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THE UNIQUENESS OF ELONGATIONS
OF ABELIAN GROUPS

R. B. WARPIELD, JR.

Given an Abelian group G and a f unctorial characteristic
subgroup hG, we study the extent to which G is determined
up to isomorphism by hG and GjhG. If G is a p-group or a
mixed module over a discrete valuation ring, we study the
structure of G in terms of that of pxG and G/pχG, where λ
is a limit ordinal. We also study a corresponding family of
subgroups of Abelian groups in general. For a countably
generated reduced module M of finite torsion-free rank over
the ring Zv of integers localized at p, we obtain necessary
and sufficient conditions for M to be determined up to iso-
morphism by p*M and MlpxM.

1* Introduction* It is a famous result of Leo Zippin's [18],

that if G and H are countable p-groups, λ is a limit ordinal, φ: pxG —>
pλH is an isomorphism, and G/pλG ~ H/pλH, then φ extends to an
isomorphism of G onto H. Crawley [1] and Hill and Megibben [7]
improved this result by omitting the countability condition on G and
H but requiring that λ be a countable limit ordinal and that G/pλG
be a direct sum of countable groups. (The countability condition on
λ can now be omitted by requiring that G/pλG be totally projective.)
In this paper we prove several extensions and converses for these
results, for uncountable p-groups and for countable mixed groups
of finite torsion-free rank.

In § 3, it is shown that if A is a p-group with pωA = 0, and A
is not a direct sum of cyclic groups, then there are nonisomorphic
p-groups G and H (which can be chosen of length ω + 1) such that
pωG s pωH, and G/pωG s H/pωH ~ A. This strengthens a recent
result of Nunke's [10, Theorem 3.4]. We call a pair (A, B) of p-
groups a uniquely X-elongatίng pair if (i) there exists a reduced p-
group G such that pλG ~ B and G/pλG ~ A, (ii) B Φ 0, and (iii) any
two such groups are isomorphic. We follow Pierce [11] in calling a
group G of this type a λ-elongation of A by B. A consequence of
the results of Crawley and Hill and Megibben mentioned earlier is
that if A is a direct sum of cyclic p-groups, then (A, B) is a uniquely
α)-elongating pair for any group B for which ω-elongations of A by
B exist. It is conjectured that a strong converse holds, which would
say that if (A, JB) is a uniquely ω-elongating pair of p-groups, then
A is a direct sum of cyclic groups. In Theorem 3.2, we prove this
under the additional assumption that A/pA is countable, and assum-
ing the continuum hypothesis.

289



290 R. B. WARFIELD, JR.

The rest of the paper is concerned with countable Abelian groups
of finite torsion-free rank. We work primarily with modules over
the ring Zp of integers localized at p. (This is the ring of those
rational numbers which can be written as fractions with denominator
prime to p. We recall that the category of Zp-moάales can be iden-
tified with the category of all Abelian groups G, such that for all
primes q different from p, multiplication by q is an automorphism
of G.)

If λ is a limit ordinal, we say a module A has the λ-Zippin
property if (i) λ is the length of the torsion subgroup t(A), (ii) pλA =
0, and (iii) given two modules G and H such that G/pλG = H/pλH ~ A
and an isomorphism φ: pxG —• pλH, φ extends to an isomorphism of
G onto H. In Theorem 6.4, we find necessary and sufficient condi-
tions for a countably generated module of finite torsion-free rank
to have the λ-Zippin property. Theorem 5.3 contains a partial gen-
eralization of this to arbitrary countable Abelian groups of finite
torsion-free rank.

One can define uniquely λ-elongating pairs (AfB) of ^-modules
in the obvious way, for any limit ordinal λ. In Theorem 6.5, we
determine exactly what pairs (A, B) of countable Zp-modules, with
A of finite torsion-free rank, are uniquely λ-elongating. Surprisingly,
there are such pairs in which A does not have the λ-Zippin property.

We review briefly the contents of the following sections. Sec-
tion 2 is a preliminary section, relating the divisibility properties of
a subgroup B of a group G to the position of the corresponding
element in the groups Ext (G/B, B). This provides descriptive results
and existence theorems for elongations. Section 3 contains the non-
uniqueness results for α)-elongations of p-groups. Section 4 describes
a family of torsion-free submodules of a mixed Zp-modnle of finite
torsion-free rank, the quasi-maximal torsion-free submodules. These
submodules seem to have some independent interest, and may be
applicable in other questions concerning mixed modules of finite
torsion-free rank. Section 5 contains the positive results concerning
the λ-Zippin property, and §6 contains counterexamples. Section 7
lists a number of unsolved problems.

