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MINIMAL SPLITTING FIELDS FOR GROUP
REPRESENTATIONS

BURTON F E I N

Let T be a complex irreducible representation of a finite
group G of order n and let χ be the character afforded by T.
An algebraic number field K 3 Q(χ) is a splitting field for χ
if T can be written in K. The minimum of [K: Q(χ)]9 taken
over all splitting fields K of χ, is the Schur index mQ(χ) of
χ. In view of the famous theorem of R. Brauer that Q(e2πijn)
is a splitting field for χ, it is natural to ask whether there
exists a splitting field L with Q(e2πiln) DL D Q(χ) and [L: Q(χ)] =
mQ(χ). In this paper examples are constructed which show
that such a splitting field L does not always exist. Sufficient
conditions are also obtained which guarantee the existence of
a splitting field L as above.

Throughout this paper Q will denote the field of rational numbers.
If K is an algebraic number field and p is a prime of K, we denote
the completion of K at p by Kp. If A is a simple component of a
group algebra over Q, the center of A being K, and πx and 7Γ2 are
primes of K extending the rational prime p, then the indices of
A®KKH and A(g)κKπ2 are equal [2, Theorem 1]. We write l.i.pA
for this common value and refer to IΛ.PA as the p-local index of A.
If L D K and L is an abelian extension of Q, we refer to the rami-
fication degree of a prime π of K from ϋΓ to L as the g-ramifieation
degree where π extends the rational prime q. Clearly, this does not
depend on the choice of π. We use similar notation when referring
to residue class degrees.

Throughout this paper χ will denote an irreducible complex
character of a finite group G of order n. There is a unique con-
stituent j y of the group algebra of G over Q(χ) corresponding to
χ in the sense that the representation of G afforded by a minimal
left ideal of jzf is equivalent to mQ(χ)T, where T affords χ. If D
is the division algebra component of s*f we say that D (and Jzf) is
associated with χ. The index of D equals mQ(χ) and χ is realizable
in K if and only if K is a splitting field for D. We refer the reader
to [1] for the relevant theory of algebras assumed.

We denote a primitive mth root of unity by εm. Gal (L/K) denotes
the Galois group of L over K, and [L: K] the degree of L over K.
If A and B are two central simple iΓ-algebras we write A — B to
denote that A and B are similar in the Brauer group of K.

A special case of the following lemma is proved in [6, page
631]:
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LEMMA. Let F be the completion of an algebraic number field
at a finite prime and suppose the residue class field of F has q
elements. Let p be a prime, p \ q, and suppose pt \ q — 1, pt+1)fq — 1.
Let E be a cyclic extension of F of degree pe pf where p% e > 0, is
the ramification degree of E over F. Let (a) = Gal (E/F) and let
εpS G F. We have:

( 1 ) Let pι = 2 so εpS — — 1. Then the cyclic algebra (E, σ, — 1)
has index 2.

( 2 ) Suppose pt ^ 3 and s ^ v > 0. Then (E, σ, εpS) has index
pv if and only if t = e + s — v.

Proof. By Hensel's lemma, εpt e F, εpM $ F. Let [K: F] = pf, K
unramified over F. All p-power roots of unity in E are in K. If
pι >̂ 3, an easy induction shows that E contains a primitive p ί + / t h
root of unity but does not contain a primitive pt+f+1th root of unity.
If p* == 2 and / > 0, then E contains a primitive 22 + /th root of unity
but not a primitive 23 + /th root of unity. If p* — 2 and / = 0, then
E does not contain ε4. From the theory of cyclic algebras over local
fields, (E, σ, εp*) has index pv if and only if εp*-v is a norm from
E to F but εpS-v+i is not a norm. Suppose εpS~v is a norm from E to
F. Let N denote the norm map from E to F. Since εpS-v is a unit,
epS~v = N(j) where 7 is a unit of E. Let UEf UEι denote, respectively,
the units and the units (mod 1) of E. We have UEIUEI = E*f the
multiplicative group of the residue claas field of E. Since E and K
have the same residue class field, there is a root of unity δ in K
with 7 UEι = δ IT*i. Since iV(S) UFi = εp8-v ί/̂ i = ΛΓ(δ) t/^i, we may assume
that δ has p-power order. Let N' denote the norm from K to F.
Then N(δ) = iSΓ'(δp') since δ € ϋΓ. Since Gal (iΓ/F) is generated by the
Frobenius automorphism, we have N(δ) = δmpe where

Suppose (1) holds so pι = 2, εpS = — 1 . (E, σ, —1) has index 1 or
2 and we have index 1 if and only if — 1 is a norm from E. By the
argument above, if — 1 is a norm, then — 1 UFι = δm2e UFi where δ is
a 2-power root of unity, e > 0, and m = (q2f — ϊ)/(q — 1). One verifies
easily that δm2e — 1, a contradiction.

