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THE HADAMARD PRODUCT OF A AND A*

CHARLES R. JOHNSON

Coefficient-wise multiplication was introduced by Hadamard
and has been studied for certain square matrices by I. Schur
and later authors. For A e Mn(C)9 the nhyn complex matrices,
this paper examines the Hadamard product of A and A*. Upper
estimates are given for the largest characteristic root of this
necessarily Hermitian product, and three conditions on A suffi-
cient for the product to be positive definite are presented.

1* Preliminaries* If A — (ai3) and B = (bi3) are elements of Mn(C),

the Hadamard product [see 4, 5, 6] of A and B is the matrix A<>B =

(Uijbij) e Mn(C). Let Σn denote the class of Hermitian positive definite

elements of Mn(C). I. Schur [7] showed that Σn is closed under
Hadamard multiplication and this fact was further investigated in
[5] Fiedler [1] provided the result that AeΣn implies A<>A~ι ^ /.

Whereas the usual product of A and A* is Hermitian and positive
semidefinite, the Hadamard product 4 o 4 * = /(A) is necessarily Her-
mitian but not necessarily positive semidefinite. We first develop
several facts, some of which are of interest by themselves, with which
to study f(A). Theorem 1, for instance, generalizes Schur's result.

NOTATION 1. We shall adopt the following additional notational
conveniences. For Ae Mn(C), H(A) = (A + A*)/2, the Hermitian
part and S(A) = (A — A*)/2, the skew-Hermitian part of A, and let Πn

denote the class of A 6 Mn(C) for which H{A) e Σn. Also let F(A) =
{x*Ax \xeC\ x*x = 1}, the field of values and F&ng(A) = {x*Ax \$Φxe Cn},
the angular field of values of A. Starting with the upper
right and proceeding counterclockwise, number the interiors of the
quadrants of the complex plane Qlf Q2, Qs, Q4. If S and So are! two
sets in the complex plane their sum S + SQ = {x + x01 x e S, xQ e SQ}
and their product SS0 = {xx0\xe S, xoe SQ} and denote the closure of
S with respect to the Euclidean norm by S. Now it is clear that
AeΠn if and only if F&ng(A) c interior (Q1 U Q4). Denote by σ(A) the
set of all characteristic roots of A e Mn(C), and for Hermitian A, B
let A > B mean A — BeΣn. X{m) will denote the mth Hadamard
power of l e Mn(C) and Je MJfi) will be the Hadamard identity, the
matrix of all ones. D will always be a diagonal matrix. It is well
known that σ(A) S F(A) S F&ng(A) and the latter is a positive convex
cone. Both F and F&ng are subadditive as set-valued functions of a
matrix argument.

477



478 CHARLES R. JOHNSON

THEOREM 1. // He Σnf AeMn(C), then FΆϊig(HoA) s Fang(A).

Proof. Since He Σn we may write H = B*B where B is non-
singular. The i, j-entry of flΌ A is then Σϊ=i ^ A ^ j so that we have

x*(HoA)x = Σ bkibkjdifiiXj

n

= Σ VtAyk where 3/f = (6wά,, , bknxn) .
k = l

Since FΛng(A) is a positive convex cone and since B is nonsingular,
the latter sum is in FΛng(A) when x Φ 0. We then conclude
x*(Ho A)xe FΆng(A) which completes the proof.

COROLLARY 1. If A, Be MJC) and F&ng(A) g Qlf then

Proof. Fang(A) s Qt if and only if H(A)eΣn and l/iS(A) = Ke
Σ%. Now AoB = H(A)oβ + ΐl£o£ so that

î ang(A o B) S F&ng(H(A) o E) + ii^ang(iί o J5)

because of the subadditivity of Fang. By Theorem 1 it then follows
that FΆng(A o J5) s F&ng(B) + iFΆTlg(B) as the corollary asserts.

COROLLARY 2. If A, Be Mn(C) and F&ng(A) g Qx αwd Fang(5*) S

Proo/. Since F&τιg(B*) g Qx, Fa n g(5) g Q4 and since Fang(A) £ Ql9

we have by Corollary 1 that -Fang(A o B) g Fang(S) + iF&ng(B) S Q*_+
iQ4 = Q4 + Qi £ interior (Q, U Q4). That FΆng(A o β) g interior (& U Q4)
means AoBeΠn and completes the proof.

REMARK. A<>BeΠn if and only if H(A)oH(B) + S(A)oS(B) > 0
and thus f{A)eΣn if and only if H(A){2) > S(A){2).

Proof. An easy computation shows that H(A o B) = H(A) o H(B) +
S{A) o S(β) so that the first part of the remark follows. The second
portion then follows by taking B — A* and thus S(B) = —

THEOREM 2. Suppose A, DeMn(C) and D is a nonsingular
diagonal matrix. Then f(A) e Σ% if and only if f(DA) e Σ%.

Proof. Since Σn is closed under congruence, the statement of the
theorem follows from the observation that f(DA) = J9AoA*D* =

A*)Z>* =Df(A)D*.
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2* The largest eigenvalue of A°A** Since f(A) is Hermitian,
σ(f(A)) is real. Employing a result of [4] we next estimate the largest
member of σ(f(A)) which is necessarily nonnegative.

NOTATION 2. Denote the numerical radius of A e Mn(C) by r(A) =
maXteF(A) \t\. If σ(A) is real, let XM(A) = maxλeσU) X and Xm(A) =

min;.6σu)λ. In case A is Hermitian, r(A) — max {XM(A), |λm(A)|}.