We close this introduction by establishing some terminology.
Zp is the ring of integers localized at p, and Z% is the ring of p-
adic integers, the completion of Zp. Given any Abelian group A, we
let Ap = A(g),Zp, the localization of A at p, which we regard as a
£p-module. If M is a ϋΓp-module, we let M* = M®Z*, which we
regard as a Z%-module. If G is any Abelian group, we define the
subgroups paG, for all ordinals a, by pa+1G = p(paG), and, if a is a
limit ordinal, paG = Γta<« PβG. If G is a p-group, then we say G has
length λ if pxG = 0, and λ is the smallest ordinal with this property.
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Note that a p-group must be reduced to have length. By a height,
we mean a formal product JlPp

xlp) where for each prime p, \(p) is
an ordinal or the symbol <χ>. If G is an Abelian group and h a
height, we define hG = f\P PX{p)G. We should notice that the sub-
group of elements of infinite height in G is exactly hG where h =
Π* Pω Note that, for example, 2aG = hG where h = IL> Pλ{p\ H2) =
a, and X(p) = 0 for all other primes p. Hence it causes no difficulty
to require that X(p) be defined for all primes p.

The torsion-free rank of an Abelian group G is the rank of the
vector space G (x) Q, where Q is the field of rational numbers. G
has finite torsion-free rank if and only if it has a finitely generated
subgroup F such that G/F is torsion.

2* Divisibility and Ext* This is a preliminary section in which
it is shown how the ^-divisibility properties of a subgroup B of
a group G can be determined by the corresponding element of
Ext (G/B, B) and, in particular, in terms of the image of this ele-
ment in Ext (G/B, B)/p Ext (G/B, B). We use this analysis to deduce
the existence theorems for elongations which we will need.

LEMMA 2.1. If p is a prime and A and B are arbitrary Abelian
groups, the natural homomorphisms

Ext (A, B/pB) > Ext (A[p], B/pB)

Ext (A[p], B) > Ext (A[p\, B/pB)

are isomorphisms. All three of these groups can be naturally iden-
tified with

Ext(A,B)/pΈxt(A,B) .

Proof. We first consider the last part of this lemma. E. Baer
has shown [4, p. 244] that the endomorphism of Ext (A, B) induced
by multiplication by an integer n in A or B is again multiplication
by n in Ext (A, B). The endomorphism of A given by multiplication
by p factors through pA so we have a composition

Ext (A, B) • Ext (pAt B) > Ext (A, B)

where the first map is induced by the inclusion of pA into A and
the second by multiplication by p. It follows that p Ext (A, B) can
be identified with the image of Ext (pA, B) in Ext (A B). The ker-
nel of the map A—*pA is A[p] so we have a natural isomorphism

Ext (A, B)/p Ext (A, B) > Ext (A[p], B) .
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This will establish the third part of our result if we can estab-
lish the other two. Two first however, is a special case of what
we have just done, replacing B by B/pB and remembering that
p Ext (Ay B/pB) = 0. We omit the proof of the second isomorphism,
which is similar and is contained in [3, Theorem 26.5].

LEMMA 2.2. If p is a prime and pA — pB = 0 then there is a
natural isomorphism Ext (A, JS) —• Horn (A, B).

We omit a detailed proof since this is [3, Theorem 26.5], but
we will give an interpretation of this result. If an element in

Ext (A, B) is represented by a short exact sequence 0 —» B —• C -^
A —> 0 then the corresponding element φ of Horn (A, B) is defined as
follows. For x e A let y be an element in C such that v(y) = x, and
let φ(x) = py. It is easy to see that this is well defined and one
can easily give a proof of the lemma in this way.

In general, if E e Ext (A, B), for arbitrary Abelian groups A and
B, we let φp(E) be the element of Horn (A[p]9 B/pB) defined as fol-
lows. Suppose E is represented by the short exact sequence 0—+
B-+C-^ A—»0. lί xe A[p], let y be any element in G such that
v(y) = x and let φp(x) = py + pB.

LEMMA 2.3. If A and B are Abelian groups, there is a natural
epimorphism

Ext (A, B) > Π Horn (A[p], B/pB)

associating to each EeExt(A, B) the element ΐ[PφP(E).

Proof. Let S be the subgroup of A generated by elements of
prime order. There is a natural epimorphism

Ext (A, B) > Ext (S, B),

and since S = φ p A[p], a natural identification

Ext (S, B) > Π Ext (A[p], B) .
P

By 2.1 and 2.2, there is a natural isomorphism

Ext (A[p), B) > Horn (A[p], B/pB),

which completes the proof.