Now suppose (2) holds. Assuming εp8-v is a norm from i? we
obtain, as above, that N(δ) is a power of a primitive p*~eth root of
unity. Thus t — e ^> s — v so £ ̂  s + β — v. Conversely, if ί = s +
e — v, then i? contains a primitive p s + e + / ~ v th root of unity ζ. An
easy calculation using the Frobenius automorphism shows that N(ζu) ~
εpS~v for some u. Let J ^ = (E, σ, εp8) so J ^ p v ~ (E, σf εp*~υ). If
t =s + e - v, then we have shown that sf*v - F. If S/pV~ι - ί7,
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then we would have t ^ s + e — v + 1 which is not the case. Thus
t = s + e - v implies Stf has index p\ Conversely, if sf has index
p\ then t 7> s + e — v. If t ^> s + e — v + l w e would have SsfpV~l ~
F. Thus t = s + e — v, proving the lemma.

We can now construct an example (actually one for each prime
p) of an irreducible character χ of a finite group G of order n such
that mQ(χ) = p but no subfield L of Q(eΛ) with [L: ζ>(χ)] = p is a
splitting field for χ.

EXAMPLE. Let p be an arbitrary prime. Let r be prime,
r = 1 (mod p2), r ^ 1 (mod p3). Let q be a prime, g = 1 (mod r), g =Ξ
l(modj>4)> and g Ξ£ l(modp 5 ) . Let F be the subfield of Q(εq) with
ίQ(eff): ^ ] = P4 and let £/ be the subfield of Q(er) with [Q(er): E] = p\
Let <<τ> - Gal (Q(ep3qr)JF(εpsr)) and <τ> = Gal (Q(eΛ r)/ί?(eΛ)). Let iΓ
be the fixed field of <σr>. Then iί(ε,) = Q(εpzgr) and [ίΓ(ε,): JBΓ] = p\
Since g is totally ramified from EF(εpz) to F(εpzq) and splits completely
from EF(εP3) to E(εpsr), we see that g is totally ramified from EF(εpή
to JΓ. Thus the ramification degree of q from K to if(εg) is p2 and
the residue class degree is 1.

Let G = <w, α?, 2/, 2J | wq = α;r = 2;p3 = 1, /̂p4 = z, z central, (w, x) = 1,
ί/"1^^ = ^ α , y^xy = %h) where oτ(εq) = (εq)

a and στ(er) = (εr)\ The
cyclic algebra J ^ — (Qfev), ί7τ> ε?>3) ^s a homomorphic image of the
group algebra of G over Q and so there exists a complex irreducible
representation T of G with character χ such that the enveloping
algebra of Γ is J / and Q(χ) = K. The index of Ssf equals mQ(χ).

By the lemma we see that J^f has (/-local index p. Since
K(εq) = Q(ep8ffr), r is unramified from i ί to Q(εP3qr) and so the r-local
index of j ^ is 1. Since the 2-local index is at most 2 [7, Satz 11]
and at infinite primes Szf can only have index 1 or 2, we conclude
that mQ(χ) = p. | G \ = 2>7gr and Gal (Q(6p7qr)/K) ~ Cp* x C^. Since
g = 1 (mod p4) we see that q splits completely in the unique extension
J of JBΓ, Jc(3(fi,v), Gal(J/JK") - Cp x Cp. It follows, therefore, that
q splits completely in every subfield of Q{εpiqr) of degree p over Z"
and so T is not realizable in any subfield L of the \G |th roots of unity
with [L: Q(χ)] = p.

We next prove that under certain conditions there always exists
a subfield L of the order of |G | th roots of unity which is a splitting
field for χ and where [L: Q(χ)] = mQ(χ).

THEOREM. Let χ be a complex irreducible character of a finite
group G of exponent n with mQ(X) *> 3. Assume either (a) or (b)
below hold:

( a ) Q(χ) = Q(εm) for some m.
(b) n = paqb where p and q are primes, p < q.
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Then there exists a subfield L of Q(en) with [L: Q(χ)] = mQ(χ) and such
that L is a splitting field for χ.

Proof By a standard reduction using the Brauer-Witt theorem

[8, § 2], we may assume that mQ(χ) is a prime power. Since if (b)

holds, mQ(χ) is a power of p by [7, Satz 10], we will assume that

wρ(χ) = PC.

