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CHEBYSHEV CENTERS IN SPACES OF
CONTINUOUS FUNCTIONS

JOSEPH D. WARD

A bounded set F in a Banach space X has a Chebyshev
center if there exists in X a "smallest" ball containing F.
A Banach space X is said to admit centers if every bounded
subset of X has a center. The purpose of this paper is to
show that certain spaces of continuous functions admit centers.

1* Introduction* Let X be a real normed linear space, G a
subset of X and / an element of X. Then a best approximant, g*,
to / from G (if it exists) is a solution to

(1.1) mf{\\g-f\\fgeG}.

It may happen that / is not defined exactly but is known to lie
in a bounded set F. It is reasonable then to approximate simul-
taneously all f e F by solving

(1.2) inf sup {\\g - / | | , f e F} ^ RG(F)

where the inf is taken over all geG. Thus we may view problem
(1.2) as a natural generalization of the best approximation problem
(1.1). If G = X then the solutions of (1.2) are called Chebyshev
centers of F, following Garkavi [2], In [3], Kadets and Zamyatin
showed that C([a, b], R), the space of real-valued continuous functions
on [a, b], admits centers. This means that (1.2) has a solution in
C([a, b]f R) for F an arbitrary bounded set in C([a, b], R).

The purpose of this note is to show that the Kadets-Zamyatin
result holds under much greater generality. Let

Ω = a paracompact Hausdorff space

S = a normal space

C(A, B) ~ space of continuous functions from A to B .

Our main theorems are:

THEOREM 1. C(Ω, X) admits centers if X is a finite dimensional,
rotund space.

THEOREM 2. C(S, H) admits centers if H is an arbitrary Hilbert
space.

2* Proof of Theorem 1.
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DEFINITION 2.1. Let X and E be Banach spaces and F: X—>2E.
F is said to be upper semi-continuous (u.s.c) if the set {x \ F(x) c G)
is open in X for every open G czE. F is said to be lower semi-
continuous (l.s.c) if the set {x\F(x) f] G} is open in X for every
open G c E.

Proof of Theorem 1. We use the following notation:

F = fixed but arbitrary bounded set in C{Ω, X)

^V(t) = the directed family of open ^-neighborhoods, t e Ω

Ω(t, N) = U {/(β)} where feF,seN

AN(t) = convex closure of Ω(t, N)

B(x, K) = ball of radius K centered at x

R(F) = Chebyshev radius of F with respect to C(Ω, X) as

defined in (1.2).

Suppose F is bounded by K. Now for each t e Ω, consider the
net N—>AN(t) defined on ^/K{b). The range of this net lies in the
metric space J^(B{Q, K)) whose elements are the compact, convex
and nonempty subsets of B(0, K). We put

(2.2) A(t) = lim AN{t\

This limit exists in ^"(B(0f K)) by virtue of the compactness of this
space and the monotonicity of the net {AN(t)}9 Ne^K{t). It may be
verified that

(2.3) A{t) = ΓiAN(t),NeΛ-(t).

We show that the map A: Ω -> ̂ ( 5 ( 0 , K)) is u.s.c. This re-
quires us to choose any nonempty open set G a X and then show
that {t e Ω: A{t) c G) is open in Ω. Let t0 belong to this set. Then
by (2.2), there is an Ne ^Γ(t0) for which AN(tQ) c G . Hence, if t e N,
we have by (2.3) that

A(t)czAN(t) = AN(to)aG

and so A is upper semi-continuous.
Let RX{A) = sup {Rx(A(t)): teΩ}. Following Olech [4], we intro-

duce the map G: Ω —• 2X defined by

G(t) = {βeX: A(t) c B(β, RX{A))} .

Olech proved (under the assumption that X is uniformly rotund which
is the same as rotund in finite dimensions) that the values G(t) are
compact, convex and nonempty subsets of X and G is lower semi-con-
tinuous in t. Thus by appealing to the Michael selection theorem,
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there is a continuous selection / for G.
It is clear that \\f — g\\ ^ RX(A) for all geF. It remains to

show that Rχ(A) ^ R(F). Let ε be arbitrary and choose te Ω so that
Rx(A{t)) > RX{A) - ε. Since feC(Ω, X), we may choose Ne ^Γ(t)
for which osc (/: N) < ε. Due to (2.2) and (2.3) we may assume that N
has been chosen so "small" that there is a ye N and geF for which
RX(A) - 2ε

3* Proof of Theorem 2. The problem with X being infinite
dimensional is that we have no right to expect lim AN(t), Ne <y^(t),
to exist as in Theorem 1. Thus the method of proof of Theorem 1
must be abandoned. Nevertheless, Theorem 2 may still be proved.