THEOREM 2.4. If A and B are Abelian groups and Ee Ext (A, B)
and E is represented by 0—>B—>C-+A—»0, then for any β > 0,



UNIQUENESS OF ELONGATIONS OF ABELIAN GROUPS 293

B £ pβC if and only if (i) φp(E) is surjective and (ii) if K is the
kernel of φp(E) then for every a < β,

A[p] =K+ (p'A)[p] .

REMARK. If v:C-+A is the homomorphism from the above
sequence, then we can identify K = v{C[p\). The condition above
can be rephrased to say that φp(E) restricted to (paA)[p] is surjec-
tive for all a < β.

Proof. Suppose first that B g PβC, and z is an element in B.
Then for any a < β, there is a ye paC such that py = z. Clearly,
v(paC) g p"A, so v(y) e (p°A Π A[p]), and

z + pB = φp(E)(v(y)) .

We prove the converse by induction. The surjectivity of ΦP(E)
clearly implies that B g pC. We assume that for some 7^/3, we
have shown that B g paC for all a < 7, and we show that 5 g prC.
If 7 is a limit ordinal, this is trivial, so it suffices to show that if
B g paC for some a < β, then B g pα+1C. The induction hypothesis
implies that v(pαC) = paA. (The basic fact here is that for any G,
if α < 7 , then pa(G/prG) = (paG)/(prG).) If z e £ , there is a p C
such that y(y)G GΛ4)[p] and py — zepB. Since pαA = v(paC), we
may assume that 2/ e p"C. Since pi? g p*+1C, it follows that z e pa+1C.
This completes the proof.

REMARK. If λ is a limit ordinal, a subspace K of A[p] is called
X-dense if for every a < λ, A[p] = iΓ + (pM.)[p]. If λ = ct>, this
condition is equivalent to K being dense in A[p] in the topology
inherited from the p-adic topology on A.

LEMMA 2.5. Lei V be a vector space, λ α limit ordinal, and Va,
a < λ, a family of subspaces indexed by ordinals less than λ, such
that if a < β then Va 3 Vβ, and Γϊ«<λ Va = 0. TAβ^ F has a sub-
space S such that for all a < λ, S + Va = V and such that [V: S] —
min(dim(yα): a < λ).

This was proved by Pierce [11]. If λ is a countable ordinal,
(the only case needed in this paper), it is essentially contained in
[4, Lemma 31.1 and Theorem 31.4]. Other proofs of the general
result are in [2] and [10].

THEOREM 2.6. Let h = ΐ[p pλ{p) be a height in which all of the
X(p) are limit ordinals or 0, and let A and B be Abelian groups
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such that hA = 0, Then there is a group G such that hG = B and
G/hG ~ A if and only if for every prime p and every ordinal a <

dim {{paA)[p}) ̂  dim (B/pB) .

REMARK. For ̂ -groups, this was proved by Pierce in [11], and
the corresponding result for modules over a discrete valuation ring
is in [10, Theorem 1.6].

Proof. Assume first that the indicated inequalities hold. By
2.5, we can find subspaces Kp of A[p] (for each prime p) such that
[A[p]: Kp] = dim (B/pB) and Kp is λ(p)-dense in A[p], (i.e., for every
a < λ(p), A[p] = Kp + (paA)[p]). We can therefore find homomor-
phisms φp: A[p] —> B/pB which are sur jective and such that ker (φp) =
Kp. By 2.3, there is an EeΈxt(A, B) such that φp = φp(E) for all
primes p. If this element E is represented by the exact sequence
0—> B—> G —> A —»0, then 2.4 implies that G is a group of the desired
type.

Conversely, if such an extension E exists, then the homomor-
phisms ΦP(E) are surjective when restricted to (paA)[p], for all a <
λ(p) (by 2.4). Therefore,

dim ((paA)[p]) ^ dim (B/pB)

as stated.

3* Elongations of p-groups*

THEOREM 3.1. Let A be a p-group with no elements of infinite
height which is not a direct sum of cyclic groups. Then there exists
a group B with pB = 0 and two groups G and H such that pωG =
pωH ~ B, and G/pωG = H/pωH ~ A, but such that G and H are not
isomorphic.

Proof. Let fin. rk. A = min {dim ((pnG)[p])}. We first claim that
A has a pure, dense subgroup L such that dim (A/L)[p] = fin. rk. A,
and such that L is not a direct sum of cyclic groups. This is so
because A has at least one pure dense subgroup H such that
dim (A/H)[p] = fin. rk. A by [4, Lemma 31.1 and Theorem 31.4], from
which it follows easily that A is the ascending union of a sequence
Hi of such subgroups, (as in the proof of [10, Theorem 3.4]). If
all of the Hi were direct sums of cyclic groups, then G would be
also, by [6, Theorem 4].

