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CYCLIC MULTIPLICATION OPERATORS

ON ^-SPACES

H. A. SEID

Let (X, Σ, μ) be a measure space. Suppose / is in L^X,
Σ, μ). The operator Mf on LP(X, Σ, μ) defined by Mf(g) = f g,
for g in LP{X, Σ, μ) is called a multiplication operator. The
purpose of this paper is to characterize cyclic multiplication
operators and to relate their structure to the properties of
the measure space on which the underlying Lp-space is defined.

In L2(Xf Σ, μ) any maximal abelian self-adjoint algebra of bounded
operators may be transformed isometrically to the algebra of all
multiplication operators on some L2-space (see, e.g. [9]). This is due
to the fact that among the Z^-spaces, only L2-possesses a sufficiently
rich collection of orthogonal projections. In fact, if p Φ 2, the only
"orthogonal" projections on Lp are multiplications by characteristic
functions (shown by Sullivan [10] for real Lp). As a consequence,
isometries between Lp-spaces are related to σ-isomorphisms between
the underlying measure spaces when p Φ 2. These relationships may
be exploited to characterize certain multiplication operators on L^-spaces
where 1 ^ p < oo.

In § 1, we present Sullivan's theorem along with applications to
direct sum decompositions of I^-spaces and to surjective isometries
between L^-spaces.

Section 2 deals with the characterization of the operator Mz on
Lp(v), where v is a finite Borel measure with compact support in the
plane, defined by

MJ(z) = zf(z)

for / in Lp(v).
In § 3 the concept of a normal measure space (introduced by

Halmos and von Neumann [3]) is used to relate the structure of
certain measure spaces (X, Σ, μ) to the structure of cyclic multipli-
cation operators on LP(X, Σ, μ).

We mention that throughout, all measure spaces are assumed
to be tf-finite. For notational ease, we denote LP(X, Σ, μ) by Lp(μ)
when no confusion arises. The algebra of all multiplication operators
on Lp(μ) is denoted by ^ffμ. Also if / is a measurable function on
(X, Σ\ then supp (/) = {x e X \ \ f(x) | > 0} is called the support of /.

I* Structural and isometric properties of L^spaces*

DEFINITION 1.1. A closed subspace R of Lp(μ) is a p-dίrect
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summand of Lp(μ) if there exists a closed subspace S of Lp(μ) such
that Lp(μ) = 5 0 S algebraically and if r e iϋ and s e S, then
|| r + s \\p = || r ||* + || s | |p. In this event we write Lp(μ) = R®PS.

We recall a relation due to Hanner ([4], Theorem 1, p. 239). If
/ and g are in LP(X, Σ, μ), p Φ 2, then

(1.1) | | / + flr||p+||/-flr||p = 2 ( | | / | | ' + | | f l f | | ' )

if and only if f g = 0 a.e.

THEOREM 1.1 (Sullivan). A closed subspace R of LP(X, Σ, μ) is
a p-direct summand of Lp(μ) if and only ifR~ Mχ{σ)(Lp(μ)) for some

Proof. If Lp(μ) = R(BPS, then for reR and seS, we have
| | r ± s\\p = \\r\\* + \\s\\p. By Equation 1.1, it follows that r-s = 0
a.e. There exists f0 e Lp(μ) such that supp (/0) = X a.e. Let f0 =
r0 + s0 where r0 e R and s0 e S. Then there exists σ0 e Σ such that
r0 = /0χ(<70) a.e. and s0 = f0X(X\σ0) a.e. It follows that if r e iϋ and
s e S , then we have r = rχ(σ0) a.e. and s = sχ(X\σ0) a.e. We conclude
that R = Mχ{σ)(Lp(μ)). The converse is immediate.

Definition 1.1 extends in a natural way to any collection of closed
subspaces {La}aeA of Lp(μ) and we say that Lp(μ) is the p-direct sum
of {La}aeA (written ®aeApLa) if Lp(μ) = ^aeΛLa algebraically and
IIΣββ^iΛ \\p = ΣjaeA \\fa\\p, where fae La. Clearly in this event, each La

is a p-direct summand and for each sum Σ«e^/« at most a countable
number of summands are nonzero.

COROLLARY 1.1. // {La}aeA is a collection of nontrivial closed
subspaces of Lp(μ), p ψ 2, such that Lp(μ) — φ α e 4 pLa, then card
(A) £ « 0 .

For a measure space (X, Σ, μ) we set Σ' equal to Σ/Nμ where
Nμ is the collection of all sets of measure zero in Σ. Then [σ] e Σ'
will be the class of all sets τ in Σ such that τΔσ = ψ a.e.

