¢ 3 with X, D X,
and #(X,) = 0 such that 6 |, x, is Z-measurable, univalent and (6 |x\x)™
induces I and I.

There exists a surjective isometry J: L,(v) — L,(¢) inducing I"
such that M,J = JM,. There exists ke L.(¢) with |k| = 1 a.e. such
that J = M,Jr. Thus for ge L, S, Z(S), v), we have J(g9)(x) =
E(x)h(2)"? 9(f(2)) = k(x)h'"(x)g(0(x)) a.e. ¢ on X\X, where X,D X,
1(X;) = 0 and rge (f |xx,) © S. In particular, with g = z, we conclude
that f(z) = 4(x) a.e. ¢ on X\X,.

Let (X, 2, ¢) be a measure space.

DEFINITION 3.7. Suppose Y is a (not necessarily measurable)
subset of X with inner measure ¢, (X\Y)=0. Let3,={rt|t=0nY
for some o€ X}. Then X, is a g-algebra and the extended real-valued
function %, on ¥, defined by p,(7) = (o), where o€ ¥ and o N Y =7,
is a well defined measure on 3,. The triple (Y, 2, #,) is called the
induced measure space on Y,

DEFINITION 3.8. A (not necessarily measurable) subset Y of X
with ¢, (X\Y) = 0 is restrictive if each essentially univalent function
feL (Y, X, t,) is the restriction of an essentially univalent function
fle LJ(X, %, 1.

REMARK 3.5. If Y is as in Definition 3.7, then the mapping
.3 — 2, defined by I'([c]) =[on Y] is a o-isomorphism. Hence
the canonical mapping Jr: L,(¢) — L,(¢,) is a surjective isometry and
under Jr we see that if M,e _«,, then M, e _#, corresponds to M,.

ExaMPLE 3.2. In the measure space [0, 1] it is known that there
exists a non-Lebesgue measurable subset ¢ such that A*(o) =1 and
N (0) = 0 (see e.g. [3], Lemma 10, p. 342). Thus we see that

A(([0, 1)\0) = 1 and 1(([0, 1])\0) =0 .

Let 7 =10, 1]\e. The map #: [0, 1] — [0, 1/2] defined by @(t) = t/2
is a homeomorphism which preserves Borel and Lebesgue measurability.
Thus ¢(0) and ®(7) are non-Lebesgue measurable subsets of ([0, 1/2],
([0, 1/2]), ») with @(o) = [0, 1/2]\¢(z), and A*(P(0)) = N*(9(7)) = 1/2
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while A (#(0)) = M(P(7)) = 0. The map w: [0, 1] — [0, 1] defined by

o(t) =1 — t is a homeomorphism which preserves Borel and Lebesgue

measurability. Let Y = @(0) U w(#(z)). Then we see that Y [0, 1]

with V*(Y) =1 and M (Y) = 0. In addition, it follows from the con-

struction of Y that if te[0,1] N Y, then 1 —¢e[0, 1)\Y, for ¢ = 1/2.
Let

J%, 0=t

f(t) =
l2~m, -%gtg

Then f(t) is a bounded .ZZ([0, 1])-measurable function on [0, 1] which
is not essentially univalent. However, the function f |, is bounded,
univalent, and .<Z([0, 1]),-measurable.

Since [0, 1] is pre-normal, M, is not eyclic on L,([0, 1]). Thus
My, is not cyclic on L,(Y, <Z([0, 1]),, \,).

DeriniTION 3.9. Let (X, 2, ¢) and (Y, @, v) be measure spaces.
Then (X, %, ) is almost point isomorphic to (Y, @, v) if there exists
X,e 3 with ¢#(X,) =0, and an injective measurable map po: X\X,— Y
such that p™ induces a o-isomorphism 7: @ — X', and if X eJ3,
X, D X, and (X,) = 0, then o(X\X)) is a restrictive subset of Y. The
map o is called an a-point isomorphism.

We observe that if p is a point isomorphism between (X, X, 1)
and (Y, @, v) then p is also an a-point isomorphism, because o pre-
serves measurable sets.