Now let L be the subgroup of A whose existence we have just
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shown, and let K be a lower basic subgroup of A (i.e., a direct sum
of cyclic groups such that K is pure and dense and dim (A/K)[p] =
fin. rk. A, [4, Theorem 31.4]). Let B be a direct sum of fin. rk. A
cyclic groups of order p. By 2.3 and 2.4 there are two extensions

Et:0 >B >G >A >0

E2:0 >B >H >A >0

which are ω-elongations of A by B, such that ker (^(£Ί)) = K[p],
ker (φ(E2)) = L[p]. If G and H were isomorphic, the isomorphism
would take K[p] onto L[p]. By the Kulikov criterion for direct
sums of cyclic groups, this would imply that L was a direct sum of
cyclic groups which it is not, and this contradiction proves the theo-
rem. [In detail, the Kulikov criterion says that you can tell whether
a p-group L is a direct sum of cyclic groups by looking at L[p] as
a metric vector space with the metric inherited from the p-adic
metric on L. Since L and K are pure subgroups of A, the metrics
on L[p] and K[p] inherited from the p-adic metrics of L and K are
the same as the metrics inherited from A. If there were an auto-
morphism of A carrying L[p] onto K[p], L[p] and K[p] would be
isomorphic as metric vector spaces, so since K is a direct sum of
cyclic groups, L would be also.]

THEOREM 3.2. Let A and B be nonzero, reduced p-groups such
that A has no elements of infinite height and co elongations of A
by B exist. Suppose in addition that A has cardinality c (the car-
dinality of the set of real numbers), and A/pA is countable. Then
there are 2C nonisomorphic groups G which are ω-elongations of A
by B.

REMARK. Since A/pA is countable, A/pnA is countable for any
positive integer n, which implies that pnA, and (therefore) (pnA)[p]
have cardinality c. It follows, in particular, that α>-elongations of
A by B exist if and only if B/pB has cardinality at most c.

Proof. Let ^ be the set of all subgroups K of A[p] such that
K is dense in A[p] and [A[p]: K] = dim (B/pB). These exist by 2.5
and the remark above. In particular, such a subgroup C exists such
that [A[p]: C] = c. The number of subgroups K containing C and
such that [A[p]: K] = 1 is exactly equal to the dimension of the
dual space of the Z/pZ-vectov space A[p]/C, so there are 2C distinct
subgroups K of A[p] containing C, such that [A[p]: K] — 1. An easy
iteration argument shows that for any cardinal π, π <̂  c, there are
2C subgroups K of A[p] containing C with [A[p]: K] = π. Hence the
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class ^ of subgroups defined above has cardinality 2C. For any
Ke ^ we can find an element EeΈxt(A, B) such that K =
ker (φp(E)) (by 2.3) and by 2.4, if this extension is represented by
O-*JS-»G —A-+0, then B = pωG. If for two subgroups K and L
in <ĝ  the corresponding extensions G and H are isomorphic, then an
isomorphism between them induces and automorphism of A carrying
K onto L.

We next observe that the automorphism group of A has cardi-
nality at most c. To see this, observe that since A/pA is countable,
we can find a countable subgroup S of A such that A = S + pA.
Since A/S is therefore divisible, Horn (A/S, A) = 0, so any endomorph-
ism of A is determined by its behavior on S. Since Horn (S, A) has
cardinality at most c, the automorphism group of A has cardinality
at most c. We now look at our class & of subgroups of A[p] de-
fined above and think of two of them as equivalent if there is an
automorphism of A carrying one onto the other. Since there are
2C elements of <& and at most c automorphisms, there are 2C equiva-
lence classes, which completes the proof of the theorem.

COROLLARY 3.3. Let A and B be p-groups such that A has no
elements of infinite height, A/pA is countable, B Φ pBf and such that
ω-elongations of A by B exist. Then if A is not a direct sum of
cyclic groups, the continuum hypothesis implies that there are 2°
nonisomorphic ω-elongations of A by B.

Proof. If A/pA is countable, A is a direct sum of cyclic groups
if and only if A is countable. If A is not a direct sum of cyclic
groups, therefore, A is not countable, and the continuum hypothesis
implies that A has cardinality c, and the result follows from 3.2.

The first example of two nonisomorphic p-groups G and H such
that pωG ~ pωH and G/pωG ~ H/pωH, was given by Kulikov [4, § 39,
C]. This rather special example is the only one previously published.
In unpublished work, Crawley showed that if G is a reduced p-group
such that pωG Φ 0 and G/pωG is torsion-complete, then there is group
H, not isomorphic to G, such that pωG = pωH and G/pωG ~ H/pωH.

