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EXISTENCE AND ADJOINT THEOREMS FOR LINEAR
STOCHASTIC DIFFERENTIAL EQUATIONS

VIRGINIA M. WARFIELD

This paper contains three theorems on linear stochastic
differential equations, where the differential equations are
given in terms of McShane’s first and second order related
integrals. The first, which is modelled on the classical Picard
Theorem, concerns the existence of solutions, the second gives
boundedness of their moments, and the third provides them
with adjoints. The Adjoint Theorem has the interesting pro-
perty that its formulation requires the second order integral
even when the original differential equation involves only the
more standard first order integral.

To guarantee the existence of the belated integrals (as defined
in [4]), we have universally the following hypotheses:

(1) (2, .o P) is a probability triple, where .o is a c-algebra
of subsets of Q.

(2) (#:0<t<T)is a family of o-subalgebras of .o such if
0<s<t< T then &, & #,.

(3) 2@, w), (0=1,---,7) are stochastic processes on [0, T],
and if t€[0, T], then 2°(t, w) is .F#,-measurable.

(4) There exist real numbers K, K, K, such that if 0 <s <
t £ T, then

| E([2°(t) — 2°(s)] | &) | < Ki(t — s) a.s.
E([z(@) — 2°(8)°| F2) S K.t —s) (c=2,4) a.s.

Also universally, we use the term L,-norm and the notation || ||
to mean L,-norm with respect to expectation.

Under these hypotheses, an application of Picard’s method enables
us to prove the following theorem:

THEOREM 1. Suppose y'(w) (1 =1, «++, n) is F,-measurable and
ciolt, @) and Cl(t, @) (i =1, -, n;0,0 =1, -+, 1) are bounded sto-
chastic processes continuous im probability a.e. on [0, T], and such

that ci (@, ») and Ci.(t, +) are F.-measurable. Then the following
system of equations has a solution

(+) X't 0) = 1) + | 3 éhuls, 0) XG5, @)z
00,
+ St >y Clouls, ) X%(s, w)dzedze .
00,0,
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Furthermore, the solution is continuous in Ly-norm and is unique
m the semse that if X(t, w) and Y(t, @) are two solutions of the
system with the same initial distribution y(w), then for all t<[0, T],

| X(t, @) — Y, @) || =0.

If one ignores the second integral (the second order term) in
(*), then the equation bears some resemblance to the equation dis-
cussed in §3.2 of [2]:

dx = e(x)db + f(x)dt .

Differences are that his integration is It0 integration—i.e., b is
Brownian motion—and his coefficients ¢ and f need not be linear, but
cannot be stochastic. A further apparent difference is the result of
the following device:

Device. Any equation of the form

S Gt w)derde

s
a p,0=1

2 (s) = S Fi(t, @)t + S Pz_; gi(t, x)dz + S
can be written in the form
. 8 r+ R 8 r .
(s) =S pz git, ®)des + S > Gl w)derde .
a p=1 a p,0=1

This we do by defining z;*'(¢) to be equal to ¢ for all t€ [a, b], gi..(¢, @)
to be fi(t, x), and Gi, (¢, ) and G%,,.(t, ) to be zero for p, o =
3, «++, r;t€[a, b].

Consequently, writing out the terms involving integration with
respect to ¢ is an unnecessary complication, so our theorems are
stated without them.

McShane also has several theorems on existence of solutions for
the equation with nonlinear coefficients (see, e.g., [4]), but in all
cases the coefficients must be real-valued functions rather than
random variables.

The remaining theorems require two additional hypotheses:

(5) lim,_,,ess. sup E([z°(t) — z°(s)]°| Z,)/(t — s)* = 0 uniformly
on [a, b] for ¢ = 6, 8.

(6) Ai,(t, w), Bi,(t, )@, h=1, -+, n;0,0 =1, -+, 7) are pro-
cesses adapted to .# which are bounded on [a, b] for a.a.w, continu-
ous in probability on [a, b], and have a.s. continuous sample paths.

