THE HADAMARD PRODUCT OF A AND A^{*}

Charles R. Johnson

Abstract

Coefficient-wise multiplication was introduced by Hadamard and has been studied for certain square matrices by I. Schur and later authors. For $A \in M_{n}(C)$, the n by n complex matrices, this paper examines the Hadamard product of A and A^{*}. Upper estimates are given for the largest characteristic root of this necessarily Hermitian product, and three conditions on A sufficient for the product to be positive definite are presented.

1. Preliminaries. If $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$ are elements of $M_{n}(C)$, the Hadamard product [see 4, 5, 6] of A and B is the matrix $A \circ B=$ $\left(a_{i j} b_{i j}\right) \in M_{n}(C)$. Let Σ_{n} denote the class of Hermitian positive definite elements of $M_{n}(C)$. I. Schur [7] showed that Σ_{n} is closed under Hadamard multiplication and this fact was further investigated in [5]. Fiedler [1] provided the result that $A \in \Sigma_{n}$ implies $A \circ A^{-1} \geqq I$.

Whereas the usual product of A and A^{*} is Hermitian and positive semidefinite, the Hadamard product $A \circ A^{*}=f(A)$ is necessarily Hermitian but not necessarily positive semidefinite. We first develop several facts, some of which are of interest by themselves, with which to study $f(A)$. Theorem 1, for instance, generalizes Schur's result.

Notation 1. We shall adopt the following additional notational conveniences. For $A \in M_{n}(C), H(A)=\left(A+A^{*}\right) / 2$, the Hermitian part and $S(A)=\left(A-A^{*}\right) / 2$, the skew-Hermitian part of A, and let Π_{n} denote the class of $A \in M_{n}(C)$ for which $H(A) \in \Sigma_{n}$. Also let $F(A)=$ $\left\{x^{*} A x \mid x \in C^{n}, x^{*} x=1\right\}$, the field of values and $F_{\text {ang }}(A)=\left\{x^{*} A x \mid 0 \neq x \in C^{n}\right\}$, the angular field of values of A. Starting with the upper right and proceeding counterclockwise, number the interiors of the quadrants of the complex plane $Q_{1}, Q_{2}, Q_{3}, Q_{4}$. If S and S_{0} are two sets in the complex plane their sum $S+S_{0}=\left\{x+x_{0} \mid x \in S, x_{0} \in S_{0}\right\}$ and their product $S S_{0}=\left\{x x_{0} \mid x \in S, x_{0} \in S_{0}\right\}$ and denote the closure of S with respect to the Euclidean norm by \bar{S}. Now it is clear that $A \in \Pi_{n}$ if and only if $F_{\text {ang }}(A) \subset$ interior $\left(\bar{Q}_{1} \cup \bar{Q}_{4}\right)$. Denote by $\sigma(A)$ the set of all characteristic roots of $A \in M_{n}(C)$, and for Hermitian A, B let $A>B$ mean $A-B \in \Sigma_{n}$. $X^{(m)}$ will denote the m th Hadamard power of $X \in M_{n}(C)$ and $J \in M_{n}(C)$ will be the Hadamard identity, the matrix of all ones. D will always be a diagonal matrix. It is well known that $\sigma(A) \subseteq F(A) \subseteq F_{\text {ang }}(A)$ and the latter is a positive convex cone. Both F and $F_{\text {ang }}$ are subadditive as set-valued functions of a matrix argument.

Theorem 1. If $H \in \Sigma_{n}, A \in M_{n}(C)$, then $F_{\text {ang }}(H \circ A) \subseteq F_{\text {ang }}(A)$.
Proof. Since $H \in \Sigma_{n}$ we may write $H=B^{*} B$ where B is nonsingular. The i, j-entry of $H \circ A$ is then $\sum_{k=1}^{n} \bar{b}_{k i} b_{k j} a_{i j}$ so that we have

$$
\begin{aligned}
x^{*}(H \circ A) x & =\sum_{i, j, k=1}^{n} \bar{b}_{k i} b_{k j} a_{i j} \bar{x}_{i} x_{j} \\
& =\sum_{k=1}^{n} y_{k}^{*} A y_{k} \quad \text { where } \quad y_{k}^{*}=\left(\bar{b}_{k l} \bar{x}_{l}, \cdots, \bar{b}_{k n} \bar{x}_{n}\right) .
\end{aligned}
$$

Since $F_{\text {ang }}(A)$ is a positive convex cone and since B is nonsingular, the latter sum is in $F_{\text {ang }}(A)$ when $x \neq 0$. We then conclude $x^{*}(H \circ A) x \in F_{\text {ang }}(A)$ which completes the proof.