LEMMA 1. [4]. If A, NeMn(C) and N is normal, then

THEOREM 3. For A e Mn(C), we have

r(AoA*) ^ r(H(A)f + r(S(A))2 .

Proof. Since /(A) = H(A){2) - S(A){2\ it follows that r(f(A)) =
r(H(A){2) - S(A)i2)) ^ r(H(A){2)) + r(-S(A){2)) ^ r(H(A))2 + r(S(A))2. The
latter inequality is from the lemma and completes the proof.

COROLLARY 3. For A e Mn(C),

XM(AoA*) rg XM(H(A)2) - Xm(S(A)2) .

Proof Since XM(f(A)) ^ r(f(A)), r(H(A))2 = XM(H(A)% and

r(S(A)Y = -Xm(S(A)2) ,

this follows directly from Theorem 3.

EXAMPLE. The estimates of Theorem 3 and Corollary 3 are sharp.
Equality may be attained even for nonHermitian matrices. Let A =

— 1 - I P ^ e n ^^ *s *^e u n ^ c^o s e (^ circular disk and thus r(A) =
r(H(A)) - r(S(A)) = 1. Also f(A) = [_J ""J] so that r(/(A)) -
λ^(/(A)) = 2 - r(ίί(A))2 + r(S(A))2 = λ^(iϊ(A)2) - λm(S(A)2).

Although we will not do so here, estimates for Xm(A°A*) may
straightforwardly be obtained from the results of the next section.

3. Conditions sufficient for AoA*eΣn. We next study three
rather different sufficient conditions (Theorems 4, 5, and 6) for the
Hermitian matrix f(A) to be positive definite.

NOTATION 3. If XeMn(C) denote the union of the Gersgorin
circles [3] obtained from the rows of X by Gr(X) and the union of
the Gersgorin circles obtained from the columns of X by GC(X).
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Let G(X) = Gr(X) n Ge(X). Then σ(X) s G(X), [3], and 0 £ Gr(X) is
the assumption of row diagonal dominance while 0gGc(X) is column
diagonal dominance. We shall call a matrix Γ = (ί<y) e Mn(C) com-
binatorially triangular if for all pairs i Φ j either of t s or tH is 0.

THEOREM 4. If AeMn(C) and there is a diagonal matrix De
Mn(C) such that F(DA) g Ql9 then f(A) e Σn.

Proof. If there is such a D, then it must be nonsingular and by
Theorem 2 it suffices to prove the statement of this theorem for
D = I. By letting B = A*, the hypothesis of Corollary 2 is satisfied
in our case and we may conclude f(A) = 4 ° A * G Πn. But since f(A)
is Hermitian it is then in Σn which completes the proof.

REMARK. It is an easy observation that f(eiθA) = f(A). By
Theorem 3 this means that if F^A) g Q, where Q is any rotation
of Qlf then f(A) e Σn.

LEMMA 2. // 0 g Gr(A) U ̂ (A), ίfeew 0 g G(f(A)).

Proof. Since /(A) is Hermitian, G(/(A)) - Gr(f(A)) = Gc(f{A)).
Since 0 g Gr(A) U GC(A), |α«| > Σ ^ k d and | α w | > Σ w |α Λ | , for all
i = 1, ••, n. Thus

α«αΓ* - l^l2 > (Σ K l)(Σ l^ i) ̂  Σ M \aSi\ = Σ k ^ I

which means that 0 g

LEMMA 3. If 0ί Gr(A), there is a positive diagonal matrix D
such that 0 g Gr(DA) U Gc(Zλ4).

Proof. Since Z> diagonal and invertible and 0 g Gr(A) imply 0 g
Gr(Z)A), it suffices to show that under the assumption a D may be
found such that 0 g GC(DA). This may be done by an M-matrix argu-
ment [2]. Without loss of generality we may assume A is real with
positive diagonal entries and nonpositive off-diagonal entries. Our
assumption, 0 g Gr(A), then implies that A and thus A* are M-matrices.
By [2, Theorem 4.3] this implies the existence of a positive diagonal
D such that 0g G>(A*D) - Gβ(ZλA). For this JD, then, 0£ Gr(DA) U

as desired.

THEOREM 5. If Ae Mn(C) and there is a diagonal matrix D e
MJC) such that 0 g G(DA)> then f{A) e Σn.
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Proof. Again by Theorem 2 it suffices to prove the weaker
statement that 0 $ G(A) implies f(A) e Σn, and since f(A) = /(A*) we
may assume without loss of generality that 0 $ Gr(A). Then by Lemma
3, there is a positive diagonal matrix D such that 0 $ Gr(DA) U GC(DA).
According to Lemma 2 this implies 0 $ G(f(DA)). Since f(DA) is
Hermitian with nonnegative diagonal entries, 0 g G (f(DA)) implies
G(f(DA)) s interior (Q, U Q4) and that all eigenvalues of f(DA) are
positive. This means that f(DA) e Σn and by Theorem 2 that f{A) e
Σn which completes the proof.

THEOREM 6. If A = {aί3) e MJfi) is combinatorially triangular
and an Φ 0, i = 1, , n, then f(A) e Σn.

Proof. Under the hypothesis ai3ΰji is 0 if i Φ j and positive if
i — j . This means f(A) is a positive diagonal matrix and, therefore,
a member of Σn.
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