Proof of Theorem 2. Let F c C(S, H) be bounded by K. There
exist "approximate centers", call then fn9 such that fn is within
R{F) + 1/n of each element of F. We clearly have for any approx-
imate center /< and /,- the relationship ||/< — fό\\ <; AK.

Step 1. We show that for arbitrary d > 0, there exists an εδ >
0 such that for any (R(F) + εδ)-approximate center f19 we may cons-
truct an (R(F) + ε,/2)-center / 2 such that f2eB(flf δ).

Proof of Step 1. Pick εδ > 0 so that δ = (2εδR(F) + ε^1/2 Pick
# where g is an (iu(jP) + εδ/2)-approximate center for F. It is clear
that Hflf - fx\\ ^ 4JSΓ. Let F(t) = {/(ί): / 6 F}. By definition of approx-
imate center, for all t e S,

), R(F) + εδ) n B(g(t), R(F) + εδ/2) =) F(t) .

For convenience sake set

r, - R(F) + εδ; r2 - R(F) + εδ/2

Define

where

if ( r ϊ -

if (rϊ - rl)/d2 < 1 .

Note that 0 <: /3(£) ^ 1 for all £ e S. We now make three claims
about /2.

(1) f2 is a continuous function, i.e., f2eC(S, H)
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( 2 ) \\f2~f1\\
(3) / 2 is an (R(F) + εδ/2)-approximate center of F

Proof of (1). Since g and fγ are continuous functions and d(t) =
— fi(t)\\ is continuous, β(t) is also continuous. This clearly

implies the continuity of f2.

Proof of (2). It suffices to show that \\f2(t) - /$){{ ^ (2eδR(F) +
ε2)1'2 ^ a for all t e S. Thus for fixed ί0, || /£(ί0) - /$,,) || - || β(to)(g(tQ) -

!. If £(ί0) = 1, rl - r\^ d* so

\\β(to)(g(to) - /i(ίo))ll - llflf(ίo) - Λ(ίo)ll - d(t0)
^ (r? - ri)1/2 ^ δ .

if

so ||/2(ί0) - MQW ^ (rl - riy!2 £ δ. This proves (2).

Proof of (3). Since by (1) f2eC(S, H), it suffices to show that
for each t0 e S,

B(f2(tQ), R(F) + εδ/2)

ea) n B{g{Q, R(F) + eδl2)-DF(t0) .

The above is equivalent to showing that for all x such that
II* - /ill ^ n and \\x - g\\ ^ r2, then \\x - f2\\ ^ r2.

Without loss of generality assume f1 is 0. The above problem
then simplifies to showing that the implication ||a?)| ^ r1 and \\x — g\\ ^
r2, then \\x - f2\\<,r2 holds for all xe V and for all VcH where V
is a two dimensional subspace containing g. Hence we are reduced
to a problem in two dimensional Hubert space and a few simple
applications of the Pythagorean theorem prove the assertion.

Step 2. Let f1 be any (R(F) + εδl)-approximate center of F.
Having defined fn, take /Λ + 1 to be an (R(F) + εδ%+l)-approximate center
such that fn+1 G B(fn, δn) and δn+1 = δJ2, which we may do by Step
1. Evidently eδn—»0 as ^—^co.

Now consider {Λ}Γ=1. For all i, j ^ K, | | / , - fs\\ ^ ll/< - Λll +
IIΛ ~ /ill ^ 2 Σ U* a ^ - δ ^ ' - 1 . So {/jr=1 is a uniformly conver-
gent sequence with limit point /', f'eC(S, H). Also for each geF,

- f'\\, geF}^ sup{||^ - / J | + \\fn - f'\\)9geF)
^ R(F) + eδn + τ
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where yn is a null sequence. Hence sup {\\g — / ' | | , ge F} = R(F) and
/ ' is a Chebyshev center of F.

REMARK 1. Since paracompact spaces are normal [1], Theorem 2
generalizes Theorem 1 in the case that the range space of the space
of continuous functions is a finite dimensional Hubert space.

REMARK 2. This author was unable to resolve the question
whether Theorem 2 holds when the range space of C{S, H) is an
arbitrary uniformly convex space.

The author thanks the referee whose suggestions simplified the
proof of Theorem 2.
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