For [σ] and [τ], in Σ', let [σ] U [τ] = [σ U r], [σ] n M = [σ Π r], and
[σ]\[r] ΞΞ [<j\r] = [σ] n [3Γ\r] These operations are all well defined. We
say that [τ] c[σ] if r c σ a.e.

Let (X, J , μ) and (F, Φ, v) be measure spaces.

DEFINITION 1.2. A map Γ\Σf—*Φ' is σ-isomorphism if
( i ) Γ is a Injection;
( i i ) Γ([σ\τ]) = Γ([σ])\Γ([τ]) for [σ] and [r] in Σ'\
(iii) if {[α Jlί i ! is a sequence of elements of Σ\ then
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It is convenient to regard Γ as a map from Σ to Φ by merely
setting Γ(σ) = φ where σ e [σ] and φ is a fixed representative of Γ([σ]).
Then this mapping is a σ-isomorphism if we identify sets equal almost
everywhere.

DEFINITION 1.3. A surjective isometry J: LP(X, Σ, μ) —• LP(Y, Φ, v)
induces a cr-isomorphism Γ\Σf—*Φ' if [supp (J(/))] = Γ([σ]) whenever
/ is in Lp(μ) and supp (/) = σ a.e. μ.

We now give a generalization of part of a theorem due to
Lamperti ([7], Theorem 3.1, p. 361).

THEOREM 1.2. Let J: LP{X, Σ, μ) -> LP(Y, Φ, v), p φ % be a sur-

jective isometry. Then J induces a σ-isomorphism Γ: Σf —> Φ' and

Γ preserves atoms.

Proof. Since J" is a surjective isometry, it preserves ^-direct
summands.

Define Γ:Σ-+Φ by Γ(σ) = φ where J(MZM(Lp(μ))) = MX{φ)(Lp{v)).
Then Γ is a σ-isomorphism and hence Γ preserves atoms.

Suppose feLp(μ) and supp (/) = σ a.e. Clearly supp (/(/)) c
Γ(<7) a.e. v. If supp (J(/)) ^ Γ(σ) a.e., then there exists h Φ 0 in
-Mχ(Γ(α))(.E'p0;)) such that h J(f) = 0 a.e. v. By equation 1.1 it follows
that J~~ι(h) f = 0 a.e. μ and J" 1 ^) e MXM(Lp(μ)). This is contradiction.

REMARK 1.1. Suppose (X, I7, μ) and (Σ, Φ, v) are such that there
exists a ^-isomorphism Γ: Σf —• Φ'. The measure ω defined by
ω(^) = μ(Γ~ι([φ])) for ^ e Φ is equivalent to v and h = dω/dv. Define
J,: Lp{ω)-+Lp(v) by J^/) = ft1/p-/. Let J2: L,^) -> L9(ω) be defined on
characteristic functions by J2(X(σ)) = χ(Γ(σ)). Extend J^ by linearity
and continuity to all of Lp(μ). The map JΓ = /i/2 is called the
canonical surjective isometry inducing Γ.

DEFINITION 1.4. A bounded operator T on LP(X, Σ, μ) corresponds
to a bounded operator U on Lp( Y, Φ, v) if there exists a surjective
isometry J: Lp(μ) -> L ί̂y) such that T = J" 1 Ϊ/J.

THEOREM 1.3. // J:Lp(Xy Σ, μ)-+L9(Y,Φ,v) is a surjective
isometry inducing a σ-isomorphism Γ: Σf —> Φ\ then the algebra of
"multiplication operators ^ μ on Lp(v) corresponds bijectively to the
algebra of multiplication operators ^£v on Lp(v).

Proof. Since J induces Γ,it σe Σ, then MX{σ) = JΓ~1ikfχ(Γ(σ)) J. Since
/ is linear, if s e LJ^μ) is a simple function, say s = Σ?=i τi%(σi)> t ^ n
Λf. - / - ^ J where r = Σ?=i ^X(Γ(σt)) and || Λf. || = || Λfr ||. But the
multiplications by simple functions form dense subsets in both
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and ^ C By continuity, it follows that ^ μ corresponds bijectively
and isometrically to ^ C under J.

DEFINITION 1.5. An algebra sv? of bounded operators on LP(X,
Σ, μ) is maximal abelian if

( i ) Ssf is commutative;
(ii) if T is a bounded operator which commutes with all the

elements of JK then T is in

THEOREM 1.4. A bounded operator T on Lp(μ), p Φ 2, is in
if and only if each p-direct summand of Lp(μ) is invariant for T.

Proof. Let R = MΪΛσ){Lp{μ)) be an arbitrary p-direct summand
of Lp(μ). Suppose T is in ^/ίμ. Then we have TMχ{σ)(Lp(μ)) =
MUσ)TMχ{σ){Lp{μ)\ i.e., TMχiσ) = MUσ)TMγΛa) and thus R is invariant
for T.