Theorem 3.2 was proved in 1966 [16], and takes care of p-groups
with countable basic subgroups (assuming the continuum hypothesis).
Theorem 3.1 is the most satisfactory available for groups with un-
countable basic subgroups, (though it does not include Crawley's
examples), but it is still less satisfactory than 3.2 in that it does
not solve the question of uniquely ω-elongating pairs. The author
is indebted to R. Nunke for showing him how a rather cumbersome
result which the author proved in 1970 could be combined with
Hill's theorem to yield 3.1.
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4* Quasi-maximal torsion-free submodules*

THEOREM 4.1. Let M be a Zp-module of finite torsion-free rank
and a an ordinal such that t(M) has length a. Then M has a
torsion-free submodule F such that M/F is torsion and pa(M/F) = 0.

REMARK. It is fairly easy to obtain a torsion-free subgroup
such that M/F is torsion and reduced, but, in general, the length
of M/F could still be any ordinal less than a + ω, even if paM = 0.
This arises from the existence of "slack" modules, a phenomenon
discussed in detail, with examples, in [12].

Proof. For any ^-module A, we let A* = A (x) Z%. Let L be
a free submodule of M such that M/L is torsion. By replacing L
by pnL for some n, if necessary, we may assume that L* Π paM* is
a summand of L. We now let F = {xe M: x + Le pa(M/L)}. We
must show that F is torsion-free.

We remind the reader that a submodule of X of a module N is
nice if for all ordinals β, pβ(N/X) == (pβN + X)/X. It is well known
that if N is a module over a complete discrete valuation ring, then
any finitely generated submodule is nice. It follows that V is nice
in M*. Therefore, if x e F*, x + L* 6 pa(M*/L*), so x + L* - 2/ + L*
for some yepaM*. Hence, x = y + z with yepaM*, zeL*. lΐ x
were torsion, we would have pnze paM* for some w, from which,
by our previous hypothesis, zepaM*, so xepaM*. Since paM* is
torsion-free, a? = 0.

THEOREM 4.2. If M is a reduced Zp-module of finite torsion-free
rank and F a torsion-free submodule the following properties of F
are equivalent:

(i) M/F is reduced and torsion,
(ii) for all torsion-free modules G of finite rank and homo-

morphisms f: G —* M, there is an integer n such that pnf(G) £ F.

Proof. If G is a torsion-free module of finite rank then any
reduced torsion factor is finite. This immediately implies that if F
satisfies condition (i) then it satisfies condition (ii). Conversely, sup-
pose (ii) holds for F and that Fo is the torsion-free submodule whose
existence is given by 4.1. Since M/FQ is reduced and torsion, so is
M/pnF0, for any n. If pnF0 S F, then M/F is a quotient of a re-
duced torsion group with finite kernel, so M/F is also reduced and
torsion.

DEFINITION. If M is a reduced ^-module of finite torsion-free
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rank, a submodule F satisfying the conditions of Theorem 4.2 is
called a quasi-maximal torsion-free submodule.

Theorem 4.1 implies that quasi-maximal torsion-free submodules
exist. It is easy to give examples to show that a maximal torsion-
free submodule need not be quasi-maximal in this sense. If A and
B are torsion-free submodules of a module M, we say that A is
quasi-contained in B if for some N, pnA S B. Clearly, a torsion-free
submodule of M is quasi-maximal (in the sense of the above defini-
tion) if and only if every torsion-free submodule is quasi contained
in it. Two quasi-maximal torsion-free submodules of M need not
be isomorphic, but they are clearly quasi-isomorphic, and the opera-
tion associating to each reduced module M of finite torsion-free
rank the quasi-equivalence class of its quasi-maximal torsion-free
submodules is functorial. For details the category in which this
functor takes its values, we refer to [14]. The functorial properties
of this operation are not needed in this paper.

COROLLARY 4.3. The following conditions on a reduced Zp-module
of finite torsion-free rank are equivalent:

( i ) every torsion-free submodule of M is free;
(ii) M has a free submodule F such that M/F is reduced and

torsion;
(iii) M®Z* is a reduced Z*p-module.

Proof, (i) implies (ii) by 4.2. If (ii) holds, we look at the exact
sequence 0 — F-> M-~> M/F-+0 and tensor with Z%. (M/F) (x) Z% s
M\F, and F%Z% is a free Z£-module, so M%Z% is the extension
of two reduced Z*-modules, and is therefore reduced. Finally, if
(iii) holds and A is a torsion-free submodule of M, then A§§Z% is
necessarily reduced, and therefore (by [9, Theorem 20]) A(x)Z% is
free. If the rank of A is k, this implies that the rank of A/pA
is also k (since A (x) Z% is free on k generators and A/pA s
(A (x) Z*)fp(A ® Z*).) By [17, Corollary 8], this implies that A is free.