We also make heavy use of the following two equations:

L. 5 (t, ®) = 2(a, ®) + S S 43,5, 0)okGs, @)z
a h,p

t
+ S S Bi,.(s, w)al(s, w)dz°dz’
a h,p,0
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Ly, o) =10 0) — | 5 440 o', o)

+ Y s [—B;M(s, W) + 3 Al (s, @)Ab(s, a))]y"(s, w)dzedz
k=1

a hoo

THEOREM 2. Assume hypotheses (1)-(6) hold. Then if x(t, ®) s
a solution of equation I with x(a, ®) bounded for a.a.w, then there
18 a constant R depending only on the bounds for A, and Bj,, and
on the constants K, K, K, in hypothesis 4 such that for all te [a, b]

E{[+'(t, ®)]'} = RE{max [¢*(a, ©)]%} .
An immediate generalization of this theorem is the following:
COROLLARY. For any g, if we add on the hypothesis that

E([z() (—t— fp(ss))z]zq]%) = 0 uniformly on [a,b],

lim ess. sup
t—s
we can find a constant R such that

E{[o(t, w)]'} = RE{max [x.(a, )]’} .

THEOREM 3. (Adjoint Theorem): Assume that hypotheses (1)-(6)
hold and that x(a, ®) and y(a, ®) are bounded for a.a.w. Suppose
2i(t, @) is a solution of equation I. Then there exists a stochastic
process yi(t, w) such that for any tec [a, b]

3, 0¥t @)t @) = 390, 0)yie, ©) as.
yi(t, ) can be obtained as a solution of II.

Note that even in the event that x({, ) has no second order
integral terms its adjoint must have them.

The Adjoint Theorem is used in [8] to derive a stochastic ver-
sion of the Pontryagin Maximum Principle. If one tries to follow
the derivation in [7] making everything stochastic as one goes, one
is led to an expression involving integration with respect to back-
wards Brownian motion (cf. [1]). Since integration with respect to
backwards Brownian motion is undefined, this creates an unpleasant
situation. Our Adjoint Theorem allows us to use the basic structure
of Pontryagin’s derivation to achieve a set of Lagrange multipliers
without getting involved with backwards Brownian motion. There
is, however, the drawback that instead of an initial condition we
must use a terminal condition.
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In order to prove Theorem I, we need the following result from
[4]:

THEOREM 3.1. Suppose hypotheses (1)-(4) hold for z' and z* and
suppose f(t, w) has the following property:
I for all tela, b], f(t, w)e L2, .7 P); || £(¢) ], ts bounded on [a, b]
and f is a.e. (w.r.t. Lebesgue measure) continuous in L,-norm omn
e, b]. Then the integrals

Saf (D)dz" and Sb f()dz'dz? exist .

For Theorems 1 and 2 we need to use Cauchy polygons and their
relationship to stochastic integrals. Our definition, which follows, is
parallel to that of McShane in [5]. It differs very slightly from
McShane’s more recent version as it appears in [6] or that of
Maruyama in [3].

Let 7= denote an ordered (m -+ 1)-tuple of points (¢, +««, tnry)
with a =, <t, < e+» <itny, = b. We define

mesh 7 = max [ty — tih =1, «+-, m] .

Then to the differential equation
2t 0) = v'@) + | 3 chult, @), @)z’
a Ppa

+ S’ S CiLolt, @)z (t, w)derde
a gpa
there corresponds a Cauchy polygon x.(t, ®) defined by successive
steps as follows:
(1) #%(a, ©) = y'(w)
(ii) if z. has been defined for ¢ on [a, ¢,], we define

& (ths, @) = (s, @) + % Coaltn, @) (s, @)[2°(tss) — 2°(t1)]
+ 3 Chualts, @), O (trs) — #E0ss) — (0]
and for ¢, <t < t,,, we define z.(¢, w) by linear interpolation between
2(tr, @) and x(t,.., ®).