Conversely suppose that each R = M1{σ)(Lp(μ)) is invariant for T.
Let S = (I- M7Λΰ)){Lp{μ)) = MX{Z\σ)(Lp(μ)). Then

(1.2) MX(σ)TMxlσ) = TMnσ)

and

(1.3) (I - MZ(σ))T(I - Mχ{σ)) - T(I - MX{σ)) .

Equations (1.2) and (1.3) imply that TMXio) = M7Λσ)T. Thus T
commutes with ^ = {MX{σ) \σeΣ}. Since & generates ^€μ which is
maximal abelian, we conclude that Te^/fμ.

THEOREM 1.5. Let J,\ LP(X, Σ, μ) -> LP{Y, Φ, v), i = 1, 2, be two

surjective isometries which induce the same σ-isomorphism Γ: Σr —>Φr.
Then there exists f e LJ^v) such that \f\ = 1 a.e. v and J2 = MfJlt

If in addition p Φ 2, then the converse is also true.

Proof First assume (X, Σ, μ) is a finite measure space. Let
JAχ(X)) = g and J2(χ(X)) = h. For σ e Σ, it follows that
gχ(Γ(σ)) a.e. v and J2(χ(σ)) = hχ(Γ(σ)) a.e. P. We have

ί I h \p dv for all φeΦ. Thus | g | = \h | a.e. v. Let / - A/g. Since

supp (g) = supp (h) = Y a.e. v, we have | /1 = 1 a.e. v, and if s is a
simple function in Lp(μ), then J2(s) = MfJ^s). By continuity, we
conclude that J2 = MyJi.

In the standard way the theorem holds when (X, Σ, μ) is σ-finite.
If p Φ 2, then employing Theorem 1.2, the converse follows

immediately.
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2* Cyclicity and extended cyclicity*

DEFINITION 2.1. A bounded operator T on LP(X, Σ, μ) is cyclic
if there exists a function fQeLp(μ) such that {p(T)(fo)\p is a poly-
nomial in the variable z) is norm-dense in Lp(μ). The function /0 is
called a cyclic function.

DEFINITION 2.2. A multiplication operator Mf on Z/̂ μ) is ex-
tended cyclic if there exists a function #0 *

n ^(i") such that {p(M/,
Mj)(g0) I #(#, z) is a polynomial in the variables z and z} is norm-dense
in Lp(μ). The function g0 is called an extended cyclic function. (Note
that Definition 2.2 is merely a special case of the usual definition of
the cyclicity of a normal operator on L2.)

Throughout the sequel, the triple (S, &(S\ v) shall be a finite
measure space where S is a compact subset of C with Borel sets

and v is a finite measure (hence regular) on

REMARK 2.1. Let z:S~+S be the identity function. The
Stone-Weierstrass theorem implies that Mz is extended cyclic on
Lp(Sf &(S), v) with extended cyclic function χ(S).

The essential range of a function fe LJ^X, Σ, μ) (written Sf) is
defined in the usual way. It is easy to show that if Mf is a multi-
plication operator on LP(X, Σ, μ), then Sf is the spectrum of Mf.
Also, since C is a Lindelbf space, there exists Xo e Σ, with μ(X0) = 0,
such that f(X\Xύ)dSf.

REMARK 2.2. Let (X, Σ, μ) and (Y, Φ, v) be measure spaces. Let
Γ: Σ' —• Φ' be a σ-isomorphism. If there is a set YoeΦ with v(Y0) = 0
and a measurable point mapping θ: Y\Y0—*X such that [0~\a)] =
Γ([σ]) for σ e Σ, then θ~x induces Γ. In this event, JΓ : Lp(μ) —> Lp(v)
has the form JΓ(g)(y) = hllP(y)(goθ)(y) a.e. v on Γ\Γ0 for geLp(v) and
Λ, as in Remark 1.1.

THEOREM 2.1. An operator Mf of LP(X, Σy μ), p Φ 2, corresponds
to Mz on LP(S, ^?(S), v) if and only if f~~ι induces a σ-isomorphism
Γ: &\S) — Σ'.

Proof. Suppose there exists a surjective isometry J: Lp(v) —> Lv{μ)
such that MfJ = JMZ where J induces a (/-isomorphism Γ: &\$) —> 2".
There exists k e i>oo(/") such that | & | = 1 a.e. /i and J = MkJΓ. Also,
there exists Xo e Σ, with ^(Xo) — 0, and a measurable point mapping
Θ:X\XO->S such that θ"1 induces Γ, (see, e.g., [8] Corollary 11, p. 272).
By constructing JΓ as in Remark 2.2 and noting that χ(S) e Lp(v) we
find that MfJ(X(S)) = JMZ(X(S)) implies that f=θ a.e. μ on X\XQ.
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Conversely if f~ι induces that σ-isomorphism Γ, it follows directly
that if we construct JΓ as in Remark 2.2 then JΓMZ = MfJΓ.