Let K be the subfield of Q(εn) such that Kz>Q(χ)f pJf[K:Q(χ)]f

and [Q(εn): if] is a power of p. Let D be the Q(χ)-central division
algebra associated with χ. By the Brauer-Witt theorem [8, § 2],
D (x) ρ{Z)iίΓ is similar to a crossed product (K(ψ)/K, β) where f i s a
linear character of a subgroup of G, β is a factor set whose values
are roots of unity, and where Gal (K(ψ)/K) is isomorphic to a factor
group of a Sylow ^-subgroup of G,

Q(χ) contains a primitive mρ(χ)th root of unity [3, Theorem 1],
Since mQ(χ) :> 3, Q(χ) and K are both totally imaginary. Thus the
nonzero invariants of D are at finite primes.

Suppose (a) holds, so Q(χ) = Q(εm). We may assume m is not
twice an odd number. We have mQ(χ) \m. If r is a prime divisor
of m, r Φ p, then since, for some df [Q(εn): K] — pd, r is unramified
from K to K(ψ). This implies that the r-local index of D equals 1.
Now let qlf , qt be the rational primes at which D has nontrivial
local index. Let the g,-local index of D be pH. Then ct ^ c for all
i and ct = c for some i since D has index p\ Suppose qt is odd.
By [7, Satz 10] pc- \ qt - 1 and so Q(εq) has a subfield E, with [J5,:
Q] = pc\ Since g< | m, [EiQ(χ): Q(χ)] = pc* and g4 is totally ramified
from Q(χ) to ^ Q ( χ ) . Let L t - EtQ(χ). By [3, Theorem 1], εpH e Q(χ)
and so L* = Q(χ)(α^) where α£c <eQ(χ). If all of the g, are odd, let
α — axa2' «ί. If qx = 2, say, let a — T/ —lα 2 at. We note that q1

can equal 2 only if pCl = 2 and τ / ^ ϊ e Q ( χ ) [7, Satz 11]. If this
happens, then 41 w by [4], Thus αeQ(ε n ). Since αp CeQ(χ),
[Q(χ)(α): Q(χ)] ^ p c . Since g', is ramified of degree pCi from Q(χ) to
Q(Z)(α), [Q(Z)(α): Q(X)] = Pc and Q(χ)(α) splits D. Thus Q(χ)(α) is our
desired field.

Assume (b) holds. K(ψ) is an abelian extension of K generated
by roots of unity. Since (K(ψ)/K, β) has index pc > 1, (K(ψ)/K, β)
has g-local index pc and so q is ramified from K to K(ψ). This implies
that K(ψ)i)K(εg) = K(eqι). Since mQ(χ) = pc ^ 3, if p = 2 we see
that T/ — l e i Γ . In view of [7, Satz 12] this implies that q is the
only prime of Q with the g-local index of (K(ψ)/K, β) different from 1.

Let εpVe K{ψ), εpV+i$ K(ψ). We note that K(ψ) = Q(epυqb) since
b)- K] is a power of p. Let <σ> = Gal (Q(εpvgb)/Q(εpv)), <τ> =
(epV)/Q(M)) T h e n < σ V > = Gal (Q{epvqh)fK) for some i and j .

Let ί7! and F2 be, respectively, the fixed fields of <σ*> and <ry>. Let
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pe and pι be, respectively, the order, of <<r> and (τj). Let Lx and
L2 be, respectively, the subfields of index pe and pι in Q(eqb) and
Q(epv). Then Fι = Lfav) and F2 = L2(εqb) and Ή n 2^ = LλL2. Since
gr is totally ramified from LXL2 to F 2 and is unramified from L ^ to
Flf q is totally ramified from LXL2 to if. Thus e > t and g has
ramification degree pe~ι from i£ to K(ψ).

Suppose [K(εpv): K] = p\ Then (oV)p e fixes K(εpV). Since σ fixes
ε^, τjpS fixes ep* and so τjpS = 1. Thus s ^ ί. But # is unramified
from K to K(εpv) and so the ramification degree of q from if to K{ψ)
is at most pe~ s. Thus e — s ^ e — t so s = t. This shows that g is
totally ramified from K(epV) to K(ψ). Since g is unramified from if(^)
to K(εpaqb) = Q(εpaqb), we see that K(εpa) is the maximal extension of
K inside Q(v?6) %m which q is unramified.

Q(εpaqb) is not a cyclic extension of K by [5]. Thus Gal (Q(εpaqb)/K)
is the direct product of two cyclic groups. Let M1 and M2 be subfields
of Q(εpaqb) such that Mtf) M2~ K, Q(εpaqb) = MγMκ and Mι and M2 are
cyclic extensions of K. Since £Γ(εpα) is cyclic over K, q must be totally
ramified in either M1 or M2. Suppose q is totally ramified in Mt.
By [5], since Q(εpaqb) is cyclic over Ml9 Mλ is a splitting field for χ.
Thus Mx splits (K(ψ)/K, β) and so [il^: if] ^ p c . The subfield L of
Λfx with [L: Q(χ)] = 2>c is the desired splitting field for χ. This com-
pletes the proof of the theorem.
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