Theorem 4 in [5] states hypotheses under which to every ¢ there
corresponds a ¢ such that if mesh 7 < 6, then

o) — z)|| <e, a=<t=<bh.

Unfortunately, we cannot simply apply his theorem, because it only
applies to first order integrals, and because although his integrands
are extremely general functions, they are nonstochastic. On the
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other hand, the hypotheses for Case 1 of our Theorems 2 and 3,
where the Cauchy polygons turn up, are sufficiently strong to make
a direct imitation of the proof of his theorem quite straightforward
(though there seems to be no way around a singularly gory com-
putation!). Thus the theorem we use is the following:

Cauchy Polygon Theorem. Suppose hypotheses (1)-(4) hold. Sup-
pose ci,(t, ) and Cj,(t, w) are processes adapted to & which are
bounded on [a, b] uniformly in @ and which have a.s. continuous
sample paths. Suppose (¢, ®) is a solution to the system of equations

#(t, @) = 1) + || 3 cls, @), 0)dzr
a pa
+ St S Ciluls, w)z*(s, w)dzedze ,
a poa

and suppose 2.(f, w) is the Cauchy polygon corresponding to x(f, ).
Then for every ¢ > 0 there is a § > 0 such that if mesh 7 < g, then

”x(t: 0)) - xn‘(ty (I)) ” <e.

2. Proofs.

Preliminary Lemma. If f has property I, as defined in the
statement of McShane’s Theorem 3.1 in Section 1, and if hypotheses
(1)-(4) hold, then

“ S: F(s)dzrdz®

<& [17@ rds "

|| r@az| = & {17 ras]”,

where K, = K, + 2K,T and K,, = 2K, T'* + K}".

Proof of Theorem 1. Existence: The proof of existence is an
application of the Picard method. Suppose X,(¢, w) is an L,norm
continuous stochastic process with X, (¢, -) .#,-measurable. If we
define X,(t, w) as

) t . o
vi(w) + S S chals, ) X5, ) + S 5, Clauls, 0)X(s, 0)dzrdz”,

then X,(t, w) exists and is L,-norm continuous, and X(¢, -) is F,-
measurable.

Proofs of all three of these statements are straightforward ap-
plications of standard arguments, assisted by Theorem 3.1 of [4] as
stated in §1 and the Preliminary Lemma.
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Iteration then permits us to define a sequence of processes
X.(t, w). There remains to be shown that the resulting sequence
converges, and that its limit satisfies (). The latter argument is
again standard, but the former is a trifle trickier than usual, so we
provide some details:

1X:0) - X0 1| = ||| S ch@IXe(s) — Xe)ldw

* "S: % Cioa(9)X1(s) — Xi(s)]d2rd2’

= & [ |5 etato) (X209 — Xeta[as|”
+ & || 5 6ionto) (x206) - xeo[ a5 ]

Let L be the bound on |ci.(s, )| and |C:,.(s, w)| provided for in
the hypotheses. Then

|2 e X2 - xs@1[ as = L] |5 1X00) - xe6@] as

< rl?

ey

1l Xife) — Xo) | ds
and
|3 Ch@xe©) - Xi@) | ds < L | Xits) — X IFds
so if we let K* = [Ky + Kor'"JnL, then
1X0 - XOF = K 1 X6) - X [ ds -

But X,(t) and X,(t) are both L,norm continuous, hence there is a
constant M such that || Xi(s) — Xi(s)|| < M*® on [0, T'], so we have

[| X,(t) — Xu(t) || < KMt .

Using the above inequalities, it is simple to prove inductively that
for all n

| X,(t) — X)) P < M/K[Kt]"/n!, ie.,
| X,(t) — Xaea(®) || = [M/KTPLKE]"E[(n!)" .