THEOREM 2.2. Let μ and v be two σ-finite measures on the Borel
sets of Sf a compact subset of C. Then Mz on Lp{μ) corresponds to
Mz on Lp(v) if and only if μ is equivalent to v.

Proof. If p = 2, this result is known and follows from the
uniqueness of resolutions of the identity (see, e.g. [2], Theorem 1,
p. 65).

Suppose p Φ 2 and Mz on Lp(μ) corresponds to M8 on Lp{v) under
a surjective isometry /: Lp(μ) —* Lp{v), inducing a σ-isomorphism
Γ: ^(S)/Nμ~>^(S)/Nv. Then by Theorem 2.1, μ and v are equiva-
lent.

Conversely if μ and v are equivalent, then the identity mapping
z:S->S induces the identity σ-isomorphism Γ7: &/Nμ(S) -+ &/NXS).
Constructing J Γ / : Lp(μ) -• Lp(v) as in Remark 2.2, we find that

- JrMz.

LEMMA 2.1. An operator Mf on LP(X, Σ, μ) corresponds to Mz on
LP(S, ^?(S), v) if and only if Mf is extended cyclic.

Proof. If p — 2, this is a special case of a well known theorem
for cyclic normal operators ([2], Theorem 1, p. 95).

If p Φ 2 and if Mf corresponds to Mg, then there exists a sur-
jective isometry J: Lp(v) —• Lp(μ) such that MfJ = JMZ and J induces
a σ-isomorphism Γ: &'(S) —> Σ ' L e t Is»} be a sequence of simple
functions in Lj^μ) such that sw—»/as %->oo in L^μ). Then {MSJ
converges to ifcf> in ^£μ and {J^M^J} converges to MΛ. Therefore,
the sequence {J~ιM-$nJ} converges to M-z, i.e., MyJ = JMj.

If g is a polynomial in the variables z and g, then J~ιq(Mf, Mj)J
equals g(ikfz, Mi). Let ^ - J(X(S)). Then it follows that

Jff(Afβ> Mi)(J~\g)) = q(Mf, M7)(g) .

Thus Mf is extended cyclic with extended cyclic function g.
Conversely let A = {p(Mf, My) = MpUj) \ p(z, z) is a polynomial in

z and z). Let sf be the operator norm closure of A. Then it
follows that under the involution induced by complex-conjugation,
j ^ is isometrically *-isomorphic to C(Sf), the continuous functions
on Sf, under an algebra isomorphism τ: j& —»C(Sf) such that τ(I) = 1,
τ(Mf) = «, and T(MJ) — i where « is the identity mapping on Sf. Let
g e Lp(μ) be an extended cyclic function for Mf. Define a linear
functional L on ^ = {g(2, S) | g is a polynomial in the variables z
and £} by
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L(q) == j q(Mf, M7)(g) \ g Γ 1 sgn (g)dμ = J ?(/, /) | 0 |* djf .

It follows from Holder's inequality that the integral exists and
L(q)\ ^ HfflUlffll;. We extend L to all of C(Sf) by continuity and

observe that L is a positive linear functional. There exists a regular

positive Borel measure v e C*(S/) such that L(&) = 1 Mv for h e

Since \h\9eC(Sf), it follows that

= \\h\\ζ=\\h(f) g\'dμ=\\h(f).

Let T7 = {g(JlfΛ M7)(g) \ q(Mf, M7) e A}. Then Lp(μ) is the p-norm
closure of W. Define J: W-+L9(y) by J(9(AΓΛ Λf7)(flf)) = q(z9 z)e&.
J is an isometry on W. Extend J by continuity to a surjective
isometry on all of Lp(μ). We conclude that MZJ = JMf since this is
true on W.

The proof of this lemma follows that employed by Kalisch [6]
in his proof of the above mentioned p = 2 cyclicity theorem of
Halmos.

REMARK 2.3. By standard methods, one can show that a function
g e Lp(μ) is an extended cyclic function for an extended cyclic multi-
plication operator Mf on Lp(μ) if and only if | g | > 0 a.e.

Bram ([1], Theorem 6, p. 85) has shown that for p = 2, Mz on
L2(S, &{S), v) is cyclic in the sense of Definition 2.1. An examination
of the proof of this result shows that it is not dependent on the
properties of Hubert space. By use of Remark 2.1, Lemma 2.1 and
an obvious modification of Bram's proof, one obtains:

THEOREM 2.3. A multiplication operator on Lp(μ) is extended
cyclic if and only if it is cyclic. (However, in general a cyclic
multiplication operator has a larger collection of extended cyclic
functions than cyclic functions.)