Corollary 1. If $A, B \in M_{n}(C)$ and $F_{\text {ang }}(A) \subseteq Q_{1}$, then

$$
F_{\mathrm{ang}}(A \circ B) \subseteq F_{\mathrm{ang}}(B)+i F_{\mathrm{ang}}(B)
$$

Proof. $\quad F_{\text {ang }}(A) \subseteq Q_{1}$ if and only if $H(A) \in \Sigma_{n}$ and $1 / i S(A)=K \in$ Σ_{n}. Now $A \circ B=H(A) \circ B+i K \circ B$ so that

$$
F_{\mathrm{ang}}(A \circ B) \cong F_{\mathrm{ang}}(H(A) \circ B)+i F_{\mathrm{ang}}(K \circ B)
$$

because of the subadditivity of $F_{\text {ang }}$. By Theorem 1 it then follows that $F_{\text {ang }}(A \circ B) \subseteq F_{\text {ang }}(B)+i F_{\text {ang }}(B)$ as the corollary asserts.

Corollary 2. If $A, B \in M_{n}(C)$ and $F_{\text {ang }}(A) \subseteq Q_{1}$ and $F_{\text {ang }}\left(B^{*}\right) \subseteq$ Q_{1}, then $A \circ B \in \Pi_{n}$.

Proof. Since $F_{\text {ang }}\left(B^{*}\right) \subseteq Q_{1}, F_{\text {ang }}(B) \subseteq Q_{4}$ and since $F_{\text {ang }}(A) \subseteq Q_{1}$, we have by Corollary 1 that $F_{\text {ang }}(A \circ B) \subseteq F_{\text {ang }}(B)+i F_{\text {ang }}(B) \subseteq Q_{4}+$ $i Q_{4}=Q_{4}+Q_{1} \subseteq$ interior $\left(\bar{Q}_{1} \cup \bar{Q}_{4}\right)$. That $F_{\text {ang }}(A \circ B) \subseteq$ interior $\left(\bar{Q}_{1} \cup \bar{Q}_{4}\right)$ means $A \circ B \in \Pi_{n}$ and completes the proof.

Remark. $A \circ B \in \Pi_{n}$ if and only if $H(A) \circ H(B)+S(A) \circ S(B)>0$ and thus $f(A) \in \Sigma_{n}$ if and only if $H(A)^{(2)}>S(A)^{(2)}$.

Proof. An easy computation shows that $H(A \circ B)=H(A) \circ H(B)+$ $S(A) \circ S(B)$ so that the first part of the remark follows. The second portion then follows by taking $B=A^{*}$ and thus $S(B)=-S(A)$.

Theorem 2. Suppose $A, D \in M_{n}(C)$ and D is a nonsingular diagonal matrix. Then $f(A) \in \Sigma_{n}$ if and only if $f(D A) \in \Sigma_{n}$.

Proof. Since Σ_{n} is closed under congruence, the statement of the theorem follows from the observation that $f(D A)=D A \circ A^{*} D^{*}=$ $D\left(A \circ A^{*}\right) D^{*}=D f(A) D^{*}$.
2. The largest eigenvalue of $A \circ A^{*}$. Since $f(A)$ is Hermitian, $\sigma(f(A))$ is real. Employing a result of [4] we next estimate the largest member of $\sigma(f(A))$ which is necessarily nonnegative.

Notation 2. Denote the numerical radius of $A \in M_{n}(C)$ by $r(A)=$ $\max _{t \in F(A)}|t|$. If $\sigma(A)$ is real, let $\lambda_{M}(A)=\max _{2 \in \sigma(A)} \lambda$ and $\lambda_{m}(A)=$ $\min _{\lambda \in \sigma(A)} \lambda$. In case A is Hermitian, $r(A)=\max \left\{\lambda_{M}(A),\left|\lambda_{m}(A)\right|\right\}$.