But 37, [Kt]*?/(n!)'? converges uniformly for all te[0, T], by a
routine power series argument.

Hence by the Weierstrass comparison test, 3=, || X,.(t) — X,(@) ||
converges uniformly on [0, T']. It follows that || 3o, [X,+.(6) — X.@)] || <
oo, But the kth partial sum of 3|7, [X,.(6) — X.(6)] is X,(t) — X,(¢).
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So the sequence X (t), X\(¢), - -+ converges uniformly in ¢, for a.a.w.

Uniqueness. To prove uniqueness we re-apply several of the
above computations, this time to || X(¢) — Y{(¢)||, where X and Y are
two solutions of I with the same initial random variable. The
induction this time yields that for any j

1X@®) — YOI = *EK)[K*%)/5Y .

Since

SUEGY < oo, | X(8) — Y(£)|] = 0 for all te [0, T].

Before proving Theorems 2 and 3 we need to make some obser-
vations about relevant Cauchy polygons. The Cauchy polygons asso-
ciated with equations I and II are

(L) Pilte) = at) + 3|3 AL () 4,)

+ i B ,o(t;)ak(t;) Ajz”A]-z”}
©,0=1

UL) () = i) + 3 | = 3 AWl 4
£ 3 [Blt) + 3 ALGIALE) )z
py,0=1 =1

For the proofs of both theorems, we need to make the following
restrictions on the Cauchy partition 7= being used.
Choose ¢ > 0. We require that = be fine enough so that

(1) X)) — @)l <e/3 for all t;erx
CO R DY [t — vi¢)lll < e/8 for all ¢;em.

This restriction on « is justified by the Cauchy Polygon Theorem
stated at the end of §1.
(iii) For any ¢; t;, in T,

2 2
B4} |.57) <‘}<§—w% ¢=68,
where K is a constant determined from A},, B;j,, in a manner defined
in the proof of Theorem 3. This restriction is made possible by
hypothesis (5) in the statement of the theorem.
(iv) mesh 7 < 1.

With these restrictions available, we are in a position to proceed to
the proof of Theorem 2.
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Case 1. Assume A,,, B,,, are uniformly bounded on [a, 8]. Highly
temporarily, let

0=2 Ao (ts)wz(85) 4520 + th'z Bioolt)az(t5)4,2°452°

Then I. gives us that
[w(t5)] = [22@E)]" + 4@@)10 + 6[ai(t )]0 + 4wi(t))e° + ¢
= [#2(¢5)]* + 4wt % Ao (t5)we(t;)4,2°
+ AL 2 Bioo(t)wi(ts)d,24 27
+ 6[xi(t,-)]2h§; A o(85) Ao (852 (85)5(E )4 ,2° 4,2
+ multitudinous terms, each containing from 3 to 8

4;z° factors, 4 xi factors and various Ai, and Bj,, factors. Now we
let

M = max (1’ tse&pb]l A?LP(t) ly tsegpb]lB;;pq(t) l)

i0,0,h0
and
v(t;) = max E([22(t,)]) -
What we are going to do is to show that there exists a number K
such that
(tis) — o(t) < Ko@)t — 1), Le.,

v(ti) = v(t) + Ké ()i — o) -

~

Then we shall define a function ¥ on the whole interval [a, b]
which is equal to v at ¢ = ¢, ---, t,, and apply Gronwall’s Lemma to
#(t). From the result of the application we will be able to deduce
that

E((xit;))") = —v%)—-e’?b forall t;inwand i=1, -, n.
14 0

We have
E@(t))] = v(ts)

and

B( S @IV @) Aielt) 4,20 ) < ME(S @U@0 S 47°) -

oh

Now for each % we have
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(@) 'wx(t;) = max (vit)' = 3 @:(E)* -

It follows that
S @) k) = 1 S @)