We now obtain immediately:

THEOREM 2.4. A bounded operator T on LP(X, Σ, μ), p Φ 2 cor-
responds to Mz on LP(S, &(S), v) if and only if each p-direct summand
of Lp(μ) is invariant for T and T is cyclic.

THEOREM 2.5. An operator Mfe^fμ is cyclic on Lp(μ), PΦ% if
and only if Mf is cyclic on L2(μ).

Proof. We may assume that (X, Σ, μ) is a finite measure space
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with μ(X) = 1. Then if 1 <; p < p' < oo, we have Z/P(μ) is p-norm-
d e n s e i n LP(μ) a n d i f f e L ' p ( μ ) , t h e n || f \ \ p ^ \\ f \ \ p , .

Suppose Mf is cyclic on Lp(μ), with cyclic function g and p > 2.
The set ^ = {?(Λf/) | g is a polynomial in z) is norm-dense in Lp(μ).
Thus it is norm-dense in L2(μ).

If p < 2, there exists a sur jective isometry J: Lp(μ)-^LP(S, &(S), v)
such that ikfzJ= JMf. Thus the dual mapping J*: L*(v)-» L*(μ) is
such that J*Λf* = MfJ*. But Λf* = Mz on LJ(j ) and M}κ = Mf on
L*(μ). So If/ is cyclic on LJ(μ) and hence on L2(μ).

The converse is proved similarly.

Prom Theorems 2.2 and 2.5 we conclude immediately that Theorem
2.1 holds for p = 2.

3. Cyclicity and univalence* Let (X, Σ, μ) be a σ-finite meas-
ure space.

DEFINITION 3.1. A subset A of Σ is called a σ-algehra contained
in Σ (written A c Σ) if /f is itself a σ-algebra.

THEOREM 3.1. Let feLj^μ). There exists a σ-algehra Afc:Σ
depending on f such that f is in LJ^X, Af, μ \Λf) and Mf is cyclic on
LP(X, Λf, μ I v ) .

Proof. Consider Af = {f~Xβ) \ βe &(C)}. Then i d is a (J-
algebra. Restrict μ to Af. There exists β0 e Af such that μ(β0) = 0
and / \x\βQ c Sf. Define v on &(Sf) by v(y) = μ(f1(y)). Let v' be
a finite measure equivalent to v. Then we see that f~λ induces a
σ-isomorphism Γ: ,^(Sf)/Nu, —• /I/. Hence Λf/ on LP(X, Af9 μ \Λf) corre-
sponds to Mz on Lp(Sf, &(Sf), vf) and thus My is cyclic.

DEFINITION 3.2. A measurable function/ is essentially unίvalent
if it is univalent on the complement of some set of measure zero.

We observe that Mz is cyclic on LP(S, &(S), v) and z is a
univalent function. It is reasonable to ask whether all cyclic multi-
plication operators on LP(X, Σ, μ) arise from essentially univalent
L^-functions and conversely. The answer in general is negative.

EXAMPLE 3.1. Consider ([0, 1], .^([0, 1]), λ), the usual Borel
measure space on [0, 1]. Let / be defined by

t , 0 S i S - |

t - ί , ± < < S 1 .
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Then/is in L^λ) and Sf = [0, 1/2]. There exists Λf c ^([0,1]) such
that Mf is cyclic on Lp([0,1], Λff λ \Λf), but/is not essentially univalent
on ([0, 1], Af, λ \Λf).

We shall show that essential univalence of / e L^μ) need not
imply that Mf is cyclic on Lp(μ) after some preliminaries (see Example
3.2 ff.). In addition we will determine when essential univalence of
an Loo-function / is equivalent to the cyclicity of Mf on Lp.

DEFINITION 3.3. A σ-finite measure space (X, Σ, μ) is called
proper if:

( i ) it is complete and nonatomic;
(ii) there exists AaΣ such that {X, Σ, μ) is properly separable

with respect to A;
(iii) A has a separating sequence.
The σ-algebra A is called the Borel sets of Σ and a Λ-measurable

function is called a Baire function. All italicized terms are defined
as in [3]. We denote a proper measure space by {X, Σ, A, μ).

DEFINITION 3.4. A proper measure space (X, Σ, A, μ) is normal
(c-normal) if to each real-valued (complex-valued) univalent Baire
function /, there corresponds a set XOf in Σ depending on / such that
μ(XOf) = 0 and such that f(X\XOf) is a Borel subset of JB(of C).