5* Unique elongations of modules and groups of finite rank*

LEMMA 5.1. Let A and B be Zp-modules, S and T submodules
such that A/S and B/T are torsion, and f:S->T an isomorphism.
If the induced isomorphism /*: S* —> Γ* extends to an isomorphism
g: A* —»B*, then f extends to an isomorphism of A onto B. Similarly,
if A and B are Abelian groups, S and T subgroups such that A/S
and B/T are torsion, and f: S—> T an isomorphism and if for each
prime p the isomorphism fp: Sp —> Tp extends to an isomorphism of
Ap onto Bp, then f extends to an isomorphism of A onto B.
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Proof. For the first statement, we note that A and B are im-
bedded in A* and J3* respectively with torsion-free divisible cokernels.
It follows that we can identify A with the set of those elements
xeA* such that for some n, pnx e S, and we can identify B similarly
in j?*. Hence, the restriction of g to A takes A isomorphically
onto B.

For the second statement, let P(A) — ΐ[pAp and, again, note
that A can be imbedded in P(A) with torsion-free divisible cokernel,
(by a routine computation). The rest of the proof is the same as
before.

THEOREM 5.2. Let A be a countable reduced Zp-module of finite
torsion-free rank, and λ a limit ordinal such that pxt(A) = 0. Let
G and H be modules and X and Y submodules of pxG and pxH,
respectively such that G/X ~ H/Ys A and let φ: X—*Y be an iso-
morphism. If the reduced part of X has bounded order, or if all
torsion-free submodules of A are free, then <j> extends to an isomor-
phism of G onto H.

Proof. We assume that the above isomorphisms induce sur-
jective homomorphisms g:G~*A, gQ:H—»A with kernels X and Y.
Choose a torsion-free submodule F of A such that A/F is torsion
and ρλ(A/F) = 0 (as we may, by 4.1). Let G' = g'\F)9 H' = g^(F)-
By hypothesis, Ext (F, X) = 0, so there are submodules M and N of
G and H respectively such that G' = M 0 X, H' = ΛΓφ Y. We ob-
tain an isomorphism φ'\ Gf —• H* by defining φf = φ on X and defining
φf on M so that goφ' = g.

We want to use Hill's extension theorem [5], in the form stated
and proved by Walker [15], to extend φf to an isomorphism of G
onto H. Hill's theorem cannot be applied directly because F is not
necessarily a nice submodule of A. We recall that a submodule Z
of G is nice if for all ordinals a, p"(G/Z) = (Z + paG)/Z. In order
to have lots of nice submodules, it is desirable to work with modules
over Z*.

We first claim that ((?')* a n ( i OEΓ')* a r e n ί c e submodules of G*
and H* respectively. (£')* = ̂ * θ M* and ikf* = D © E, where D
is divisible and E is finitely generated. It is clear (by 2.4 for ex-
ample) that X*SiP*G*. Since p\G*l(G')*) = 0 (by our hypothesis
on A/ί7), p'G* S (GO*. Therefore, (GO* = PλG* + # . For modules
over a complete discrete valuation ring, the the sum of a nice sub-
module and a finitely generated submodule is again nice, so (GO*
and (ίΓO* are nice submodules of G* and iϊ*.

We next must show that the induced isomorphism {φ')*'. (GO* —*
(JEfO* is height preserving. By construction, (φf)* preserves the
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heights of elements of height less than λ, and so does the inverse
of (0')*. It follows that (φ')* takes pxG* isomorphically onto pxH*.
If xepxG*9 then the height of a; in G* can be computed from its
height in pλG*. Using this and the corresponding fact for pxH*,
we can see that the restriction of (φ')* to p;G* is height preserving.
Since we already know (φ')* preserves heights less than λ, (ψ')* is
height preserving.

We now have two modules G* and H*, with the same Ulm
invariants, nice submodules (G')* and (If)* such that G*/(G')* and
H*/(H')* are countable torsion modules, and a height preserving
isomorphism (#')*: ((?')* —>(ίP)* HilΓs extension theorem [5], in the
form stated by Walker [15], enables us to extend (φ')* to an iso-
morphism of G* onto H*. (The statement of HilΓs theorem involves
a condition on relative Ulm invariants. We should remark that since
((?')* = E + pxG* and (H')* = Eo + pλH*9 where E and Eo are finitely
generated, it is trivial to verify that the relative Ulm invariants
of (G')* and (H')* in G and H are the same.) Lemma 5.1 allows us
to conclude that the original isomorphism φ:X —• Y extends to an
isomorphism of G onto H, as desired.