Using this we have

B(3 @) eit) S 42 ) = B{S @e)yoit) B(S 4|77,
< 1 3 B@H)IrK b -

= /nz'v(tj)TKl(tjﬂ - ti) ’

i.e.,

AB{[B(E)P S Ai(tok(e)d i} < AMnn(E Kt — ) -

Similarly,

AB{[0(0)) 3, Bin(t)ok(t) 02 47| < AMWr K (tre: — t0(0) -

Likewise

t;) [hyp. 4]

6E(@:(t))* 3 wilts)wrn(ts) Aue(t:) Abo(t) (4527 4527)

= 6M o) Kyt — t3) -

313

Before tackling the remaining herd of terms we need to make

a few observations:
(a) By hypothesis (iii) in the choice of 7

E([z°(t;+) — 2°@)]° | 7)) - &
(b — 1 =K —a **
Hence, using hypothesis (iv) in the choice of =,
E([2°(t5+1) — 2°(85)1° | 7)) - &
(i1 — t2) =K'b—a **

Let

B = max {Kz, K, m} .

(b) From (a) and hypothesis 4 it follows that
E([2(t.1) — 2°@)]° | F:)

tirn — ¢

<B for ¢=3, --

c=26,8.

c=26,8.

-, 8.
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(c) In any term of the expansion of [#i(¢;,,)]* there are at most
4 factors of the form Ai,t;) or Bj,(t;). Hence the contribution
from such factors must be less than or equal to M:*.

So each of the remaining terms of the expansion must be less
than or equal to

ME( S, [ttt ez (t) 3 4, oo, 4]
m G10e,0g

(where ge {3, ---, 8})

< arefsern( 3 14 0015

= M*'n*r*Bu(t;) (¢, — t5)

Counting coefficients, there are 66 such terms, so the total con-
glomeration of terms involving 8 or more 4;2°’s is

= 66M4n3’rsB’U(tj)(tj+1 - tj) .

Collecting all the information on the past several pages, we have
that if K = 4n*»K.M + 4Mn*r*K, + 6 M*n*r*K, + 66M*n*r*B, then
V(ti) — v(ty) = Ko(t)(tie — t5).

Summing up to 7 + 1 this gives

(+%) Vltse) < 0lt) + K 3 0(t) (b — 8 -
We define a function ¥(t) on [a, b] by () = v(t;), where ¢; is the

largest partition point of w which is = ¢.
From (xx), we have that

5(t) < 5(t) + KS H(s)ds .
to
By Gronwall’s Lemma, if we can find a function satisfying
~(t
o) = 5t) + K| o()ds,
0

then we will have that
() < g(t) for all tela,d].
Let

_ () e
g(t) = We .

Then
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o _ 2T L] — g — o
KStog(s)ds = RIE. 2oft | = 90) — 006 .

Hence

v(t;) < Lt")-ef“f for all 7.
ekt

Since ¢* increases with ¢, this gives us that

B(it)l) = 20 o for all t;ex and all i .
e 0

Since [xi]* is an increasing function, and since 2! approximates o,
this completes the proof of Case 1.

Case 2. The removal of the uniform boundedness of A}, and
B;,, uses an argument which is a simplification of the argument used
to perform the same feat in Theorem 3; we will therefore omit it.

Proof of Corollary. Only one observation is needed in order to
make the proof of the corollary an exact imitation of the proof of
Theorem 2. That is the observation that the hypothesis that

lim ess sup E ([zﬂ’(t)(;— zp(;)]cl‘%) = 0 uniformly
— s

on [a, b] for ¢ = 6 and ¢ = 2¢ implies the same hypothesis for any
n with 6 < n < 2q. This we get by applying Holder’s inequality to
the product | 2°(¢) — 2°(s) |°* | 2°(t) — 2°(s) |**, where h = (2¢ — n)/(29 — 6)
and k& = (n — 6)/(2¢ — 6).

Proof of Theorem 3. Remark. Since x'(a), y’(a) are bounded
a.e., by eliminating a set of measure zero we may consider them to
be bounded for all w.