REMARK 3.1. By duplicating the proofs of Lemmas 1-4 which
Halmos and von Neumann proved for real-valued functions on proper
and normal measure spaces ([3], pp. 337-339), we obtain:

THEOREM 3.2. A proper measure space (X, Σ, A, μ) is normal if
and only if it is c-normal.

Let (X, Σ, μ) and (Y, Φ, v) be measure spaces.

DEFINITION 3.5. A bijective mapping θ: X\X0—* Y\Y0, where
μ(X0) = K ¥Ό) = 0, is a point isomorphism if θ and θ~ι are measurable
and θ induces a ^-isomorphism Γ: Σ' —> Φr. In this event we say that
(X, Σ, μ) and (Y, Φ, v) are point isomorphic. If in addition we have
μ(p) = v(Γ{σ)) for σe Σ, then θ and Γ are said to be measure pre-
serving.

Let (X, Σ, μ) be a measure space. Then we shall denote by
(X, Σ, μ) the measure space where Σ is the completion of Σ and μ
is the completion of μ.

Throughout the remainder, the usual Borel measure space ([0,1],
^([0,1]), λ) shall be denoted by [0, 1] and the usual (normal) Lebesgue
measure space ([0, 1], £f([0, 1]), ^( [0, 1]), λ) will be denoted by [0,1]\
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REMARK 3.2. Halmos and von Neumann have proved the follow-
ing:

THEOREM. A proper measure space (X, Σ, A, μ) with μ(X) = 1
is normal if and only if it is measure preserving point isomorphic
to [0, 1]\ (See [3], Theorem 2, p. 339.)

It follows from this and the fact that all measure preserving
set automorphisms on [0, 1]~ are induced by measure preserving
point isomorphisms ([3], p. 340) that if (X, Σ, A, μ) and (Y, Φ, Ψ, v)
are normal measure spaces, then each σ-isomorphism Γ: Σ' —> Φr is
induced by a point isomorphism 7.

REMARK 3.3. It follows from a Theorem proved by Halmos and
von Neumann ([3], Lemma 3, p. 338) that if (X, Σ, A, μ) and (Γ, Φ, Ψ, v)
are normal measure spaces, then any point isomorphism between them
may be so constructed as to take Borel sets to Borel sets.

DEFINITION 3.6. A measure space (X, Σf μ) is pre-normal if there
exists ΛdΣ such that (X, Σ, Λ, μ) is normal.

REMARK 3.4. The measure space (S, &(S), v), where v is a non-
atomic measure on &(S) with supp (v) = S, is pre-normal and ^(S)
serves as the Borel sets ([5], Theorem XIII, p. 304).

LEMMA 3.1. Let (X,Σ,μ) be pre-normal. Then feLJ^μ) is
essentially univalent if and only if Mf is cyclic.

Proof. Suppose / in LJ^μ) is essentially univalent. Since (X, Σ, μ)
is pre-normal, there exists a σ-algebra AaΣ such that (X, Σ, A, μ)
is normal; and thus clearly A — Σ. The function / is ^-measurable.
So there exists Xo e A with μ(X0) = 0 and / |XUΓo is yl-measurable uni-
valent, and rge (/ |ZXZo) c Sf. We conclude that there exists XλeA
such that X13 Xo, μ{Xι) = 0, and f(τ) is a Borel subset of Sf when
τeA and r is a subset of X\X1 ([3], Lemma 3, p. 338).

Define a function i/ on &(Sf) with range in the extended real
numbers by

»'<β) = μ{Γ\β) n (x\xθ) = μ(ΓW).

Then vf is a measure on &(Sf). Let v be a finite measure on &(Sf)
equivalent to v'. We see that / - 1 induces a σ-isomorphism Γ: &'{Sf)—>
A' = Σf. Thus Mf on LP(X, Σ, μ) corresponds to Mz on Lp(Sf, &(Sf), v).
Hence Mf is cyclic on LP(X, Σ, μ).

Conversely suppose Mf is cyclic on LP(X, Σ, μ). Then Mf cor-
responds to Mz on LP(S, &(S\ v). So f~ι induces a σ-isomorphism
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Γ: &\S) ~> 2". Now Γ extends to a σ-isomorphism Γ: U"(S) -> Σ'
defined by Γ{{η}) = Γ([/3]) where η = /9 U τ for /3 e ̂ ( S ) and τ a
subset of a set of v-measure zero. Since v is nonatomic, it follows
that (S, U?(S), ̂ ( S ) , P) is normal. Since (X, 2', μ) is pre-normal,
there exist XoeΣ and iV0 e ̂ ( S ) with β(X0) = fW) = ° a n ( i a point
isomorphism θ: X\X0 —> S\ΛΓ0 such that θ~ι induces Γ.