Lemma 1. [4]. If $A, N \in M_{n}(C)$ and N is normal, then

$$
r(N \circ A) \leqq r(N) r(A)
$$

Theorem 3. For $A \in M_{n}(C)$, we have

$$
r\left(A \circ A^{*}\right) \leqq r(H(A))^{2}+r(S(A))^{2}
$$

Proof. Since $f(A)=H(A)^{(2)}-S(A)^{(2)}$, it follows that $r(f(A))=$ $r\left(H(A)^{(2)}-S(A)^{(2)}\right) \leqq r\left(H(A)^{(2)}\right)+r\left(-S(A)^{(2)}\right) \leqq r(H(A))^{2}+r(S(A))^{2}$. The latter inequality is from the lemma and completes the proof.

Corollary 3. For $A \in M_{n}(C)$,

$$
\lambda_{M I}\left(A \circ A^{*}\right) \leqq \lambda_{M}\left(H(A)^{2}\right)-\lambda_{m}\left(S(A)^{2}\right)
$$

Proof. Since $\lambda_{M}(f(A)) \leqq r(f(A)), r(H(A))^{2}=\lambda_{M}\left(H(A)^{2}\right)$, and

$$
r(S(A))^{2}=-\lambda_{m}\left(S(A)^{2}\right)
$$

this follows directly from Theorem 3.

Example. The estimates of Theorem 3 and Corollary 3 are sharp. Equality may be attained even for nonHermitian matrices. Let $A=$ $\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$; then $F(A)$ is the unit closed circular disk and thus $r(A)=$ $r(H(A))=r(S(A))=1$. Also $f(A)=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ so that $r(f(A))=$ $\lambda_{M}(f(A))=2=r(H(A))^{2}+r(S(A))^{2}=\lambda_{M}\left(H(A)^{2}\right)-\lambda_{m}\left(S(A)^{2}\right)$.

Although we will not do so here, estimates for $\lambda_{m}\left(A \circ A^{*}\right)$ may straightforwardly be obtained from the results of the next section.
3. Conditions sufficient for $A \circ A^{*} \in \Sigma_{n}$. We next study three rather different sufficient conditions (Theorems 4,5, and 6) for the Hermitian matrix $f(A)$ to be positive definite.

Notation 3. If $X \in M_{n}(C)$ denote the union of the Gersgorin circles [3] obtained from the rows of X by $G_{r}(X)$ and the union of the Gersgorin circles obtained from the columns of X by $G_{c}(X)$.

Let $G(X)=G_{r}(X) \cap G_{c}(X)$. Then $\sigma(X) \subseteq G(X)$, [3], and $0 \notin G_{r}(X)$ is the assumption of row diagonal dominance while $0 \notin G_{c}(X)$ is column diagonal dominance. We shall call a matrix $T=\left(t_{i j}\right) \in M_{n}(C)$ combinatorially triangular if for all pairs $i \neq j$ either of t_{j} or $t_{j i}$ is 0 .

Theorem 4. If $A \in M_{n}(C)$ and there is a diagonal matrix $D \in$ $M_{n}(C)$ such that $F(D A) \subseteq Q_{1}$, then $f(A) \in \Sigma_{n}$.

Proof. If there is such a D, then it must be nonsingular and by Theorem 2 it suffices to prove the statement of this theorem for $D=I$. By letting $B=A^{*}$, the hypothesis of Corollary 2 is satisfied in our case and we may conclude $f(A)=A \circ A^{*} \in \Pi_{n}$. But since $f(A)$ is Hermitian it is then in Σ_{n} which completes the proof.

Remark. It is an easy observation that $f\left(e^{i \theta} A\right)=f(A) . \quad$ By Theorem 3 this means that if $F_{\text {ang }}(A) \subseteq Q$, where Q is any rotation of Q_{1}, then $f(A) \in \Sigma_{n}$.

Lemma 2. If $0 \notin G_{r}(A) \cup G_{c}(A)$, then $0 \notin G(f(A))$.
Proof. Since $f(A)$ is Hermitian, $G(f(A))=G_{r}(f(A))=G_{c}(f(A))$. Since $0 \notin G_{r}(A) \cup G_{c}(A),\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$ and $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{j i}\right|$, for all $i=1, \cdots, n$. Thus

$$
a_{i i} \overline{a_{i i}}=\left|a_{i i}\right|^{2}>\left(\sum_{j \neq i}\left|a_{i j}\right|\right)\left(\sum_{j \neq i}\left|a_{j i}\right|\right) \geqq \sum_{j \neq i}\left|a_{i j}\right|\left|a_{j i}\right|=\sum_{j \neq i}\left|a_{i j} \overline{a_{j i}}\right|
$$

which means that $0 \notin G(f(A))$.