Second Remark. We have sufficient hypotheses to guarantee the
existence of a solution to II (using Theorem 1). It will, therefore,
suffice to show that this solution has the desired properties.

Case 1. Add on the hypothesis that Aj,(¢, ), Bi.(t, ®) be uni-
formly bounded on [a, b] (i.e., bounded uniformly in ®). The first
part of the proof is a horrendous computation with Cauchy polygons.
What we want to consider is

|35 ot ites) — wieaies)



316 VIRGINIA M. WARFIELD
B2t )Yiltin) — @2yt = [@it;e) — i(t)]yit;r)
+ @it )[yite) — vit)] .

We use I, and II, to replace wi(t;;,) and yi(t;.,) and find that the
above yields

O 343 A eReie) — 3 AL Ee)]

@ + p,::x Ajz”Ajz"{ é Byoo(t)@k(t)yi(t;)

— 3 AL ALEIEAE)

— 3 BL)EEAE) + 31 AL AL |
®  + 3 dpawdagi- 3 Bl t)ekt) AL

+ hil Aip(tj)[—Bﬁar(tj) + é‘i Aif(tj)A{fa(tj):\xg(t j)@/i(tj)}
©  + 3 awdedgdp| 3 Bia) —Bl)

3 ALEIALE) ot}
Consider this term by term:

(1) Since we are summing also over 7 =1, ---, » we can re-label
various terms:

3O = 54| 3 AL - 3 AL = 0.
Likewise for (2):

igf ®= p;‘lA"zmjzajlh%LBﬁﬂa(ti)xﬁ(tj)yi(tj)

— 3 Biult)att)uit) — 3 ALE)ALEREIAE)

+ 3 AL ALt )kE) = 0.

hyk,i=1

—

So what is needed to complete the proof is that || 3%, ® + @ ||
can be made arbitrarily small. _
To prevent writer’s cramp we define Kj,...(t;) and Kj,,...(t;) by

Kipolt) = — Biaot) At + ALu(t)] — Blat) + 3 ALt)AL(E) |

Rinset) = Binltd] —Bialty) + 35 ALEIALE) |
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Since we assumed A, and Bj,, to be uniformly bounded on

[a, b] x Q2 for 5, h=1,+---,m; p,0 =1, ---, r, it follows that Kj,,,.(t)
and Kj;,..(t) must also be uniformly bounded on [a, b] X 2. Say

K}flopr(t) g K

) ~t on J[a,b] x 2.
Kzlaprv(t) .S_ K} [ ]

We fix o, 0, 7, and 4 and consider summands of [|® ||

| 3 s 050 Kin )00 )00

| 3 sz s dzayie)x]
k=1

= K{E[A,-zﬂ’d,-z"d,-z’ hzll xﬁ(tj)y,’ﬁ(t,-)]z}llz
vk
2 1/2
= k{8 (B (e dwaiwy (5 o)) | 27,) )}
2 12
= K{B((S220i)) ) B s | )}
because (3. k(¢;)yk(¢;)* is bounded and summable w.r.t ;. Now
(42°4;2°4,;27) < (MaX,_p,. 4;2°)°. For simplicity we assume the largest
is A,-z”.
By hypothesis (iii) in the choice of =, if t; ¢;1, €,
B4zl 7)) < EGin — 8
W27).57) < St

Then we have for ¢, ¢;., €,

|5 44,20 0D Kunan(2)

< K{((E[A,-z”]“ | %J))E(% x;‘(t,')y’,i(t,-)>2}1/2

e = Ll {5 (5, ate00t0)

IIA

So what we need is a bound on all terms
B(, 3, st)mituitvse)) -
But
4
Tt )V < (max @) vHE)

and Theorem 2 gives us a bound for E{(z’(t;))'} and E{(y%(t;)"}, so
we have the desired bound—ecall it B2
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Plugging this into the above inequalities we see that

eB(ti — t)