Now θ is Immeasurable on X\X0. There exists Xx e Σ with Xι Z) Xo

and μ(Xi) = 0 such that θ \λΛXι is J-measurable, univalent and {θ \x\x^)~l

induces Γ and Γ.
There exists a surjective isometry J: Lp(v) —> ί/j,(̂ ) inducing Γ

such that Λί/J = Jilί,. There exists & e JM/O with | k | = 1 a.e. such
that J = MfcJΓ. Thus for ^ e LP(S, &{β\ v), we have J(g)(x) =
k(x)h(x)llPg(f(x)) = k(x)h^(x)g(θ(x)) a.e. ^ on X\X2 where X2=>XX,
^(X2) = 0 and rge (/ |XUΓ2) c S. In particular, with g = z, we conclude
that f(x) = β(α?) a.e. ,« on X\X2.

Let (X, Σ, μ) be a measure space.

DEFINITION 3.7. Suppose Y is a (not necessarily measurable)
subset of X with inner measure μ*(X\ Y) — 0. Let Σγ = {τ | τ = σ f] Y
for some σ e Σ}. Then Σγ is a σ-algebra and the extended real-valued
function μy on Σy defined by μy(τ) — μ(σ), where σe Σ and σ f] Y = τ,
is a well defined measure on 2^. The triple (Γ, 2T

2/, ^y) is called the
induced measure space on Y.

DEFINITION 3.8. A (not necessarily measurable) subset Y of X
with /^(X\ Y) = 0 is restrictive if each essentially univalent function
/ 6 LTO( Yy Σy, μy) is the restriction of an essentially univalent function
feLJίX9Σ9μ).

REMARK 3.5. If Y is as in Definition 3.7, then the mapping
Γ\Σ'—*Σ'y defined by Γ([σ]) = [σ n Y] is a σ-isomorphism. Hence
the canonical mapping JΓ: Lp(μ)—>Lp(μy) is a sur jective isometry and
under JΓ we see that if Mg e ̂ ^ , then Mglγ e ̂ tμy corresponds to Mg.

EXAMPLE 3.2. In the measure space [0,1] it is known that there
exists a non-Lebesgue measurable subset σ such that λ*(σ) = 1 and
^*(°") - 0 (see e.g. [3], Lemma 10, p. 342). Thus we see that

λ*(([0, l])\σ) = 1 and λ,(([0, l])\σ) = 0 .

Let τ = [0, l]\σ. The map φ: [0, 1] ~> [0, 1/2] defined by φ(t) - ί/2
is a homeomorphism which preserves Borel and Lebesgue measurability.
Thus φ(σ) and φ{τ) are non-Lebesgue measurable subsets of ([0,1/2],

0,1/2]), λ) with φ(σ) = [0, l/2]\φ(τ), and λ * ( ^ ) ) = \*(φ(τ)) = 1/2
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while X*(φ(σ)) = X*(φ(τ)) = 0. The map ω: [0, 1] -> [0, 1] defined by
ω(t) = 1 — t is a homeomorphism which preserves Borel and Lebesgue
measurability. Let F = φ(σ) U ω{φ{τ)). Then we see that Γc[0, 1]
with λ*(F) = 1 and X*(Y) = 0. In addition, it follows from the con-
struction of Y that if t e [0, 1] n Y, then 1 - t e [0, 1]\F, for ί Φ 1/2.

Let

2ί , 0 < t < —

2 - 2ί , — ^ t ^ 1 .
Δ

Then /(£) is a bounded ^([0, Immeasurable function on [0, 1] which
is not essentially univalent. However, the function f\γ is bounded,
univalent, and ^ ( [ 0 , Immeasurable.

Since [0, 1] is pre-normal, Mf is not cyclic on Lp([0, 1]). Thus
Mf]y is not cyclic on L9(Y, ^([0, l])y9 \).

DEFINITION 3.9. Let (X, Σ, μ) and (F, Φ, v) be measure spaces.
Then (X, Σ, μ) is almost point isomorphic to (Y9 Φ, v) if there exists
Xo e Σ with μ(XQ) = 0, and an injective measurable map p: X\XQ —> F
such that p-"1 induces a σ-isomorphism Γ: Φ' —> 2", and if X1 e Σ,
Xx 3 Xo, and A«(Xi) = 0, then ρ(X\Xx) is a restrictive subset of F. The
map p is called an a-poίnt isomorphism.

We observe that if p is a point isomorphism between (X, J, μ)
and (Y, Φ, v) then /? is also an α-point isomorphism, because p pre-
serves measurable sets.