DEFINITION. If h = Π*> P*ί3° is a height in which λ(p) is a limit
ordinal or 0 for each prime p, and A is an Abelian group with hA =
0, we say A has the h-Zippin property if whenever we are given
groups G and H such that G/ΛG = H/hH = -A, and an isomorphism
φ: hG —* hH, φ extends to an isomorphism of G onto H.

THEOREM 5.3. Let A be a countable Abelian group of finite
torsion-free rank and h = J[p pUp) a height in which each X(p) is a
limit ordinal or 0, and such that hA = 0. Let Γ be the set of primes
for which t(A)p has length X(p). Suppose A has a free subgroup F
such that A/F is torsion and pX{p)(A/F)p = 0 for all pe Γ. Then
A has the h-Zippin property.

Proof. Let G and H be groups, φ: hG —> hH an isomorphism,
and suppose that G/hG ~ H/hH~ A. Let g:G—>A, and go:H-+A
be the induced homomorphisms, and let G' = g~ί(F)f H' = g^(F).
Choose splittings Gr = hG φ Λf, H' = hH®Nf and let φ'\ G' -> H' be
the isomorphism induced in the obvious way. The argument of 5.2
applies to show that φ'p: G'p —• Hp extends to an isomorphism of Gp

onto Hp, if pe Γ. If p$ Γ, hG and hH are necessarily ^-divisible,
so (hG)p and (hH)p are divisible, and, therefore, summands of Gp and
Hp respectively. By a standard argument, the complements of (hG)p

and (hH)p in GP and H^ may be assumed to contain Mp and NP

respectively. These complements are both naturally isomorphic to
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A99 so, clearly, φp extends to an isomorphism of Gp onto HP if p $ Γ.
An application of 5.1 completes the proof of the theorem.

EXAMPLE. Suppose h = J[p pω, so that hG is the subgroup of
elements of infinite height in G, and that A = S φ Γ , where S is
torsion-free of finite rank and T is torsion. Then 5.3 says that A
has the ^-Zippin property if SP is a free Zp-moάu\e for all p such
that Tp is unbounded. In particular, if S is the subgroup of rational
numbers generated by the elements p~ι for all primes p, then £ φ
T has the fe-Zippin property (for this h) for any unbounded torsion
group T. (In the case in which S is free, this result is in [8, Theorem
3.7],) It will be a consequence of the results of the next section
that if SP is not free for some p such that Tp is unbounded, then
A does not have the A-Zippin property.

6* Nonuniqueness theorems*

LEMMA 6.1. If N is a countable, reduced Zp-module which is
not of bounded order, and M is a torsion-free ZP-module of finite
rank, then either M is free or Ext (M, N) has an uncountable, di-
visible, torsion-free summand.

Proof. By [17, Lemma 3] we can find a free submodule F of
M such that M/F is nonzero, torsion-free and divisible (assuming
that M is not free). We consider the exact sequence

(*) Horn (F, N) > Ext (M/F, N) —>Ext (M, N) > 0 .

Ext (M/F, N) is a direct sum of a finite number of copies of
Ext (Q, N). It is routine that Ext (Q, N) is torsion-free and divisible.
The exact sequence 0 ~> Horn (ZP, N) -»Ext (Q/Z9, N) — Ext (Q, N) ~+
0 exhibits Ext (Q, N) as a quotient of the group Ext (Q/ZPf N) with
countable kernel. We claim that Ext (Q/Zp, N) is uncountable, and,
therefore, that Ext (Q, N) is uncountable. Ext (Q/ZPf N) is the co-
torsion hull of N, and hence is torsion if and only if N is of bounded
order. Since this is not the case, Ext (Q/ZP, N) is not torsion, and
since it is a module over the ring of p-adic integers, it is neces-
sarily uncountable. Returning to the sequence (*), this shows that
Ext (MjF, N) is an uncountable, torsion-free, divisible group. Since
Horn (F, N) is countable, its image is contained in a countable sum-
mand of Ext (M/F, N), so Ext (M, N) is the direct sum of a countable
group and an uncountable torsion-free divisible group, as claimed.

We include the next lemma to clarify what it means for an
element of Ext (A, B) to have infinite order.
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LEMMA 6.2. If E is an element of Ext (A, B) represented by an
exact sequence 0 —»i? —•(?—•A—* 0, then nE = 0 if and only if the
sequence restricted to nA splits (i.e., if φ: G —* A is the homomorphism
of the sequence, then there is an /: nA —> G such that φf is the
identity on nA).