=
[b —a]

| Kurtd izt a2 2,208 D)

Hence even if ||(® || varies as much as it can on each interval of 7,
the total amount it varies on [a, b] is less than r%B.
By the same argument, the total amount ||@ | can vary over
[a, b] is less than »Be.
It follows that
1 22(t54)Yi(tis) — wia)yi(a) || < 2er'B,
hence that
” xn(tj+1)y7t(t.'i+1) - wn(a)yn(a’) ” < 257’4En .
Now
[@(ti)y(Ese) — 2(@)y(@) | = [ 2(E510YEis) — Tt Ya(Esed) |]
+ |22 4)Y(t542) — 2(a)y=(a) || + [[z(a)y(a) — z(a)y(a) ||
= ”x(t:iﬂ)[y(tjﬂ) - yx(tiﬂ)] ”
=+ “ [m(tjﬂ) - xn(tjﬂ)]'yn(tjﬂ) ” + 2er'Bn + 0.
Since all hypotheses for Theorem 1 are satisfied, x(t, ®) and y(t, ®)
could be arrived at by a Picard type process. It follows that [|=(¢) ||
and ||y.(¢t)|| are uniformly bounded; say ”Z(g)”“} < B for all t. By
our choice of 7, we then have

| 2@y (tie) — 2(@)y(a) || < 2Be + 2er'Bn = (23 + 2r'Bn)e .

Since any point of [a, b] can be a division point of a Cauchy parti-
tion, we therefore have that

z(t)y() = x(a)y(a) a.s.

Case 2. We now remove the spare hypothesis of uniform bound-
edness and assume merely that Ai,(, o) and Bj,(t, ») are bounded
on [a, b] for a.a.w. For simplicity we shall drop the subscripts on
A and B, since they are now irrelevant. Define
Ait, ) if A¥(s, w) < N for all s<t¢
0 if not ;

Bi(t, w) if Bi(s, w) < N for all s <t
0 if not;

Ai(t, o) to be {

Bi(t, w) to be {

x4 (t, ), yi(t, w) to be the solutions to I and II obtained by substitut-
ing A% and Bj for A* and B:.
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Using the metric of convergence in probability defined by
dp(u, v) = inf {0: P(|lu — v| = 0) < 9}

we shall show that for each ¢,

4 [, @), @) - 2¥(a, @)y(a, @)]) = 0.

43 5, 0, @) - a'(a, 0)yi(a, ©)])
< do T 10'(t, 0, @) — w3, Wit o))
+ d( S [oitt, @it ) — ai(a, @) v, o))
+ 43 [5ia, 0)ile, ©) — w0, @)@, 0)]) .

By our opening remark, z*(a, ) and y*(a, ) are bounded, hence
if N is large enough, the third term is zero.

By Case 1, the second term is zero.

That leaves the first term.

Fix €¢> 0. Since A° and B' are bounded on [a, b] for a.a.w,
there exist N, Ny such that

P{A5 (1, w) # Ai(t, w)} < ¢/2
P{Bj,:(t, w) # Bi(t, w)} < ¢/2.

Let
N = zgla,xn {N,i, Ngi} .

Then

P{Ai(¢, w) # A't, ) or Bi(t, w)+ Bi(t, w)} <¢/2.
Hence

P{zi(t, o) = #'(t, ®) or yi(t, w) + yit, W)} < ¢/2.
So

P{SI1@(t, )y, @) — ai(t, 0)vit, ©)] = €j2) < o2
Hence

(S [, 0, ©) - wit, )it o)) S o2 <.

Since ¢ was arbitrary,
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&S [, @, @) — wit, Wi, 0)]) = 0.
So
03 ', 0, @) — a'(a, W)e, @)]) = 0.

Since z* and y* are a.s. continuous, it follows that

> ai(t, w)yit, ) = 3 ai(a, ®)yi(a, ) a.s.
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