LEMMA 3.2, Let (X, X, ) and (Y, ®,v) be measure spaces.
Suppose that f an essentially univalent function in L. () implies
that M; is cyclic on L, (1), and suppose that M, cyclic on L,(v)
implies that g€ L,(v) is essentially univalent. If there ewists X, € 3,
with (X)) =0, and a measurable injective mapping p: X\X,— Y
such that 0~ induces a g-isomorphism I": @' — 3, then p is an a-point
180morphism.

Proof. Let X,€2X be such that X,D X, and #(X,)=0. Let
W = o(X\X,) and let (W, @,, v,) be the induced measure space on W.
We observe that o |:, is measurable and (0| )™ induces the o-
isomorphism 7",: @), — 3’ defined by I',([c]) = I"(J®]) where < @ and
=N W.

Let ge L.(v,) be essentially univalent. The composition gop is
a Y-measurable function on X\X,.

Define the function
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geo(x), weX\X

h =
@) 0, ve X,

an essentially univalent function in L_(#). Thus M, is cyclic on
L,(¢). It follows that M, corresponds to M, on L, (S;, Z(S,), ®).
In addition %' induces a o-isomorphism A: <Z'(S,) — 2’. It follows
that ¢ induces the c-isomorphism I','4: <Z'(S,) — @,. Thus M, is
cyclic on L,(v,). There exists g’'e L. (v) such that ¢'|, =g a.e. v,
and M, corresponds to M, under the surjective isometry J: L,(v) —
L,(v,) as constructed in Remark 3.5. Thus M, is cyclic on L,(v).
It follows that ¢’ is an essentially univalent L_(v) function. Thus
W is restrictive subset of Y.

THEOREM 3.3. Let (X, X, 1) be a separable, monatomic measure
space. The following are equivalent:

(i) a function fe L.(1) is essentially univalent if and only if
M; is cyclic on L,(t);

(ii) (X, 2, ) is almost point isomorphic to [0, 1].

Proof. ((i)=(ii)) There exists a function f e L.(#) such that M,
is cyclic on L,(¢). Thus fis essentially univalent and M, corresponds
to M, on L,S;, <& (S;),v). In addition f induces a o-isomorphism
I': Z'(8;)— 2’ and there exists X,e Y such that ¢#(X;) =0 and f |y x,
has range in S;.

Since (S;, <#(S;), v) is nonatomic, the measure space (S;, é(Sf),
Z(Sy), V) is normal. There exists a point isomorphism p:S/\B,—
[0, 1]\N, where v(B,) = MN,) =0, o preserves Borel sets, and o™
induces a o-isomorphism 4: ([0, 1]) — <Z'(S;). There exists X, D X
such that #(X,) = 0 and peo f [x\y, is defined, univalent, and (0o f |xx,)™*
induces the o-isomorphism 7°4: <#'([0, 1]) — 2’. Since [0, 1] is pre-
normal, it follows from Lemmas 3.1 and 8.2 that (X, %, f) is almost
point isomorphic to [0, 1].

(@) = (1)) There exists X, ¥ with #(X,) =0 and an a-point
isomorphism 6: X\X, — [0, 1] such that 6~ induces a o-isomorphism
I: 2'(]0,1])—2". 8o we construct Jr: L,([0, 1])— L,(£), as in Remark
2.2. Then under J, for each M;c _+,, there exists M,e _+; such
that MyJr = JrM,. The function X([0,1]) is in L,([0, 1]) and we
conclude that M.J-(x([0, 1])) = J M (X([0, 1]) a.e. ¢t. Thus there exists
X, DX, X)) =0, and f(x) = k(6(x)) on X\X,.

Suppose M, is eyclic on L, (#). Then M, is cyclic on L]0, 1]).
Since [0, 1] is pre-normal, k is essentially univalent. Thus f = ko6 is
essentially univalent.

Conversely suppose that f is essentially univalent. There exists
X,e 3 such that X, D X, D X,, #(X;) = 0, and f = ko0 is univalent on
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X\X,. Since 6(X\X,) =Y is a restrictive subset of [0, 1], and k|, is
univalent, it follows that % is an essentially univalent L.([0, 1]) func-
tion. Since [0, 1] is pre-normal, M, is cyclic on L, [0, 1]). Thus M,
is eyclic on L, (#).

This work is part of the author’s doctoral dissertation at the
University of California, Irvine. The author wishes to thank his
advisor, Professor Gerhard K. Kalisch for his invaluable discussions
and advice.
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