Lemma 3. If $0 \notin G_{r}(A)$, there is a positive diagonal matrix D such that $0 \notin G_{r}(D A) \cup G_{c}(D A)$.

Proof. Since D diagonal and invertible and $0 \notin G_{r}(A)$ imply $0 \notin$ $G_{r}(D A)$, it suffices to show that under the assumption a D may be found such that $0 \notin G_{c}(D A)$. This may be done by an M-matrix argument [2]. Without loss of generality we may assume A is real with positive diagonal entries and nonpositive off-diagonal entries. Our assumption, $0 \notin G_{r}(A)$, then implies that A and thus A^{*} are M-matrices. By [2, Theorem 4.3] this implies the existence of a positive diagonal D such that $0 \notin G_{r}\left(A^{*} D\right)=G_{c}(D A)$. For this D, then, $0 \notin G_{r}(D A) \cup$ $G_{c}(D A)$ as desired.

Theorem 5. If $A \in M_{n}(C)$ and there is a diagonal matrix $D \in$ $M_{n}(C)$ such that $0 \notin G(D A)$, then $f(A) \in \Sigma_{n}$.

Proof. Again by Theorem 2 it suffices to prove the weaker statement that $0 \notin G(A)$ implies $f(A) \in \Sigma_{n}$, and since $f(A)=f\left(A^{*}\right)$ we may assume without loss of generality that $0 \notin G_{r}(A)$. Then by Lemma 3 , there is a positive diagonal matrix D such that $0 \notin G_{r}(D A) \cup G_{c}(D A)$. According to Lemma 2 this implies $0 \notin G(f(D A))$. Since $f(D A)$ is Hermitian with nonnegative diagonal entries, $0 \notin G(f(D A))$ implies $G(f(D A)) \subseteq$ interior $\left(\bar{Q}_{1} \cup \bar{Q}_{4}\right)$ and that all eigenvalues of $f(D A)$ are positive. This means that $f(D A) \in \Sigma_{n}$ and by Theorem 2 that $f(A) \in$ Σ_{n} which completes the proof.

THEOREM 6. If $A=\left(a_{i j}\right) \in M_{n}(C)$ is combinatorially triangular and $a_{i i} \neq 0, i=1, \cdots, n$, then $f(A) \in \Sigma_{n}$.

Proof. Under the hypothesis $a_{i j} \overline{a_{j i}}$ is 0 if $i \neq j$ and positive if $i=j$. This means $f(A)$ is a positive diagonal matrix and, therefore, a member of Σ_{n}.

References

1. M. Fiedler, Über eine Ungleichung für positive definite Matrizen, Math. Nachr., 23 (1961), 197-199.
2. M. Fiedler and V. Ptak, On matrices with nonpositive off-diagonal elements and positive principal minors, Czech. Math. J., 12 (1962), 382-400.
3. S. Gersgorin, Über die Abgrenzung der Eigenwerte einer Matrix, Izv. Akad. Nauk, S. S. S. R., 7 (1931), 749-754.
4. C. R. Johnson, Hadamard products of matrices, Lin. and Multilin. Alg. 1 (1974), 295-307.
5. M. Marcus and N. Kahn, A note on the Hadamard product, Canad. Math. Bull., 2 (1959), 81-83.
6. M. Marcus and R. C. Thompson, The field of values of the Hadamard product, Arch. Math., 14 (1963), 283-288.
7. I. Schur, Bemerkungen zur Theorie der beschränkten Bilinearformen mit unedlich vielen Veränderlichen, J. Reine Angew. Math., 140 (1911), 1-28.

Received January 26, 1973. This work was done while the author was a National Academy of Sciences-National Research Council Postdoctoral Research Associate at the National Bureau of Standards, Washington, D. C., 20234.

National Bureau of Standards
Washington, D. C., 20234.
Present address: Institute for Fluid Dynamics and Applied Mathematics
University of Maryland
College Park, Md. 20742