LEMMA 3.2. Let (X,Σ,μ) and (Y,Φ,v) be measure spaces.
Suppose that f an essentially univalent function in LJ^μ) implies
that Mf is cyclic on Lp(μ), and suppose that Mg cyclic on Lp(v)
implies that g e L^(v) is essentially univalent. If there exists XQ e Σ,
with μ(X0) = 0, and a measurable injective mapping p: X\X0 —• Y
such that p~ι induces a σ-isomorphism Γ: Φr —> Σ\ then p is an a-point
isomorphism.

Proof. Let X,eΣ be such that Xx => Xo and μ(X,) = 0. Let
W = /o(X\X1) and let (W, Φw, vw) be the induced measure space on W.
We observe that p\X\Xl is measurable and (p \x\xj~1 induces the σ-
isomorphism ΓW:Φ'W—>Σ' defined by Γw([τ]) = Γ([φ]) where φeΦ and
r = ψ n W.

Let geLJyw) be essentially univalent. The composition gop is
a ^-measurable function on X\Xλ.

Define the function
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\g°p(χ), x

an essentially univalent function in L^μ). Thus Mh is cyclic on
Lp(μ). It follows that Mh corresponds to Mz on Lp(Sh, &{Sh), ώ).
In addition A"1 induces a σ-isomorphism A: &\Sh)—>2". It follows
that g"1 induces the ^-isomorphism Γ~ιΛ\ ^\Sh)—*Φ'W. Thus Mg is
cyclic on Lp(vw). There exists g'eLJy) such that gr \w = g a.e. vw

and ikf̂  corresponds to Mg under the surjective isometry J: Lp(v) —>
Lp(vw) as constructed in Remark 3.5. Thus Mg, is cyclic on Lp(v).
It follows that gr is an essentially univalent LJv) function. Thus
W is restrictive subset of Y.

THEOREM 3.3. Let (X, Σ, μ) be a separable, nonatomic measure
space. The following are equivalent:

( i ) a function f e LJ^μ) is essentially univalent if and only if
Mf is cyclic on Lp(μ);

(ii) (X, Σ, μ) is almost point isomorphic to [0, 1].

Proof ((i) ==> (ii)) There exists a function / 6 LJ^μ) such that Mf

is cyclic on Lp(μ). Thus /is essentially univalent and Mf corresponds
to Mz on Lp(Sf, &(Sf)9 v). In addition f~ι induces a σ-isomorphism
Γ: ^'(Sf)->Σ' and there exists XoeΣ such that μ(X0) = 0 and / |Z I Z o

has range in Sf.

Since (Sf, ^?(Sf), v) is nonatomic, the measure space (Sf,
&{Sf), v) is normal. There exists a point isomorphism p: Sf\B
[0, 1]\JVO where v(βQ) = λ(JV0) = 0, p preserves Borel sets, and ρ
induces a (7-isomorphism A: ^ ' ( [ 0 , 1]) -• &\Sf). There exists X± ZD XO

such that μ(Xi) = 0 and p°f\X\Xl is defined, univalent, and (j0°/U^)"1

induces the (/-isomorphism ΓΔ\ &'{[0, 1]) —• Σ\ Since [0, 1] is pre-
normal, it follows from Lemmas 3.1 and 3.2 that (X, Σ, μ) is almost
point isomorphic to [0, 1].

((ii) => (i)) There exists Xo e Σ with μ(X0) = 0 and an α-point
isomorphism θ: X\X0 —• [0, 1] such that θ~x induces a ^-isomorphism
Γ: &'([0,1])-+Σ'. So we construct JΓ: Lp([0, ί\)-+Lp(μ), as in Remark
2.2. Then under JΓ, for each Mfe^fμ, there exists Mke^fλ such
that MfJr = eTrΛf* The function 3£([0, 1]) is in Lp([0, 1]) and we
conclude that MfJΓ(χ([0, 1])) = JΓMk(X([0, 1]) a.e. μ. Thus there exists
-Σi=>Xo, J"(-Xί) - 0, and /(») = ft(ί(a?)) on X\X,.

Suppose Mf is cyclic on Lp(μ). Then Λffc is cyclic on Lp([0,1]).
Since [0,1] is pre-normal, k is essentially univalent. Thus / = koθ is
essentially univalent.

Conversely suppose that / is essentially univalent. There exists
X2eΣ such that X2D Z i 3 Xo, μί-^) = 0, and f=k<>βis univalent on

~ι
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X\X2. Since β(X\X2) = Y is a restrictive subset of [0, 1], and k \γ is
univalent, it follows that k is an essentially univalent Loβ([0, 1]) func-
tion. Since [0, 1] is pre-normal, Mk is cyclic on LP([Q, 1]). Thus Mf

is cyclic on Lp(μ).
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