This is a consequence of Baer's theorem [4, p. 244] that multi-
plication by n in A induces multiplication by n in Ext (A, B). For
a detailed discussion and interpretation, we refer to [13].

THEOREM 6.3. If A and B are reduced, countable Zp-modules,
and λ a limit ordinal such that (i) pxA = 0, (ii) t(A) has length λ,
(iii) A has finite torsion-free rank, (iv) A has a torsion-free sub-
module which is not free, and (v) B is not of bounded order, then
there are nonisomorphic modules M and N such that pλM = pλN =
B and M/p*M~ N/pλN s A.

Proof. Let S h e a quasi-maximal torsion-free submodule of A,
and T the torsion submodule of A. Consider the surjective homo-
morphism

Ext (A, B) > Ext (T© S, B) = Ext (T, B) © Ext (S, B) .

Whether or not an element E of Ext (A, B) corresponds to a λ-
elongation of A by B depends only on the image of Em. Ext (T, B),
by 2.4. Choose Ee Ext (A, B) such that E corresponds to a λ-elonga-
tion of A by B, (as we may, by 2.6), and such that the image of
E in Ext (S, B) is 0. Suppose that Ef is another element of Ext (A, B)
corresponding to a λ-elongation of A by B, and that E and Ef are
represented by exact sequences

0 >B >M >A >0

0 >B >N >A >0.

If M and N are isomorphic, an isomorphism from N to M induces
an automorphism g of A. By 4.2, there is an integer n such that
g(pnS) S S. Since the restriction of E to S splits, it follows that
the restriction of E' to pnS splits. By 6.2 it follows that the image
of E' in Ext (S, B) is a torsion element. On the other hand, by
6.1 we can clearly choose an Ef e Ext {A, B) which represents a λ-
elongation of A by B and such that the image of Ef in Ext (S, B)
is not a torsion element, from which it follows that there is a λ-
elongation of A by B which is not isomorphic to M.

COROLLARY 6.4. If A is a countable Zp-module of finite torsion-
free rank and λ a limit ordinal such that pλA = 0 and t(A) has
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length X, then A has the X-Zippin property if and only if all torsion-
free submodules of A are free.

This is a corollary of 5.2 and 6.3. 4.3 contains alternative forms
of the condition on A.

COROLLARY 6.5. If (A, B) is a pair of countable, reduced Zp-
modules and X is a limit ordinal, such that B Φ 0, pιA = 0, t(A) has
length λ, and A has finite torsion-free rank, then (A, B) is uniquely
X-elongating pair if and only if either (i) B has bounded order, or
(ii) A has the X-Zippin property.

We remark that this result does not carry over directly to
modules over an arbitrary discrete valuation ring. We also remark
that other uniquely λ-elongating pairs can be obtained by allowing
B to be uncountable — for example, B could be any cotorsion module
such that B/pB is countable.

?• Some unsolved problems*

PROBLEM 1. Find all pairs (A, B) of p-groups which are uniquely
ω-elongating. In particular, if A is an unbounded p-group with no
elements of infinite height such that any two ω-elongations of A
by ZJpZ are isomorphic, is A necessarily a direct sum of cyclic
groups? (This question was raised long ago by Peter Crawley.)

PROBLEM 2. Find an analogue of the theory of quasi-maximal
torsion-free submodules for Abelian groups of finite torsion-free rank.
In general, there is not a maximal quasi-isomorphism class of tor-
sion-free subgroups, but one might obtain one by restricting atten-
tion to "quotient-divisible" groups.

PROBLEM 3. Find the appropriate generalizations of the results
of §5 and 6 for countable Zp-modules of infinite rank.

PROBLEM 4. Find interesting results which hold without counta-
bility restrictions. Many of the positive results generalize trivially
to modules whose torsion submodules are totally protective. Do
they hold if one only requires the torsion submodules to be S-groups?
This is suggested by Nunke's results [10], which also illustrate the
pathology which can arise in the uncountable case.

PROBLEM 5. Find the right generalizations of 6.4 and 6.5 to
arbitrary countable Abelian groups with finite torsion-free rank.
Even for the height h = J[p pω, this is an interesting open problem.
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It is easy to see that if A has the ^-Zippin property for some h of
the type used in 5.3, and if p e Γ, (still using the terminology of
5.3), then every torsion-free submodule of Ap must be free. How-
ever, there is still some distance between this necessary condition
and the sufficient condition of 5.3. Under some additional hypotheses,
these conditions may coincide — for example, if A = T 0 S where
T is torsion and S is torsion-free.
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